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Abstract

In this paper, we focus on a new practical task, document-
scale text content manipulation, which is the opposite of text
style transfer and aims to preserve text styles while altering
the content. In detail, the input is a set of structured records
and a reference text for describing another recordset. The out-
put is a summary that accurately describes the partial con-
tent in the source recordset with the same writing style of
the reference. The task is unsupervised due to lack of par-
allel data, and is challenging to select suitable records and
style words from bi-aspect inputs respectively and generate
a high-fidelity long document. To tackle those problems, we
first build a dataset based on a basketball game report cor-
pus as our testbed, and present an unsupervised neural model
with interactive attention mechanism, which is used for learn-
ing the semantic relationship between records and reference
texts to achieve better content transfer and better style preser-
vation. In addition, we also explore the effectiveness of the
back-translation in our task for constructing some pseudo-
training pairs. Empirical results show superiority of our ap-
proaches over competitive methods, and the models also yield
a new state-of-the-art result on a sentence-level dataset. 1

Introduction

Data-to-text generation is an effective way to solve data
overload, especially with the development of sensor and
data storage technologies, which have rapidly increased the
amount of data produced in various fields such as weather,
finance, medicine and sports (Barzilay and Lapata 2005).
However, related methods are mainly focused on content fi-
delity, ignoring and lacking control over language-rich style
attributes (Wang et al. 2019). For example, a sports journal-
ist prefers to use some repetitive words when describing dif-
ferent games (Iso et al. 2019). It can be more attractive and
practical to generate an article with a particular style that is
describing the conditioning content.

In this paper, we focus on a novel research task in the
field of text generation, named document-scale text content
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1Our code and data are available at: https://github.com/
syw1996/SCIR-TG-Data2text-Bi-Aspect

Figure 1: An example input (Table and Reference Summary)
of document-level text content manipulation and its desired
output. Text portions that fulfill the writing style are high-
light in orange.

manipulation. It is the task of converting contents of a docu-
ment into another while preserving the content-independent
style words. For example, given a set of structured records
and a reference report, such as statistical tables for a bas-
ketball game and a summary for another game, we aim to
automatically select partial items from the given records and
describe them with the same writing style (e.g., logical ex-
pressions, or wording, transitions) of the reference text to
directly generate a new report (Figure 1).

In this task, the definition of the text content (e.g., sta-
tistical records of a basketball game) is clear, but the text
style is vague (Dai et al. 2019). It is difficult to construct
paired sentences or documents for the task of text con-
tent manipulation. Therefore, the majority of existing text
editing studies develop controlled generator with unsuper-
vised generation models, such as Variational Auto-Encoders
(VAEs) (Kingma and Welling 2013), Generative Adversar-
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Train(D/S) Dev(D/S) Test(D/S)
#Instances 3371/31,751 722/6,833 728/6,999
Avg Ref Length 335.55/25.90 341.17/25.82 346.83/25.99
#Data Types 37/34 37/34 37/34
Avg Input Record Length 606/5 606/5 606/5
Avg Output Record Length 38.05/4.88 37.80/4.85 31.32/4.94

Table 1: Document-level/Sentence-level Data Statistics.

ial Networks (GANs) (Goodfellow et al. 2014) and auto-
regressive networks (Oord, Kalchbrenner, and Kavukcuoglu
2016) with additional pre-trained discriminators.

Despite the effectiveness of these approaches, it remains
challenging to generate a high-fidelity long summary from
the inputs. One reason for the difficulty is that the input
structured records for document-level generation are com-
plex and redundant to determine which part of the data
should be mentioned based on the reference text. Similarly,
the model also need to select the suitable style words ac-
cording to the input records. One straightforward way to ad-
dress this problem is to use the relevant algorithms in data-
to-text generation, such as pre-selector (Mei, Bansal, and
Walter 2015) and content selector (Puduppully, Dong, and
Lapata 2018). However, these supervised methods cannot be
directly transferred considering that we impose an additional
goal of preserving the style words, which lacks of parallel
data and explicit training objective. In addition, when the
generation length is expanded from a sentence to a docu-
ment, the sentence-level text content manipulation method
(Wang et al. 2019) can hardly preserve the style word (see
case study, Figure 4).

In this paper, we present a neural encoder-decoder archi-
tecture to deal with document-scale text content manipula-
tion. In the first, we design a powerful hierarchical record
encoder to model the structured records. Afterwards, in-
stead of modeling records and reference summary as two
independent modules (Wang et al. 2019), we create fusion
representations of records and reference words by an in-
teractive attention mechanism. It can capture the semantic
relatedness of the source records with the reference text to
enable the system with the capability of content selection
from two different types of inputs. Finally, we incorporate
back-translation (Sennrich, Haddow, and Birch 2016) into
the training procedure to further improve results, which pro-
vides an extra training objective for our model.

To verify the effectiveness of our text manipulation ap-
proaches, we first build a large unsupervised document-level
text manipulation dataset, which is extracted from an NBA
game report corpus (Wiseman, Shieber, and Rush 2017). Ex-
periments of different methods on this new corpus show that
our full model achieves 35.02 in Style BLEU and 39.47 F-
score in Content Selection, substantially better than baseline
methods. Moreover, a comprehensive evaluation with hu-
man judgment demonstrates that integrating interactive at-
tention and back-translation could improve the content fi-
delity and style preservation of summary by a basic text edit-
ing model. In the end, we conduct extensive experiments
on a sentence-level text manipulation dataset (Wang et al.

2019). Empirical results also show that the proposed ap-
proach achieves a new state-of-the-art result.

Preliminaries

Problem Statement

Our goal is to automatically select partial items from the
given content and describe them with the same writing style
of the reference text. As illustrated in Figure 1, each in-
put instance consists of a statistical table x and a reference
summary y′. We regard each cell in the table as a record
r = {ro}Lx

o=1, where Lx is the number of records in table x.
Each record r consists of four types of information includ-
ing entity r.e (the name of team or player, such as LA Lakers
or Lebron James), type r.t (the types of team or player, e.g.,
points, assists or rebounds) and value r.v (the value of a cer-
tain player or team on a certain type), as well as feature r.f
(e.g., home or visiting) which indicates whether a player or a
team compete in home court or not. In practice, each player
or team takes one row in the table and each column contains
a type of record such as points, assists, etc. The reference
summary or report consists of multiple sentences, which are
assumed to describe content that has the same types but dif-
ferent entities and values with that of the table x.

Furthermore, following the same setting in sentence-level
text content manipulation (Wang et al. 2019), we also pro-
vide additional information at training time. For instance,
each given table x is paired with a corresponding yaux,
which was originally written to describe x and each refer-
ence summary y′ also has its corresponding table x′ contain-
ing the records information. The additional information can
help models to learn the table structure and how the desired
records can be expressed in natural language when training.
It is worth noting that we do not utilize the side information
beyond (x, y′) during the testing phase and the task is unsu-
pervised as there is no ground-truth target text for training.

Document-scale Data Collection

In this subsection, we construct a large document-scale text
content manipulation dataset as a testbed of our task. The
dataset is derived from an NBA game report corpus RO-
TOWIRE (Wiseman, Shieber, and Rush 2017), which con-
sists of 4,821 human written NBA basketball game sum-
maries aligned with their corresponding game tables. In our
work, each of the original table-summary pair is treated as a
pair of (x, yaux), as described in previous subsection. To this
end, we design a type-based method for obtaining a suitable
reference summary y′ via retrieving another table-summary
from the training data using x and yaux. The retrieved y′

7717



contains record types as same as possible with record types
contained in y. We use an existing information extraction
tool (Wiseman, Shieber, and Rush 2017) to extract record
types from the reference text. Table 1 shows the statistics
of constructed document-level dataset and a sentence-level
benchmark dataset (Wang et al. 2019). We can see that the
proposed document-level text manipulation problem is more
difficult than sentence-level, both in terms of the complexity
of input records and the length of generated text.

y’ x z

y’ x yaux
y’ x’ y’
z x’ y’

Figure 2: An overview of the document-level approach.

The Approach

This section describes the proposed approaches to tackle the
document-level problem. We first give an overview of our ar-
chitecture. Then, we provide detailed formalizations of our
model with special emphasize on Hierarchical Record En-
coder, Interactive Attention, Decoder and Back-translation.

An Overview

In this section, we present an overview of our model for
document-scale text content manipulation, as illustrated in
Figure 2. Since there are unaligned training pairs, the model
is trained with three competing objectives of reconstructing
the auxiliary document yaux based on x and y′ (for con-
tent fidelity), the reference document y′ based on x′ and y′
(for style preservation), and the reference document y′ based
on x′ and pseudo z (for pseudo training pair). Formally, let
pθ = (z|x, y′) denotes the model that takes in records x and
a reference summary y′, and generates a summary z. Here
θ is the model parameters. In detail, the model consists of a
reference encoder, a record encoder, an interactive attention
and a decoder.

The first reference encoder is used to extract the rep-
resentation of reference summary y′ by employing a
bidirectional-LSTM model (Hochreiter and Schmidhuber
1997). The second record encoder is applied to learn the
representation of all records via hierarchical modeling on
record-level and row-level. The interactive attention is a
co-attention method for learning the semantic relationship
between the representation of each record and the repre-
sentation of each reference word. The decoder is another
LSTM model to generate the output summary with a hybrid
attention-copy mechanism at each decoding step.

Note that we set three goals, namely content fidelity, style
preservation and pseudo training pair. Similar to sentence-
scale text content manipulation (Wang et al. 2019), the
first two goals are simultaneous and in a sense competitive

with each other (e.g., describing the new designated content
would usually change the expressions in reference sentence
to some extent). The content fidelity objective Lrecord(θ)
and style preservation objective Lstyle(θ) are descirbed in
following equations.

Lrecord(θ) = logpθ(yaux|x,y′) (1)

Lstyle(θ) = logpθ(y′|x′,y′) (2)
The third objective is used for training our system in a true
text manipulation setting. We can regard this as an appli-
cation of the back-translation algorithm in document-scale
text content manipulation. Subsection ”Back-translation Ob-
jective” will give more details.

Hierarchical Record Encoder

We develop a hierarchical table encoder to model game sta-
tistical tables on record-level and row-level in this paper. It
can model the relatedness of a record with other records in
same row and a row (e.g., a player) with other rows (e.g.,
other players) in same table. As shown in the empirical study
(see Table 2), the hierarchical encoder can gain significant
improvements compared with the standard MLP-based data-
to-text model (Wiseman, Shieber, and Rush 2017). Each
word and figure are represented as a low dimensional, con-
tinuous and real-valued vector, also known as word embed-
ding (Mikolov et al. 2013; Pennington, Socher, and Manning
2014). All vectors are stacked in a word embedding matrix
Lw ∈ R

d×|V |, where d is the dimension of the word vector
and |V | is the vocabulary size.

On record-level, we first concatenate the embedding of
record’s entity, type, value and feature as an initial repre-
sentation of the record rij = {rij .e; rij .t; rij .v; rij .f} ∈
R

4d×1, where i, j denotes a record in the table of ith row
and jth column as mentioned in Section 2.1. Afterwards, we
employ a bidirectional-LSTM to model records of the same
row. For the ith row, we take record {ri1, ..., rij , ..., riM} as
input, then obtain record’s forward hidden representations
{−−→hci1, ...,−−→hcij , ...,−−−→hciM} and backward hidden representa-
tions {←−−hci1, ...,

←−−
hcij , ...,

←−−−
hciM}, where M is the number of

columns (the number of types). In the end, we concatenate−−→
hcij and

←−−
hcij as a final representation of record rij and con-

catenate
−−−→
hciM and

←−−
hci1 as a hidden vector of the ith row.

On row-level, the modeled row vectors are fed to another
bidirectional-LSTM model to learn the table representation.
In the same way, we can obtain row’s forward hidden repre-
sentations {−→hr1, ...,−→hri, ...,−−→hrN} and backward hidden rep-
resentations {←−hr1, ...,←−hri, ...,←−−hrN}, where N is the number
of rows (the number of entities). And the concatenation of
[
−→
hri,
←−
hri] is regarded as a final representation of the ith row.

An illustration of this network is given in the left dashed box
of Figure 3, where the two last hidden vector

−−→
hrN and

←−
hr1

can be concatenated as the table representation, which is the
initial input for the decoder.

Meanwhile, a bidirectional-LSTM model is used to en-
code the reference text w1, ..., wK into a set of hidden states
W = [w.h1, ..., w.hK ], where K is the length of the refer-
ence text and each w.hi is a 2d-dimensional vector.
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Figure 3: The architecture of our proposed model.

Interactive Attention

We present an interactive attention model that attends to
the structured records and reference text simultaneously,
and finally fuses both attention context representations. Our
work is partially inspired by the successful application
of co-attention methods in Reading Comprehension (Cui
et al. 2016; Xiong, Zhong, and Socher 2016; Yin et al.
2018) and Natural Language Inference (Duan et al. 2018;
Conneau et al. 2017).

As shown in the middle-right dashed box of Fig-
ure 3, we first construct the Record Bank as R =
[rc1, ..., rco, ..., rcLx , ] ∈ R

2d×Lx , where Lx = M × N
is the number of records in Table x and each rco is the fi-
nal representation of record rij , rij = [

−−→
hcij ,

←−−
hcij ], as well

as the Reference Bank W , which is W = [w.h1, ..., w.hK ].
Then, we calculate the affinity matrix, which contains affin-
ity scores corresponding to all pairs of structured records and
reference words: L = RTW ∈ R

Lx×K . The affinity ma-
trix is normalized row-wise to produce the attention weights
AW across the structured table for each word in the refer-
ence text, and column-wise to produce the attention weights

AR across the reference for each record in the Table:

AW = softmax(L) ∈ R
Lx×K (3)

AR = softmax(LT ) ∈ R
K×Lx (4)

Next, we compute the suitable records of the table in light of
each word of the reference.

CW = RAW ∈ R
2d×K (5)

We similarly compute the summaries WAR of the refer-
ence in light of each record of the table. Similar to (Cui
et al. 2016), we also place reference-level attention over
the record-level attention by compute the record summaries
CWAR of the previous attention weights in light of each
record of the table. These two operations can be done in par-
allel, as is shown in Eq. 6.

CR = [W ;CW ]AR ∈ R
4d×Lx (6)

We define CR as a fusion feature bank, which is an interac-
tive representation of the reference and structured records.

In the last, a bidirectional LSTM is used for fusing the
relatedness to the interactive features. The output F =
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[f1, ..., fLX
] ∈ R

2d×Lx , which provides a foundation for
selecting which record may be the best suitable content, as
fusion feature bank.

Decoder

An illustration of our decoder is shown in the top-right
dashed box of Figure 3. We adopt a joint attention model
(Luong, Pham, and Manning 2015) and a copy mechanism
(Gu et al. 2016) in our decoding phrase. In particular, our
joint attention covers the fusion feature bank, which rep-
resents an interactive representation of the input records
and reference text. And we refuse the coverage mechanism,
which does not satisfy the original intention of content se-
lection in our setting.

In detail, we present a flexible copying mechanism which
is able to copy contents from table records. The basic idea
of the copying mechanism is to copy a word from the table
contents as a trade-off of generating a word from target vo-
cabulary via softmax operation. On one hand, we define the
probability of copying a word z̃ from table records at time
step t as gt(z̃)� α(t,id(z̃)), where gt(z̃) is the probability of
copying a record from the table, id(z̃) indicates the record
number of z̃, and α(t,id(z̃)) is the attention probability on the
id(z̃)-th record. On the other hand, we use (1−gt(z̃))�β(z̃)

as the probability of generating a word z̃ from the target vo-
cabulary, where β(z̃) is from the distribution over the target
vocabulary via softmax operation. We obtain the final prob-
ability of generating a word z̃ as follows

Pt(z̃) = gt(z̃)� α(t,id(z̃)) + (1− gt(z̃))� β(z̃) (7)

The above model, copies contents only from table records,
but not reference words.

Back-translation Objective

In order to train our system with a true text manipulation set-
ting, we adapt the back-translation (Sennrich, Haddow, and
Birch 2016) to our scenario. After we generate text z based
on (x, y′), we regard z as a new reference text and paired
with x′ to generate a new text z′. Naturally, the golden text
of z′ is y′, which can provide an additional training objec-
tive in the training process. Figure 2 provides an illustration
of the back-translation, which reconstructs y′ given (x′, z):

Lbacktrans(θ) = logpθ(y′|x′,z) (8)

We call it the back-translation objective. Therefore, our final
objective consists of content fidelity objective, style preser-
vation objective and back-translation objective.

Ljoint(θ) =λ1Lrecord(θ) + λ2Lstyle(θ)

+ (1− λ1 − λ2)Lback−trans(θ)
(9)

where λ1 and λ2 are hyperparameters.

Experiments

In this section, we describe experiment settings and report
the experiment results and analysis. We apply our neural
models for text manipulation on both document-level and
sentence-level datasets, which are detailed in Table 1.

Implementation Details and Evaluation Metrics

We use two-layers LSTMs in all encoders and decoders, and
employ attention mechanism (Luong, Pham, and Manning
2015). Trainable model parameters are randomly initialized
under a Gaussian distribution. We set the hyperparameters
empirically based on multiple tries with different settings.
We find the following setting to be the best. The dimension
of word/feature embedding, encoder hidden state, and de-
coder hidden state are all set to be 600. We apply dropout at
a rate of 0.3. Our training process consists of three parts. In
the first, we set λ1 = 0 and λ2 = 1 in Eq. 7 and pre-train the
model to convergence. We then set λ1 = 0.5 and λ2 = 0.5
for the next stage training. Finally, we set λ1 = 0.4 and
λ2 = 0.5 for full training. Adam is used for parameter opti-
mization with an initial learning rate of 0.001 and decaying
rate of 0.97. During testing, we use beam search with beam
size of 5. The minimum decoding length is set to be 150 and
maximum decoding length is set to be 850.

We use the same evaluation metrics employed in (Wang
et al. 2019). Content Fidelity (CF) is an information ex-
traction (IE) approach used in (Wiseman, Shieber, and Rush
2017) to measure model’s ability to generate text containing
factual records. That is, precision and recall (or number) of
unique records extracted from the generated text z via an IE
model also appear in source recordset x. Style Preservation
is used to measure how many stylistic properties of the refer-
ence are retained in the generated text. In this paper, we cal-
culate BLEU score between the generated text and the ref-
erence to reflect model’s ability on style preservation. Fur-
thermore, in order to measure model’s ability on content se-
lection, we adopt another IE-based evaluation metric, named
Content selection, (CS), which is used for data-to-text gen-
eration (Wiseman, Shieber, and Rush 2017). It is measured
in terms of precision and recall by comparing records in gen-
erated text z with records in the auxiliary reference yaux.

We compare with the following baseline methods on the
document-level text manipulation.

(1) Rule-based Slot Filling Method (Rule-SF) is a
straightforward way for text manipulation. Firstly, It masks
the record information x′ in the y′ and build a mapping be-
tween x and x′ through their data types. Afterwards, select
the suitable records from x to fill in the reference y with
masked slots. The method is also used in sentence-level task
(Wang et al. 2019).

(2) Copy-based Slot Filling Method (Copy-SF) is a data-
driven slot filling method. It is derived from (Li and Wan
2018), which first generates a template text with data slots
to be filled and then leverages a delayed copy mechanism to
fill in the slots with proper data records.

(3) Conditional Copy based Data-To-Text (CCDT) is a
classical neural model for data-to-text generation (Wiseman,
Shieber, and Rush 2017).

(4) Hierarchical Encoder for Data-To-Text (HEDT) is also
a data-to-text method, which adopts the same hierarchical
encoder in our model.

(5) Text Manipulation with Table Encoder (TMTE) ex-
tends sentence-level text editing method (Wang et al. 2019)
by equipping a more powerful hierarchical table encoder.
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Model CF CS Style
P% # P% R% F% BLEU

Rule-SF 53.42 7.97 26.89 22.41 24.45 100.00
Copy-SF 75.65 9.77 42.44 36.06 38.99 100.00

CCDT 75.62 22.32 32.80 39.93 36.02 15.81
HEDT 91.59 32.56 31.62 44.22 36.87 17.43
TMTE 71.97 9.58 44.48 31.50 36.88 15.55
Coatt 63.08 8.30 41.89 30.16 35.07 25.93
Our
model

70.24 10.14 45.55 34.82 39.47 35.02

w/o In-
terAtt

75.76 8.74 49.17 30.93 37.97 15.87

w/o
BackT

63.50 8.99 41.64 31.95 36.16 32.72

Table 2: Document-level comparison results.

(6) Co-attention-based Method (Coatt): a variation of our
model by replacing interactive attention with another co-
attention model (Ji et al. 2018).

(7) Ours w/o Interactive Attention (-InterAtt) is our model
without interactive attention.

(8) Ours w/o Back-translation (-BackT) is also a variation
of our model by omitting back-translation loss.

In addition, for sentence-level task, we adopt the same
baseline methods as the paper (Wang et al. 2019), including
an attention-based Seq2Seq method with copy mechanism
(Sutskever, Vinyals, and Le 2014), a rule-based method, two
style transfer methods, MAST (Lample et al. 2018) and Ad-
vST (Logeswaran, Lee, and Bengio 2018), as well as their
state-of-the-art method, abbreviate as S-SOTA.

Comparison on Document-level Text Manipulation

Document-level text manipulation experimental results are
given in Table 2. The first block shows two slot filling meth-
ods, which can reach the maximum BLEU (100) after mask-
ing out record tokens. It is because that both methods only
replace records without modifying other parts of the ref-
erence text. Moreover, Copy-SF achieves reasonably good
performance on multiple metrics, setting a strong baseline
for content fidelity and content selection. For two data-to-
text generation methods CCDT and HEDT, the latter one is
consistently better than the former, which verifies the pro-
posed hierarchical record encoder is more powerful. How-
ever, their Style BLEU scores are particularly low, which
demonstrates that direct supervised learning is incapable of
controlling the text expression. In comparison, our proposed
models achieve better Style BLEU and Content Selection
F%. The superior performance of our full model compared
to the variant ours-w/o-InterAtt, TMTE and Coatt demon-
strates the usefulness of the interactive attention mechanism.

Human Evaluation

In this section, we hired three graduates who passed inter-
mediate English test (College English Test Band 6) and were
familiar with NBA games to perform human evaluation. Fol-
lowing (Wang et al. 2019; Shen et al. 2017), we presented to
annotators five generated summaries, one from our model
and four others from comparison methods, such as Rule-SF,
Copy-SF, HEDT, TMTE. These students were asked to rank

Model Content Style Fluency Average
Fidelity Preservation

Rule-SF 1.81 4.50 2.78 3.03
Copy-SF 3.54 4.50 2.49 3.51
HEDT 3.67 1.96 3.19 2.94
TMTE 2.36 1.12 1.95 1.81
Our
model

3.62 2.92 4.59 3.71

Table 3: Human Evaluation Results.

Model Content Fideity Style
Percision% Recall% F1% BLEU

Rule-based 62.63 63.64 63.13 100.00
AttnCopy-
S2S

88.71 60.64 72.04 39.15

MAST 33.15 31.09 32.09 95.29
AdvST 66.51 56.03 60.82 72.22
S-SOTA 78.31 65.64 71.42 80.83
Our model 74.41 79.43 76.84 81.92

w/o Inter-
Att

74.48 79.12 76.73 81.06

w/o
BackT

73.42 77.83 75.56 79.88

Table 4: Sentence-level comparison results.

the five summaries by considering “Content Fidelity”, “Style
Preservation” and “Fluency” separately. The rank of each as-
pect ranged from 1 to 5 with the higher score the better and
the ranking scores are averaged as the final score. For each
study, we evaluated on 50 test instances. From Table 3, we
can see that the Content Fidelity and Style Preservation re-
sults are highly consistent with the results of the objective
evaluation. An exception is that the Fluency of our model
is much higher than other methods. One possible reason is
that the reference-based generation method is more flexible
than template-based methods, and more stable than pure lan-
guage models on document-level long text generation tasks.

Comparison on Sentence-level Text Manipulation

To demonstrate the effectiveness of our models on sentence-
level text manipulation, we show the results in Table 4. We
can see that our full model can still get consistent improve-
ments on sentence-level task over previous state-of-the-art
method. Specifically, we observe that interactive attention
and back-translation cannot bring a significant gain. This is
partially because the input reference and records are rela-
tively simple, which means that they do not require overly
complex models for representation learning.

Qualitative Example

Figure 4 shows the generated examples by different models
given content records x and reference summary y′. We can
see that our full model can manipulate the reference style
words more accurately to express the new records. Whereas
four generations seem to be fluent, the summary of Rule-
SF includes logical erroneous sentences colored in orange.
It shows a common sense error that Davis was injured again
when he had left the stadium with an injury. This is because
although the rule-based method has the most style words,
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Figure 4: Examples of model output for HEDT, Rule-SF and Our full model on document-scale dataset. Red words or numbers
are fidelity errors. Orange words are logical errors. Text portions in the reference summary and the document-scale outputs of
different generation model that fulfill the stylistic characteristics are highlighted in blue.

they cannot be modified, which makes these style expres-
sions illogical. An important discovery is that the sentence-
level text content manipulation model TMTE fails to gen-
erate the style words similar to the reference summary. The
reason is that TMTE has no interactive attention module un-
like our model, which models the semantic relationship be-
tween records and reference words and therefore accurately
select the suitable information from bi-aspect inputs. How-
ever, when expressions such as parallel structures are used,
our model generates erroneous expressions as illustrated by
the description about Anthony Davis’s records “20 points,
12 rebounds, one steals and two blocks in 42 minutes”.

Related Work
Recently, text style transfer and controlled text generation
have been widely studied (Hu et al. 2017; Shen et al. 2017;
Logeswaran, Lee, and Bengio 2018; Tian, Hu, and Yu 2018).
They mainly focus on generating realistic sentences, whose
attributes can be controlled by learning disentangled latent
representations. Our work differs from those in that: (1) we
present a document-level text manipulation task rather than
sentence-level. (2) The style attributes in our task is the tex-
tual expression of a given reference document. (3) Besides
text representation learning, we also need to model struc-
tured records in our task and do content selection. Partic-
ularly, our task can be regard as an extension of sentence-
level text content manipulation (Wang et al. 2019), which as-
sumes an existing sentence to provide the source of style and
structured records as another input. It takes into account the
semantic relationship between records and reference words
and experiment results verify the effectiveness of this im-
provement on both document- and sentence-level datasets.

Furthermore, our work is similar but different from data-
to-text generation studies (Mei, Bansal, and Walter 2015;

Nie et al. 2018; Sha et al. 2018; Liu et al. 2018; Puduppully,
Dong, and Lapata 2018; Bao et al. 2018; Sun et al. 2018;
Gong et al. 2019a; Chen et al. 2019; Gong et al. 2019b). This
series of work focuses on generating more accurate descrip-
tions of given data, rather than studying the writing content
of control output. Our task takes a step forward to simulta-
neously selecting desired content and depending on specific
reference text style. Moreover, our task is more challenging
due to its unsupervised setting. Nevertheless, their structured
table modeling methods and data selection mechanisms can
be used in our task. For example, (Wiseman, Shieber, and
Rush 2017) develops a MLP-based table encoder. (Li and
Wan 2018) presents a two-stage approach with a delayed
copy mechanism, which is also used as a part of our auto-
matic slot filling baseline model.

Conclusion

In this paper, we first introduce a new yet practical problem,
named document-level text content manipulation, which
aims to express given structured recordset with a paragraph
text and mimic the writing style of a reference text. After-
wards, we construct a corresponding dataset and develop a
neural model for this task with hierarchical record encoder
and interactive attention mechanism. In addition, we opti-
mize the previous training strategy with back-translation. Fi-
nally, empirical results verify that the presented approaches
perform substantively better than several popular data-to-
text generation and style transfer methods on both con-
structed document-level dataset and a sentence-level dataset.
In the future, we plan to integrate neural-based retrieval
methods into our model for further improving results.
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