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Abstract

Neural conversational models learn to generate responses by
taking into account the dialog history. These models are typ-
ically optimized over the query-response pairs with a max-
imum likelihood estimation objective. However, the query-
response tuples are naturally loosely coupled, and there ex-
ist multiple responses that can respond to a given query,
which leads the conversational model learning burdensome.
Besides, the general dull response problem is even wors-
ened when the model is confronted with meaningless re-
sponse training instances. Intuitively, a high-quality response
not only responds to the given query but also links up to the
future conversations, in this paper, we leverage the query-
response-future turn triples to induce the generated responses
that consider both the given context and the future conver-
sations. To facilitate the modeling of these triples, we fur-
ther propose a novel encoder-decoder based generative adver-
sarial learning framework, Posterior Generative Adversarial
Network (Posterior-GAN), which consists of a forward and
a backward generative discriminator to cooperatively encour-
age the generated response to be informative and coherent
by two complementary assessment perspectives. Experimen-
tal results demonstrate that our method effectively boosts the
informativeness and coherence of the generated response on
both automatic and human evaluation, which verifies the ad-
vantages of considering two assessment perspectives.

Introduction

Generative conversational models are drawing an increasing
amount of interests (Shang, Lu, and Li 2015; Vinyals and
Le 2015; Serban et al. 2016; 2017b; 2017a; Li et al. 2016a;
2016b; 2017a; Mou et al. 2016; Zhao, Zhao, and Eskénazi
2017; Xing et al. 2017; Xu et al. 2017; 2018a; Zhang et
al. 2018a; 2018b). Most existing generative conversational
models are based on a Seq2Seq architecture (Sutskever,
Vinyals, and Le 2014). These models consider conversation
history to learn to generate responses and are optimized over
the query-response pairs.

However, the query-response tuples are naturally loosely
coupled, there exist multiple responses that can respond to a
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Figure 1: Dialogue examples with various responses regard-
ing informativeness and coherence.

given query, so call one-to-many phenomenon, which leads
the conversational model learning burdensome. In DailyDia-
log (Li et al. 2017b) corpus, at least 13% utterances contain
more than one response (Csaky, Purgai, and Recski 2019).
What’s more, the notorious general dull response problem
is even worsened when the model is confronted with mean-
ingless response training instances. In another public avail-
able corpus OpenSubtitles (OSDb), 113K sentences con-
tain the sequence “I don’t know” in the training set (Li et
al. 2016a). Not to mention other similar meaningless re-
sponses like “haha”, “what are you talking about?”, etc. The
one-to-many phenomenon and non-negligible proportion of
generic responses in the training corpus cause the neural re-
sponse generation model prone to generate short, bland, or
even irrelevant responses. In Figure 1, for the given query
talking about the traveling experience, the first response is
much shorter and uninformative compared with the other
two responses, while the second one seems to be informative
enough but meanders away from the conversational subject,
especially in terms of the following conversations. The third
response is not only informative but also coherent with both
the query and the next utterance.

It is often the case that a high-quality response not only
responds to the given query but also links up to the future
conversations, in this paper, we propose to utilize query-
response-future turn triples instead of the query-response
pairs to train the response generation model. Convention-
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ally, neural dialogue generation model is optimized with a
maximum likelihood estimation (MLE) objective given the
query-response tuples. However, such an objective is obvi-
ously inadequate for triple learning, where the future con-
versation is introduced during training. Moreover, the MLE
objective encourages the model to repetitively overproduce
high-frequency words in the ambiguous and noisy train-
ing corpus (Zhang et al. 2018a) and tend to deterministi-
cally output some “average” of diverse real-world responses
(Csaky, Purgai, and Recski 2019). To extend the neural di-
alogue learning from tuples to triples, and induce the gen-
erated response to be not only informative but also coher-
ent regarding both the input context and the future conver-
sations, we further propose a novel encoder-decoder based
generative adversarial learning framework, Posterior Gener-
ative Adversarial Network (Posterior-GAN), to handle the
query-response-future turn triple modeling. The framework
leverages a forward and a backward generative discrimina-
tor to guide the generated response: the forward discrimina-
tor that extracts as much sentence-level semantic informa-
tion as possible from the response to predict the real-world
future conversations outputs high rewards if the generated
response is informative enough with respect to the subse-
quent future conversations, and the backward discriminator
that assesses the response based on the full information of
real-world future conversations instead of the input context
encourages the generated response to be more coherent in
terms of the following conversations and guides the conver-
sation smoothly linking up to the future turn.

We highlight our contributions as follows:

• We identify an unexplored type of metadata, query-
response-future turn triples, for response generation.
Compared to general query-response tuples, the triples
help the model use bidirectional information to learn the
response generation in training.

• We propose a novel encoder-decoder based generative ad-
versarial learning framework, Posterior-GAN, to facilitate
the query-response-future turn modeling, which induces
the generated response to be informative and coherent by
constructing two generative discriminators, a forward one
and a backward one respectively.

• We perform detailed experiments to demonstrate the ef-
fectiveness of the proposed framework and verifies the
ability of bidirectional generative discriminators on as-
sessing the quality of response.

Method

Overview

In this paper, we extend the conventional query-response
tuple (x, y) neural dialogue learning into query-response-
future turn triple (x, y, z) to encourage the generated re-
sponse to be informative and coherent with respect to both
the given query and the future conversations.

Here, a novel posterior generative adversarial network
(Posterior-GAN) is proposed to undertake the triple learn-
ing and mitigate the overproduction of repetitive responses
problem under the MLE objective. Posterior-GAN contains

Figure 2: Illustration of Posterior-GAN. Brown for the
query, yellow for the current response, and green for the fu-
ture turn. Gθ represent generator. Dφ1 and Dφ2 represent
forward and backward generative discriminator respectively.

a generator that is responsible for generating response, and
two discriminators cooperatively discriminating whether the
generated response is coherent and informative in a for-
ward and a backward manner by taking both the preced-
ing context and the future conversations into account. The
generator Gθ is constructed upon the Seq2Seq structure.
Given the input query x = (x1, . . . , xt, . . . , xT ) of T words
from the vocabulary Γ, the model generates response y =
(y1, . . . , ym, . . . , yL) of L words. For the discriminator, in-
stead of a traditional classification-based discriminator, we
utilize two symmetric generative discriminators with cross-
entropy based rewards: a forward generative discriminator
Dφ1 and a backward generative discriminator Dφ2. The gen-
eral architecture is illustrated in Figure 2.

Generator

In our implementation, the generator consists of a two-layer
bidirectional LSTM encoder and a four-layer LSTM de-
coder. The word embedding is sequentially fed to two-layer
bidirectional LSTM resulting with a hidden state represent-
ing the past and future information simultaneously. To better
handle the long-range dependencies in multi-turn conversa-
tions, we also apply attention mechanism (Bahdanau, Cho,
and Bengio 2015) in the decoding phase.

Discriminator

Traditional discriminators in generative adversarial net-
works are classification-based approach, such as a binary
classifier, which takes in the query-response pair (x, y) and
recognizes the true probability of pair (x, y) being true as a
reward. Essentially, it models the joint probability p(x, y).
However, as Xu et al. (2018a) illustrated, when a query-
generated response pair fits the distribution of real-world
pairs, the classifier-based discriminators may result in sat-
urated similar indistinguishable rewards for both the synthe-
sised response and the ground truth response.

As shown in Figure 3, in this paper, instead of modeling
the joint probability p(x, y), we introduce the future conver-
sations z and utilize the conditional probability p(z|y) and
p(y|z) as rewards. The forward discriminator p(z|y) outputs
high rewards if y is informative enough to perceive the sub-
sequent future conversations , and a backward discriminator
p(y|z) encourages the generated response to be more coher-
ent in terms of the following conversations and generates
high rewards if the generated response bridge the gap be-
tween the query x and the future conversation z. Note that,
in order to induce the generated response to be informative
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Figure 3: Illustration of forward and backward generative
discriminators. ytrue represents the real-world response.
yGθ

represents response generated by generator Gθ. z rep-
resents the true future turn. Dφ1 and Dφ2 represent forward
and backward generative discriminator respectively. The for-
ward generative discriminator produces the future turn z
based on the generated response yGθ

or the real-world re-
sponse ytrue. The backward generative discriminator pre-
dicts the generated response yGθ

or the real-world response
ytrue based on the future turn z.

and coherent in terms of both the given query and the future
conversations, and stabilize the adversarial training process
(Li et al. 2017a; Wu et al. 2018), we also optimize the gen-
erator by teacher forcing periodically.

Forward Generative Discriminator Intuitively, in multi-
turn conversations, a high-quality response not only re-
sponds to the query but also is informative enough to per-
ceive future conversations. The forward generative discrim-
inator takes in the response y (the predicted response yGθ

or the real-world response ytrue), and generates the future
turn z, a sequence of K words. It discriminates whether y
is informative and appropriate enough to induce the future
turn.

In detail, for a response y of L words, the reward of gener-
ating the real-world future turn z is defined as the averaged
negative cross entropy of each word of z:

R1 (y) =
1

K

K∑
k=1

logDφ1 (zk|y, z<k) . (1)

We maximize the reward for real-world response ytrue for
generating the future response z and minimize the reward
for the generated response yGθ

of predicting z. We expect
the general, meaningless generated responses are of lower
rewards while the informative responses are of higher re-
wards. The loss function of the forward generative discrimi-
nators is formulated as follows:

J(φ1) =

−
(
Eytrue∼pdata [R1(ytrue)]− EyGθ

∼Gθ
[R1(yGθ

)]
)

. (2)

In contrast, the reward of the existing classifier-based dis-
criminators are calculated as follows:

R (y) = Dφ (true |x, y) ,

where Dφ is a binary classifier judging how likely (x, y)
is from the real-world data. One major problem of the
classifier-based discriminator is that the reward is easy to
saturate, where for a given context, different generated re-
sponses usually achieve similar rewards from the saturated
region of the non-linear classification function like sigmoid
(Xu et al. 2018a). As a result, the discriminator fails to dis-
tinguish detailed fine-grained differences among the gener-
ated responses in such a situation. In forward generative dis-
criminator, the response y is differentiated by the ability of
seeing the future few turns of conversations z. Such a cross-
entropy based reward not only does not saturate but also dis-
criminates the response in terms of z.

Backward Generative Discriminator To further induce
the generated response to be more coherent with both the
preceding and the following conversations, we propose a
backward generative discriminator p(y|z).

Given the real-world future conversation z, the reward for
mth word in response y of L word (the real-world response
ytrue, and the generated response yGθ

) is calculated at the
word level:

R2 (ym) = − logDφ2 (ym|z, y<m) . (3)

We maximize the reward R2 for the real-world response
ytrue and minimize the reward R2 for the response yGθ

pro-
duced by generator Gθ. We formulate the loss function of
the backward generative discriminator as follows:

J(φ2) =

−
(
Eytrue∼pdata [R2(ytrue)]− EyGθ

∼Gθ
[R2(yGθ

)]
)

. (4)

If a response y matches well with the given context x,
but is irrelevant with the following conversations z, in previ-
ous discriminators, it may be endowed with a high reward.
Whereas the backward discriminator models the generative
probability p(y|z) given the future conversation z, it induces
the generated response to be more coherent by bridging the
gap between the preceding and the subsequent conversa-
tions. We expect the responses which are coherent with both
the preceding and the following conversations gain higher
rewards while the responses that are irrelevant with the sub-
sequent turns achieve lower rewards.

Optimization

In this work, the policy gradient method (Sutton et al. 1999;
Williams 1992) is employed for optimization. The generator
(policy) is trained to maximize the cumulative total reward
of generated response:

J(θ) = EyGθ
∼Gθ

(
QGθ

Dφ1,Dφ2
(x, yGθ

, z)
)
, (5)

where QGθ

Dφ1,Dφ2
(x, yGθ

, z) is the cumulative total reward
for a generated response yGθ

starting from initial state x,
taking action a according to the policy Gθ. The gradient
of Eq.(5) is approximated using the likelihood ratio trick
(Williams 1992):

∇θJ(θ) �∑N
n=1

∑L
m=1 R

n
m∇θ logGθ (y

n
m|x, yn<m)

, (6)
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where N is the number of sampling via the policy
Gθ, and Rn

m is the final reward of mth word in re-
sponse ynGθ

by combining the reward R1 and R2 as∑L
i=m λi (R1 (yn)−MIN(R1))R2 (yni ). The term γ is

the discount rate. The MIN(R1) is defined as the minimum
response reward of each batch in training samples.

Only using policy gradient methods to optimize the gen-
erator directly will lead to a very fragile training process (Li
et al. 2017a), because the generator never has access to the
real-world response throughout the training process. Thus,
we adopt the following three strategies to promote and sta-
bilize the training process.
Curriculum Learning Strategy. For an utterance, the first
T words are optimized by MLE and the rest uses the policy
gradient to calculate the loss. Then policy gradient is gradu-
ally adopted at every word (Li et al. 2016b).
Baseline Strategy. It facilitates the training process to be
more steady by encouraging the model generates responses
that achieve higher rewards than the baseline and suppress-
ing the response generation with lower rewards compared
with the baseline. In practice, we calculate the average word
rewards of each batch in training samples as the baseline.
When we only use the forward generative discriminator to
judge the generated response, the baseline is set to the aver-
age response rewards of every batch in training samples.
1-value reward Strategy. Following previous work (Li et
al. 2016b; 2017a; Xu et al. 2018a), we also utilize teacher
forcing to train the generator periodically. In this work,
teacher forcing forces the generator to keep the given query
in mind. We use the maximum likelihood estimation (MLE)
objective in the teacher forcing phase, which can be viewed
as setting the reward of the real-word response to 1 when
using the policy gradient.

Experiment

Datasets

DailyDialog: This dataset consists of high-quality multi-
turn dialog, which is provided by Li et al. (2017b). We con-
struct the query-response-future turn triples by treating each
round in the dataset as response, three previous rounds as
query, and three latter rounds as future turn. The length of re-
sponse is limited to (5,40] by discarding the triples whose re-
sponse is shorter than 5 words and truncating response over
the maximum length to 40 words. The size of query and fu-
ture turn is limited to less than 80 words. We randomly sam-
ple 28K, 3K, and 1.5K triples for training, validation, and
testing sets, respectively.
OpenSubtitles (OSDb): OSDb1 is a very large and noisy
open-domain dataset containing roughly 60M-70M scripted
lines. We first preprocess the triples as we do with Daily-
Dialog, then select one subset in our experiment and split
it into 1500K, 50K, and 25K triples for training, validation,
and testing set, respectively.

1http://opus.lingfil.uu.se/OpenSubtitles.php

Comparison Models

We compare the proposed Posterior-GAN with the follow-
ing state-of-the-art models:
Seq2Seq-att: The generator is a sequence-to-sequence
model (Sutskever, Vinyals, and Le 2014) with attention
mechanism (Bahdanau, Cho, and Bengio 2015). A maxi-
mum likelihood estimation (MLE) objective is used to train
the model.
Adver-REGS: Adver-REGS (Li et al. 2017a) uses a
sequence-to-sequence model to generate response. A binary
classifier based discriminator calculates reward to train gen-
erator with policy gradient.
DP-GAN: DP-GAN (Xu et al. 2018a) also consists of a
generator and a discriminator. Different from Adver-REGS,
this discriminator is a cross-entropy based language model
which alleviates the reward saturation problem.

Training Details

Based on the loss and the metrics on the validation set, we
train the comparison models and our model with the fol-
lowing hyperparameters: The word embedding size is 256.
The hidden size is set to 256. To conduct a fair compari-
son among all the models, We set the encoder layer to 2 and
the decoder layer to 4. The encoder is a bidirectional LSTM.
The vocabulary for DailyDialog and OpenSubtitles is of size
20,000 and 50,000, respectively. The batch size is set to 256
for pre-training and adversarial training. All the parameters
is initialized using a normal distribution N (0, 0.0001). All
the models are trained end-to-end using Adam (Kingma and
Ba 2015) with a learning rate of 0.0001 and a global norm
clipping at 2.0. For Adver-REGS, DP-GAN, and our model,
before adversarial learning, we pre-train the generator for
10 epochs. In adversarial training, we alternatively train the
generator every 1000 steps and optimize the discriminator
every 5000 steps.

Evaluation Metrics

We evaluate the model in terms of following automatic eval-
uation metrics:

• BLEU (Papineni et al. 2002), a word-overlapping based
metric, which calculates word overlapping degree be-
tween the generated response and the real-world response.
Recently plenty of work adopts its to reflect the lexical
similarity of response (Li et al. 2016a; Zhao, Zhao, and
Eskénazi 2017; Zhang et al. 2018a).

• Embedding-based Metrics. Embedding Average (Aver-
age), Embedding Greedy (Greedy) and Embedding Ex-
trema (Extrema) (Liu et al. 2016) are used in the experi-
ments. The three embedding-based metrics first calculate
semantic embedding based on the vectors of all individual
tokens in responses and then calculate the similarity be-
tween the generated response and the real-world response
by cosine distance. They are widely used to evaluate
the semantic similarity of response (Serban et al. 2017b;
Zhang et al. 2018b; Csaky, Purgai, and Recski 2019).

• Distinct. Dist-{1,2,3} are employed to reflect the degree
of diversity of the generated responses, which are widely
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DailyDialog
Models Dist-1 Dist-2 Dist-3 BLEU Greedy Average Extrema
Seq2Seq-att 0.0277 0.1625 0.3868 0.1878 0.4825 0.5993 0.3080
Adver-REGS 0.0541 0.2877 0.5542 0.2116 0.4857 0.6215 0.3542
DP-GAN 0.0656 0.3088 0.5630 0.1992 0.4749 0.6144 0.3409
Posterior-GAN(F) 0.0659 0.2995 0.5578 0.2067 0.4754 0.6218 0.3343
Posterior-GAN(B) 0.0578 0.2950 0.5545 0.2130 0.4818 0.6220 0.3442
Posterior-GAN(A) 0.0678 0.3549 0.6006 0.2183 0.4916 0.6260 0.3544

OpenSubtitles (OSDb)
Models Dist-1 Dist-2 Dist-3 BLEU Greedy Average Extrema
Seq2Seq-att 0.0016 0.0064 0.0150 0.1405 0.3900 0.4527 0.2243
Adver-REGS 0.0041 0.0136 0.0248 0.1609 0.4655 0.5523 0.2645
DP-GAN 0.0044 0.0143 0.0262 0.1484 0.4600 0.5509 0.2589
Posterior-GAN(F) 0.0049 0.0170 0.0322 0.1733 0.4753 0.5708 0.2573
Posterior-GAN(B) 0.0045 0.0148 0.0321 0.1756 0.4947 0.6217 0.2690
Posterior-GAN(A) 0.0049 0.0180 0.0330 0.1955 0.4973 0.6346 0.2778

Table 1: The automatic metrics evaluation results. Higher is better. “(F)”, “(B)” and “(A)” represent Posterior-GAN with a
forward generative discriminator, a backward generative discriminator and both two discriminators, respectively.

DailyDialog
Models Coherence Informativeness
Seq2Seq-att 3.8550 3.8933
Adver-REGS 3.4717 3.3683
DP-GAN 3.4400 3.2350
Posterior-GAN 3.2883 3.2250

OpenSubtitles (OSDb)
Models Coherence Informativeness
Seq2Seq-att 3.8549 3.6952
Adver-REGS 4.0365 4.0432
DP-GAN 3.7638 3.8088
Posterior-GAN 3.4806 3.4567

Table 2: The human evaluation results. We calculate each
score by averaging the rank of each model in corresponding
metrics. Lower is better.

used in generative dialogue task (Li et al. 2016a; Xu et
al. 2018a; Zhang et al. 2018b). The Dist-{1,2,3} represent
the percentage (%) of distinct unigrams/bigrams/trigrams.

Experimental Results

Overall Performance Table 1 illustrates the evaluation re-
sults on lexical and semantic similarity metrics, and shows
the diversity of the generated responses. Comparing Adver-
REGS with DP-GAN, Adver-REGS performs better on
BLEU and embedding-based similarities while DP-GAN
generates more diverse responses in terms of Dist-{1,2,3},
which is consistent with the observation in (Xu et al. 2018a).
DP-GAN effectively improves the response diversity by uti-
lizing the language model cross-entropy rewards while the
performance on BLEU and embedding-based similarities do
not witness similar improvements in our settings. Posterior-
GAN achieves the best performance on all the automatic
evaluation metrics on both corpora, indicating the superior-
ity of the query-response-future turn triple training, enabled
by the forward and backward generative discriminators, in

comparison with the state-of-the-art generative approaches.
And the improvements of our model are significant with
p ≤ 0.001 (T-test).

Ablation Test Comparing the forward and backward gen-
erative discriminator in Posterior-GAN, we observe that for-
ward generative discriminator achieves better performance
on the diversity metrics, whereas backward generative dis-
criminator performs better on lexical and semantic similari-
ties. The difference lies in that backward generative discrim-
inator directly calculates the reward for all individual tokens
of the generated response in terms of the future conversa-
tion, in the supplement of the generation perspective based
on the query, and forward generative discriminator measures
whether the generated response is informative enough to
predict the subsequent real-world turns.

Qualitative Evaluation Due to the known fact that quan-
titative metrics and human perception have a certain de-
gree of deviation (Stent, Marge, and Singhai 2005), e.g.,
the conceptual difference of informativeness and diversity
(Zhang et al. 2018b), we use human evaluation as a qual-
itative way to further evaluate our model and comparison
models. We randomly select 200 samples from the test sets
in the two dialogue datasets separately. Each sample con-
sists of query, future turn and responses generated by dif-
ferent models. We invite three annotators to rank the gen-
erated responses with respect to two aspects: coherence and
informativeness. Ties are allowed. Coherence indicates how
likely the generated response is relevant to both query and
future turn. Informativeness specifies how much the infor-
mation related to the context is contained in the generated
response. The annotators are all well educated and are ig-
norant of the models by which the responses are generated.
To ensure a stable comparison, the evaluated models consist
of 2 Seq2Sea-att models with different initialization, Adver-
REGS, DP-GAN, and 3 Posterior-GAN outputs. The results
of the human evaluation are shown in Table 2. We also re-
port the inter-annotator agreement to demonstrate the con-
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Query: I need some flowers for my girlfriend. // No prob-
lem. Would you like some artificial carnations? // Oh, no.
Carnations are not very elegant. Artificial flowers have no
passion.
Seq2Seq-att: How how how much how much? I’d like.
Adver-REGS: How did you want to spend? How much
did.
DP-GAN: How long did you want to spend? They was.
Posterior-GAN: How much did you want to spend? It’s
very expensive.
Future turn: Money is no object. // Our most elegant
flower is golden lily. // I will take ten.
Query: How may I help you today? // I need to open a
second account. // What kind of account would you like
to open?
Seq2Seq-att: I want to need to deposit to deposit.
Adver-REGS: I need to open the savings account.
DP-GAN: I want to open cash at cash. i need
Posterior-GAN: I need to transfer a savings account ac-
count.
Future turn: Do you have another account with us? //
I sure do. // Would you like to transfer money from that
account into your new one?
Query: What’s your case? // I was pulled over for run-
ning a red light, but I never did. // Do you believe that the
officer lied?
Seq2Seq-att: Well, you was so in that.
Adver-REGS: We never like to lie.
DP-GAN: Because I’ve seen them.
Posterior-GAN: Of course, you can’t know that.
Future turn: Your license plate was caught on camera?
// A picture of my license plate was never taken. // Since
there is no picture of your license plate on record, I’m
going to let you go.

Table 3: The responses generated by the proposed models
and comparison models on DailyDialog.

sistency of three annotators. The spearman’s rank correla-
tion coefficient for coherence and informativeness is 0.3948
and 0.3406, with p < 0.0001. Augmented with adversarial
learning framework, DP-GAN, Adver-REGS, and Posterior-
GAN all achieve better performance in comparison with the
vanilla Seq2Seq-att model on DailyDialog, and DP-GAN
performs better than Adver-REGS, similar to the observa-
tions in (Xu et al. 2018a). Whereas, our model obtains sub-
stantial and consistent improvements in terms of coherence
and informativeness on two public datasets, DailyDialog and
Opensubtitles (OSDb).

Analysis: Why It Works

In this section, we further analysis why future turn and two
symmetric generative discriminators have a positive effect
on the performance of model and increase informativeness
and coherence of the response.

Case Study We first show several examples in Table 3,
which consist of query, future turn, and responses produced

Models Averaged Greedy Matching
for y and (x/z)

Frequency-based
Similarity

Seq2Seq-att 0.5942 0.5478
Adver-REGS 0.6403 0.7165
DP-GAN 0.6514 0.6739
Posterior-GAN 0.7276 0.7460

Table 4: The results of Embedding-based Averaged Greedy
Matching for response y with the given query x and fu-
ture conversations z, which reflects the coherence of the
response, and Frequency-based Similarity, which illustrates
the informativeness of the response.

by different models on DailyDialog. It can be observed that
the responses produced by our models are not only more
consistent with the given query but also more coherent with
future conversations. The comparison models are easy to
generate repeated words, like “how how how”, “to deposit
to deposit”, and hard to produce specific words related to
future turn, which can reflect the ability to looking ahead.
In the first example, it is more than clear that the responses
generated by our models first respond to the query and then
deepen the topic, which brings the conversation topic to con-
tinue the future turn. Similar observations also appear in
other examples, but we do not show them for limited space.

Automatic Analysis To further demonstrate the above ob-
servations, we design two metrics to verify the superiority
of the generated responses. The informativeness of the re-
sponses is reflected by comparing the word frequency sim-
ilarity between the generated response and the ground-truth
response, where the responses are represented as a vector,
and each element in the vector is denoted as the frequency
of a word. Here, we use 2350 most frequent words from the
training set of DailyDialog corpus without stop words and
meaningless words. To validate the coherence of the gener-
ated response, we calculate the average matching degree of
the generated response with the given query and the subse-
quent real-world conversations by utilizing the embedding-
based greedy matching metric, which prefers response with
keywords that have high semantic similarity with those in
the real-world context (Liu et al. 2016). The results are
shown in Table 4. Regarding both the frequency similarity
and matching degree, our model consistently outperforms
the comparison models, which indicates that our model gen-
erates more informative and coherent responses.

Visualization We also visualize the reward distribution
of two symmetric discriminators to get some insight into
the behavior of the model on DailyDialog. Figure 4 illus-
trates the reward distribution and representative conversa-
tions. The reward distribution is roughly divided into three
regions. We observe that some responses are of higher re-
wards on R1 (subtract the minimum value) but low rewards
on R2 (the average R2(ym) of response) as in the yellow
region C of Figure 4. The response from regions C provides
specific information to answer the preceding context. The
responses from red region B of Figure 4 are of higher re-
wards on R2, whereas the rewards on R1 is much lower.
Although the response ‘no’ is lack of informativeness, it is
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Figure 4: The distribution of sample rewards calculated by the forward generative discriminator R1 and the backward generative
discriminator R2 on DailyDialog. R is the combination of R1 and R2. We use three regions A, B, and C to represent three
types of samples. Samples in region A gain high rewards in both discriminators. Samples in region B achieve higher reward in
the backward generative discriminator than in the forward one, while Samples in region C obtain higher reward in the forward
generative discriminator than in the backward one.

coherent to the given query and the future turn. By simul-
taneously integrating both R1 and R2, the generator pays
more attention to responses that are not only informative but
also coherent and achieves high rewards on both generative
discriminators.

Related Work

A tremendous amount of effort has been paid to increase the
informativeness and diversity of neural dialogue generation
model. Li et al. (2016a) adopted Maximum Mutual Infor-
mation (MMI) as the objective function to decrease general
response. Li et al.; Zhang et al. (2016b; 2018a) introduced
reinforcement learning to facilitate the diversity of response
with handcraft rewards. Xing et al. (2017) incorporated
topic information into the seq2eq based dialogue model to
generate informative responses. Clark and Cao; Serban et
al.; Zhao, Zhao, and Eskénazi; Shen et al. (2017; 2017b;
2017; 2018) applied CVAE to the seq2seq based dialogue
model to increase utterance-level diversity and improve in-
formativeness by generating a longer response. To enhance
the coherence of the generated response, Zhang et al.; Xu et
al.; Csaky, Purgai, and Recski (2018a; 2018b; 2019) man-
ually designed an objective function that assesses the co-
herence of response with respect to the query. Whereas in
our work, we handle the informativeness and coherence si-
multaneously by extending the conventional query-response
tuple learning into query-response-future turn triple train-
ing. What is more, the proposed framework is optimized un-
der the generative adversarial network instead of a handcraft
learning objective.

Generative adversarial network (Goodfellow et al. 2014)
has enjoyed certain success in dialogue response generation.
Li et al. (2017a) proposed adversarial training for dialogue
generation. The model jointly trains two models, a generator

(a Seq2Seq model) defining the probability of generating a
dialogue sequence, and a discriminator labeling dialogues as
human-generated or machine-generated. Since then, GAN
based response generation models tended to solve the prob-
lem of repeated and “boring” expression such as GAN-AEL
(Xu et al. 2017), SeqGAN (Yu et al. 2017), DP-GAN (Xu et
al. 2018a), MaskGAN (Fedus, Goodfellow, and Dai 2018),
AIM (Zhang et al. 2018b), and DialogWAE (Gu et al. 2019).
Our Posterior-GAN model differs from the above models
in both the discriminator design and learning framework:
DP-GAN uses a language-based discriminator to distinguish
novel text from repeated text and assigns a low reward for
repeated text and high reward for novel and fluent text;
AIM exploits an embedding-based structured discrimina-
tor and uses Adversarial Information Maximization (AIM)
model to generate informative and diverse responses; while
in this paper, we propose a novel posterior adversarial learn-
ing framework to facilitate the query-response-future turn
modeling, where we adopt two encoder-decoder based gen-
erative discriminators, a forward and a backward discrimi-
nator. The two discriminators cooperatively discriminate the
coherence and informativeness of the generated response,
which bridges the gap between the preceding and the fol-
lowing conversations.

Conclusion

In this paper, we propose the query-response-future turn
triples instead of the conventional query-response pairs for
neural dialog response generation. To facilitate the triple
modeling and alleviate the overproducing of generic and
repetitive responses problem, Posterior-GAN that consists
of a forward and a backward encoder-decoder based gen-
erative discriminator is further introduced. Augmented with
future conversations and Posterior-GAN in training, detailed

7714



experiments and analysis demonstrate that the model effec-
tively generates more informative and coherent responses.
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