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Abstract

The task of identifying out-of-domain (OOD) input examples
directly at test-time has seen renewed interest recently due to
increased real world deployment of models. In this work, we
focus on OOD detection for natural language sentence inputs
to task-based dialog systems. Our findings are three-fold:
First, we curate and release ROSTD (Real Out-of
-Domain Sentences From Task-oriented Dialog) - a dataset
of 4K OOD examples for the publicly available dataset from
(Schuster et al. 2019). In contrast to existing settings which
synthesize OOD examples by holding out a subset of classes,
our examples were authored by annotators with apriori in-
structions to be out-of-domain with respect to the sentences
in an existing dataset.
Second, we explore likelihood ratio based approaches as an
alternative to currently prevalent paradigms. Specifically, we
reformulate and apply these approaches to natural language
inputs. We find that they match or outperform the latter on
all datasets, with larger improvements on non-artificial OOD
benchmarks such as our dataset. Our ablations validate that
specifically using likelihood ratios rather than plain likeli-
hood is necessary to discriminate well between OOD and in-
domain data.
Third, we propose learning a generative classifier and com-
puting a marginal likelihood (ratio) for OOD detection. This
allows us to use a principled likelihood while at the same time
exploiting training-time labels. We find that this approach
outperforms both simple likelihood (ratio) based and other
prior approaches. We are hitherto the first to investigate the
use of generative classifiers for OOD detection at test-time.

1 Introduction

With increased use of ML models in real life settings, it has
become imperative for them to self-identify, at test-time, ex-
amples on which they are likely to fail due to them differing
significantly from the model’s training time distribution.

In particular, for state-of-the-art deep classifiers such as
those used in vision and language tasks, it has been observed
that the raw probability value is over calibrated (Guo et al.
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2017) and can have high values even for OOD inputs. This
necessitates having an auxiliary mechanism to detect them.

This task is not in entirety novel, and has historically
been explored in related forms under various names such
as one class classification, open classification etc. The re-
cent stream of work on this started with (Hendrycks and
Gimpel 2017), which proposed benchmark datasets for do-
ing this on vision problems. (Liang, Li, and Srikant 2018)
find that increasing the softmax temperature τ makes the re-
sultant probability more discriminative for OOD Detection.
(Lee et al. 2018b) propose using distances to per-class Gaus-
sians in the intermediate representation learnt by the clas-
sifier. Specifically, a Gaussian is fit for each training class
from all training points in that class . (Ren et al. 2019) show
that “correcting” likelihood with likelihood from a “back-
ground” model trained on noisy inputs is better at discrim-
inating out of distribution examples. Recently, (Lin and Xu
2019) propose using an old measure from the data mining
literature named LOF (Breunig et al. 2000) in the space of
penultimate activations learnt by a classifier.

Apart from (Lin and Xu 2019) and few others, a majority
of the prior work uses vision problems and datasets, often
image classification as the setting in which to perform OOD
Detection. Certain methods, such as input gradient reversal
from (Liang, Li, and Srikant 2018) or an end-to-end differ-
entiable Generative Adversarial Network (GAN) as in (Lee
et al. 2018a) are not directly applicable for natural language
inputs. Furthermore, image classification has available sev-
eral benchmarks with a similar label space (digits and num-
bers) but differing input distributions, such as MNIST, CI-
FAR and SVHN. Most of these works exploit this fact for
their experimental setting by picking one of these datasets
as ID and the other as OOD. In this work, we attempt to
address these lacunae and specifically explore which OOD
detection approaches work well on natural language, in par-
ticular, intent classification.

This problem is greatly relevant for task oriented dialog
systems since intent classification can receive user intents
which are sometimes not in any of the domains defined by
the current ontology or downstream functions. In particular,
unsupervised OOD detection approaches are important as
it is difficult to curate this kind of data for training because
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1. The size of in-domain data to train on can become ar-
bitrarily large as the concerned dialog system gets more
users and acquires the ability to handle newer intent
classes. After a point, it becomes impractical to continue
curating newer OOD examples for training in proportion
to the in-domain data. From there on, class imbalance
would keep increasing.

2. By definition, OOD is an open class. For natural language
intents, utterances can demonstrate diverse sentence phe-
nomenena such as slang, rhetorical questions, code mixed
language, etc. User data can exhibit a large range of OOD
behaviours, all of which may be difficult to encapsulate
using a limited set of OOD examples at training time.

To the best of our knowledge, this is the first application
of likelihood ratios approach for OOD Detection in natural
language. Overall, our contributions are as follows:

1. We release ROSTD, a novel dataset1 of 4500 OOD sen-
tences for intent classification. We observe that existing
datasets for OOD intent classification are

• too small (<1000 examples)
• create OOD examples synthetically

We show that performing OOD detection on ROSTD is
more challenging than the synthetic setting where OOD
examples are created by holding out some fraction of in-
tent classes. We further describe this dataset in §4 .

2. We show that using the marginal likelihood of a gener-
ative classifier provides a principled way of both incor-
porating the label information [like classifier uncertainty
based approaches] while at the same time testing for ID
vs OOD using a likelihood function.

3. We show that using likelihood with a correction term
from a “background” model, based on the formalism pro-
posed in (Ren et al. 2019), is a much more effective ap-
proach than using the plain likelihood. We propose multi-
ple ways of training such a background model for natural
language inputs.

4. Our improvements hold on multiple datasets - both for
our dataset as well as the existing SNIPS dataset (Coucke
et al. 2018).

2 Methods

All our methods attempt to estimate a score which is indica-
tive of the data point being OOD. For an input x, we refer
to this function as η(x). This function may additionally be
parametrized by the classifier distribution P̂ or the set of
nearest neighbors Nk(x), based on the specific method in
use.

Some of our evaluation measures are threshold indepen-
dent. In this case, η(x) can be directly evaluated for its
goodness of detecting OOD points. For measures which are
threshold dependent, an optimal threshold which maximizes
macro-F1 is picked using the values of η(x) on a validation
set.

1Our dataset is available at github.com/vgtomahawk/LR GC
OOD/blob/master/data/fbrelease/OODrelease.tsv

Maximum Softmax Probability

Maximum Softmax Probability, or MSP is a simple and in-
tuitive baseline proposed by (Hendrycks and Gimpel 2017).
MSP uses the maximum probability 1-maxy P̂ (y|x) as
η(x, P̂ ). The lesser “confident” the classifier P̂ is about
its predicted outcome i.e the argmax label, the greater is
η(x, P̂ ). Typically,

P̂ (y|x) = e
zy
τ

∑
y e

zy
τ

Here, zy denotes the logit for label y while τ denotes the
softmax temperature. Increasing τ smoothens the distribu-
tion while decreasing τ makes it peakier. We also try in-
creased values of τ as they were shown to work better by
(Liang, Li, and Srikant 2018).

Softmax Entropy

Alternatively, both (Lee et al. 2018a) and (Hendrycks,
Mazeika, and Dietterich 2019) propose using either of the
following2:

1. Entropy HY P̂ (y|x) = −∑
y∈Y P̂ (y|x) log P̂ (y|x) as

η(x, P̂ )

2. Negative KL Divergence −KL(P̂ |U) w.r.t the uniform
distribution over labels U.

We refer to this method as −KL(P̂ |U) in our experiments3.
Here, we also experiment with a variant of this method
which replaces U with R, where R(y) =

∑i=m
i=1 1(yi=y)

|m| , or
the fraction of class y in the training set. We expect this vari-
ant to do better when ID classes are not distributed equally.

Local Outlier Factor

LOF, proposed by (Breunig et al. 2000), is a measure based
on local density defined with respect to nearest neighbours.
Recently, (Lin and Xu 2019) effectively used LOF in the
intermediate representation learnt by a classifier for OOD
detection of intents. The LOF measure can be defined in
three steps:
1. First, reachdistk(A,B) = max(kdist(B), d(A,B))

. Here, kdist(B) is the distance to the kth near-
est neighbor, while d is the distance measure being
used. Intuitively, reachdistk(A,B) is lower-bounded by
kdist(B)∀A, but can become arbitrarily large.

2. Next, define a measure named local reachability den-
sity or lrd. This is simply the reciprocal of the average
reachdistk for A

lrd(A) =
|Nk(A)|∑

B∈Nk(A)reachdistk(A,B)

2They differ only by a constant and have the exact same min-
imas, as we show in Appendix 1.1. Appendix can be read at
github.com/vgtomahawk/LR GC OOD/tree/master/appendix

3One distinction from the two cited papers is that they use
−KL(P̂ |U) merely as an auxiliary training objective, and end
up using MSP as the η at test time. In contrast, we explicitly use
−KL(P̂ |U) as η
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Figure 1: We illustrate the architecture of our generative classifier. Ew and El are the word embeddings and the label embeddings respectively.
The hidden state is concatenated with the label embedding for “Restaurant” before passing through the output layer W . Best seen in color.

3. Lastly, LOF is defined as

LOFk(A) =

∑
B∈Nk(A)

lrd(B)
lrd(A)

|Nk(A)|
Intuitively, if the “density” around a point’s nearest neigh-
bours is higher than its own “density”, the point will have
a higher LOF. Points with a higher LOF score are more
likely to be OOD.

(Lin and Xu 2019) further show that using the large mar-
gin cosine loss or LMCL, works better than the typical com-
bination of softmax + cross entropy.

P̂ (y|x) = e
wy

T x−m

τ

∑
y e

wyT x−m

τ

Here, m denotes the margin. wy denotes the row in the
final linear layer weight matrix corresponding to the label y.
x denotes the penultimate layer activations which are input
to the final layer. We use v to denote the normalized v, i.e
v

||v|| .
We denote this approach as LOF+LMCL. We directly

use the author’s implementation 4 for this approach.

Likelihood

Here, η(x) is the likelihood Lsimple = P̂M(x) according to
a model M trained on the ID training points. In the simplest
case, M is simply a left-to-right language model learnt on
all our training sentences. Later, we discuss another class of
models which can give a valid likelihood, which we name
Lgen.

Likelihood Ratio

(Nalisnick et al. 2019; Choi and Jang 2018) found that likeli-
hood is poor at separating out OOD examples; in some cases

4https://github.com/thuiar/DeepUnkID

even assigning them higher likelihood than the ID test split.
(Ren et al. 2019) make similar observations for detecting
OOD DNA sequences. They then propose the concept of
likelihood ratio or LLR based methods, which we briefly
revisit here.

Let P̂M(x) and P̂B(x) denote the probability of x accord-
ing to the model M and a background model B respectively.
M is trained on the training set {xi}i=m

i=1 , while B is trained
on noised samples from the training set. Let x1

i denote the
prefix x1x2 . . . xi−1. The LLR is derived as in Equation 2

LLRM,B(x) =
P̂M (x)

P̂B(x)

LLRM,B(x) =
Π

i=|S|
i=1 P̂M(xi|x1

i)

Π
i=|S|
i=1 P̂B(xi|x1

i)

logLLRM,B(x) =

i=|S|∑

i=1

log P̂M(xi|xi
1)− log P̂B(xi|xi

1)

The intuition was that “surface-level” features might be
causing the OOD points to be assigned a reasonable prob-
ability. The hypothesis is that the background model would
capture these “surface-level” features which also persist af-
ter noising and remove their influence on being divided out.
If it were so, LLRM,B(x) would be a better choice for η(x).

How to introduce noise? It is a common practice in vision
to add noise or perturb images slightly by adding a Gaussian
noise vector of small magnitude. Since natural language ut-
terances are sequences of discrete words, this does not ex-
tend directly to them.

A simple alternative to introduce noise into natural lan-
guage inputs is by random word substitution. Word sub-
stitution based noise has a long precedent of use, from
negative sampling as in word2vec (Mikolov et al. 2013;
Goldberg and Levy 2014) to autoencoder-like objectives like
BERT (Devlin et al. 2019).
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More specifically, with probability pnoise, we substitute
each word w with word w′ sampled from the distribution
N(w′). pnoise is a hyperparameter to be tuned. We experi-
ment with 3 different choices of N:

1. UNIFORM: N(w′) = 1
|W | i.e each word w′ ∈ W is

equally likely.

2. UNIGRAM: N(w′) = f(w′)∑
w∈W f(w) i.e a word w′ is

sampled with probability proportional to its frequency
f(w′). Using unigram frequency for the noise distribu-
tion is common practice in noise contrastive estimation
(Dyer 2014).

3. UNIROOT: N(w′) =

√
f(w′)

∑
w∈W

√
f(w)

i.e a word w′ is

sampled with probability proportional to the square root
of its frequency. Using such smoothed versions of the un-
igram frequency distribution has precedent in other NLP
tasks. For instance, in (Goldberg and Levy 2014)5, the
word2vec negative sampling uses P (c) = fc

3/4

Z to sam-
ple negative contexts, c, proportional to frequency, fc.

Choice of B architecture Since this is hitherto the first
work to extend LLR method for NLP, we try to use a
simple and standard architecture for B. We use a left-to-
right LSTM language model (Sundermeyer, Schlüter, and
Ney 2012) with a single layer. We vary the hidden state
Bh ∈ {64, 128, 256}. Note that B is non-class conditional -
it does not use the labels in any way.

An additional point of consideration is that B should not
have a very large number of parameters, or have large time
complexity at test time. Even in this regard, a LSTM lan-
guage model with a small state size is apt. We refer to ap-
proaches which use this architecture for B with +BACKLM

Generative Classifier

Typical classification models estimate the conditional prob-
ability of the label given the input, i.e P (y|x). An alternative
paradigm learns to estimate P (x|y), additionally estimating
P (y) from the training set label ratios. Using Bayes rule,

argmaxP (y|x) = argmax
P (x|y)P (y)

P (x)

= argmaxP (x|y)P (y)

Classifiers of this paradigm are called generative classifiers,
in contrast to the typical discriminative classifiers.

(Yogatama et al. 2017) compare the two paradigms and
found generative classifiers useful for a) High sample effi-
ciency b) Continual Learning c) Explicit Marginal Likeli-
hood. The last point is particularly useful for us since we
can use the explicit marginal likelihood from the classifier
P (x) as our η function. Specifically, we use the P (x) =∑

y∈Y P (x|y)P (y) term which is directly available from a
trained generative classifier. Hereon, we refer to this as Lgen.

5Specifically, see the footnote concluding Page 2 in the paper

(Yogatama et al. 2017) also propose a deep architecture
for generative text classifiers that consists of a shared unidi-
rectional LSTM across classes and a label embedding ma-
trix. The respective label embedding is concatenated to the
current hidden state and a final layer is then applied on this
vector to give the distribution over the next word. The per-
word cross-entropy loss serves as the loss function. We use
a similar architecture as illustrated in Figure 1.

3 Evaluation

For the threshold dependent measures, we tune our η() func-
tion on the validation set. We use the following metrics to
measure OOD detection performance:

• FPR@k%TPR: On picking a threshold such that the
OOD recall is k%, what fraction of the predicted OOD
points are ID? FPR denotes False Positive Rate and TPR
denotes True Positive Rate. Note that Positive here refers
to the OOD class. We choose a high values of k, i.e 95.
Note that lower this value, the better is our OOD Detec-
tion.

• AUROC : Measures the area under the Receiver Oper-
ating Characteristic, also known as the ROC curve. Note
that this curve is for the OOD class. (Hendrycks and Gim-
pel 2017) first proposed using this. Higher the value, bet-
ter is our OOD Detection. This metric is threshold inde-
pendent.

• AUPROOD : Area under the Precision Recall Curve
is another threshold independent metric, based on the
Precision-Recall Curve. Unlike AUROC, AUPR is in-
sensitive to class imbalance (Davis and Goadrich 2006).
The AUPROOD and AUPRID correspond to taking ID
and OOD respectively as the positive class.

4 Datasets

We use two datasets for our experiments. The first, SNIPS,
is a widely used, publicly available dataset, and does not
contain actual OOD intents. The second, ROSTD, is a com-
bination of a dataset released earlier (Schuster et al. 2019),
with new OOD examples collected by us. We briefly de-
scribe both of these in order. Table 1 also provides useful
summary statistics about these datasets:

SNIPS

Released by (Coucke et al. 2018), SNIPS consists of ≈
15, 000 sentences spread through 7 intent classes such as
GetWeather, RateBook etc. As discussed previously, it does
not explicitly include OOD sentences.

We follow the procedure described in (Lin and Xu 2019)
to synthetically create OOD examples. Intent classes cov-
ering atleast K% of the training points in combination are
retained as ID. Examples from the remaining classes are
treated as OOD and removed from the training set. In the
validation and test sets, examples from these classes are re-
labelled to the single class label OOD. Besides not being
genuinely OOD, another issue with this dataset is that the
validation and test splits are quite small in size at 700 each.
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Category Example %

Overtly Powerful
Action

1. send Ameena $ 25 from Venmo account
2. fix a pot of coffee 20.55

Action
Memory

1. What’s the color of the paint I
bought off Amazon
2. how much did I spend yesterday

12.24

Declarative
Statement

1. I learned some good words.
2. I always bookmark my favorite website
to go back in it anytime.
3. all Star Wars movie are great

8.74

Underspecified
Query

1. On what website can I order medication?
2. how many jobs is having been lost 33.94

Speculative
Question

1. Can I do all of my Amazon shopping
through the app?
2. when is the next episode of General Hospital

6.91

Subjective
Question

1. What color goes well with navy blue?
2. where can I learn something new every day? 27.99

Table 1: We manually classify each OOD sentence in ROSTD into
[1 or more] of 6 qualitative categories named self-explanatorily.
More examples per category can be seen in Table 1 of the appendix.

In §5, we report experiments on K = 75 and K = 256,
both of which ratios were used in (Lin and Xu 2019). We re-
fer to these datasets as SNIPS,75% and SNIPS,25% respec-
tively. Since multiple ID-OOD splits of the classes satisfy-
ing these ratios are possible, our results are averaged across
5 randomly chosen splits.

ROSTD

We release a dataset of ≈ 4590 OOD sentences . These sen-
tences were curated to be explicitly OOD with respect to
the English split of the recently released dataset of intents
from (Schuster et al. 2019) as the ID dataset. This dataset
contained 43, 000 intents from 13 intent classes. We chose
this dataset over SNIPs owing to its considerably larger size
(≈ 2.3 times larger). The sentences were authored by human
annotators with the instructions as described in the subsec-
tion Annotation Guidelines.

Annotation Guidelines We use human annotators to au-
thor intents which are explicity with respect to the English
split of (Schuster et al. 2019). The requirements and instruc-
tions for annotation were as follows:

1. The OOD utterances were authored by several distinct
English-speaking annotators from Anglophone countries.

2. The annotators were asked to author sentences which
were both grammatical and semantically sensible as En-
glish sentences. This was to prevent our OOD data from
becoming trivial by inclusion of ungrammatical sen-
tences, gibberish and nonsensical sentences.

3. The annotators were well informed of existing intent
classes to prevent them from authoring intents . This was
done by presenting the annotators with 5 examples from
the training split of each intent class, with the option to
scroll for more through a dropdown.

4. After the first round of annotators had authored such in-
tents, each intent was post-annotated as in-domain vs out-

6See appendix for the experimental results with K = 25 i.e
SNIPS,25%.

Statistic ROSTD SNIPS

Train-ID 30521 13084
Valid-ID 4181 700
Test-ID 8621 700
Actual OOD 4590 None
Unique Word Types 11.5K 11.4K
Unique Bigrams 47.3K 36.3K
Unique Trigrams 80.8K 52.2K
Mean Utterance Length 6.85 6.79
Number of ID classes 12/3 (Coarse) 7

Table 2: Dataset and Vocabulary Statistics contrasting ROSTD and
SNIPS. Note that the ID part of ROSTD comes from the English
portion of the publicly available data from (Schuster et al. 2019)

of-domain by two fresh annotators who were not involved
in the authoring stage.

5. If both annotators agreed that the example was OOD, it
was retained. If both agreed it was ID, it was discarded.
In the event the two annotators disagreed, an additional,
third annotator was asked to label the example and adju-
dicate the disagreement.

6. During post-processing, we removed utterances which
were shorter than three words.

Qualitative Analysis We identify six qualitative cate-
gories which might be making the sentences OOD. We then
manually assign each example into these categories. We
summarize their distribution in Table 1. Note that since these
categories are not mutually exhaustive, an example may get
assigned multiple categories.

Coarsening Labels

The ID examples from (Schuster et al. 2019), which we
also use as the ID portion of ROSTD has hierarchical class
labels [e.g alarm/set alarm, alarm/cancel alarm and
weather/find]7. Hence, ROSTD has a large number of
classes (12), not all of which are equally distinct from each
other. To ensure that our results are not specific only to
settings with this kind of hierarchical label structure, we
also experiment with retaining only the topmost or most
“coarse” label on each example. We refer to this variant
with “coarsened” labels as ROSTD-COARSE.

5 Experiments

We compile the results of all our experiments in Table 3.

Implementation

All experiments are averaged across 5 seeds. We use Pytorch
1.0 (Paszke et al. 2017) to implement models8.

The checkpoint with highest validation F1 on the ID sub-
set of the validation set is chosen as the final checkpoint for

7See (Schuster et al. 2019) for full list
8Code available at github.com/vgtomahawk/LR GC OOD
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Dataset Model F1 ↑ FPR@95%TPR ↓ AUROC ↑ AUPROOD ↑

ROSTD
MSP 54.22 ± 4.01 100.00 ± 0.00 70.75 ± 3.70 55.68 ± 6.36
MSP,τ = 1e3 55.45 ± 4.19 60.48 ± 3.17 76.94 ± 4.01 59.64 ± 6.49
−KL(P |U) 55.31 ± 3.89 60.15 ± 3.11 76.86 ± 3.85 59.54 ± 6.10
−KL(P |R) 83.24 ± 2.78 21.31 ± 8.38 95.78 ± 1.30 90.32 ± 1.97
LOF 64.46 ± 2.57 42.49 ± 3.49 81.39 ± 2.38 46.89 ± 3.50
LOF+LMCL 85.97 ± 2.00 15.03 ± 5.42 95.60 ± 0.75 82.71 ± 9.17
Lsimple 81.38 ± 0.19 18.92 ± 0.56 95.42 ± 0.11 87.38 ± 0.41
Lsimple+BACKLM+UNIFORM 85.25 ± 0.72 36.65 ± 6.87 94.71 ± 0.49 91.10 ± 0.63
Lsimple+BACKLM+UNIGRAM 82.27 ± 0.74 42.16 ± 3.62 93.62 ± 0.43 89.30 ± 0.50
Lsimple+BACKLM+UNIROOT 87.42 ± 0.45 20.10 ± 5.25 96.35 ± 0.41 93.44 ± 0.37
Lgen 86.25 ± 0.71 10.86 ± 1.08 97.42 ± 0.28 92.30 ± 0.99
Lgen+BACKLM+UNIFORM 89.60 ± 0.56 13.71 ± 5.64 97.67 ± 0.35 95.49 ± 0.42
Lgen+BACKLM+UNIGRAM 91.35 ± 2.62 10.55 ± 4.11 97.87 ± 0.49 95.86 ± 0.68
Lgen+BACKLM+UNIROOT 91.17 ± 0.32 7.41 ± 1.88 98.22 ± 0.26 96.47 ± 0.29

ROSTD-COARSE
MSP 59.99 ± 19.01 26.00 ± 34.32 71.63 ± 15.55 64.32 ± 19.36
MSP,τ = 1e3 64.62 ± 15.31 64.46 ± 9.84 78.39 ± 11.92 66.89 ± 11.76
−KL(P |U) 65.36 ± 15.49 65.39 ± 4.84 79.05 ± 11.40 67.79 ± 19.43
−KL(P |R) 81.56 ± 8.51 17.78 ± 15.70 93.47 ± 6.25 87.49 ± 8.94
LOF 62.39 ± 9.01 46.55 ± 17.56 78.07 ± 12.23 45.80 ± 12.21
LOF+LMCL 84.28 ± 3.44 15.24 ± 4.70 95.19 ± 1.03 76.63 ± 2.53
Lsimple 80.48 ± 0.27 20.78 ± 0.71 95.2 ± 0.07 86.87 ± 0.13
Lsimple+BACKLM+UNIFORM 85.97 ± 0.65 30.65 ± 4.51 95.27 ± 0.47 91.98 ± 0.61
Lsimple+BACKLM+UNIGRAM 84.46 ± 0.62 31.79 ± 3.04 94.93 ± 0.32 91.22 ± 0.50
Lsimple+BACKLM+UNIROOT 88.25 ± 0.50 16.35 ± 1.32 96.82 ± 0.12 94.10 ± 0.20
Lgen 86.67 ± 0.34 9.88 ± 0.44 97.58 ± 0.08 92.74 ± 0.29
Lgen+BACKLM+UNIFORM 89.32 ± 0.30 8.04 ± 0.69 97.83 ± 0.15 95.27 ± 0.32
Lgen+BACKLM+UNIGRAM 90.05 ± 0.73 6.69 ± 0.82 98.16 ± 00.15 95.61 ± 0.50
Lgen+BACKLM+UNIROOT 90.14 ± 0.39 6.78 ± 0.60 98.30 ± 0.09 95.96 ± 00.37

SNIPS, 75%
MSP 81.58 ± 7.68 16.68 ± 18.06 93.51 ± 4.49 85.03 ± 6.19
MSP,τ = 1e3 83.94 ± 6.82 31.32 ± 30.25 94.30 ± 4.50 88.44 ± 5.72
−KL(P |R) ≈ −KL(P |U) 84.23 ± 7.22 29.28 ± 27.04 94.51 ± 4.38 88.71 ± 6.15
LOF 66.07 ± 8.82 49.56 ± 13.49 79.65 ± 7.81 51.69 ± 13.08
LOF+LMCL 76.24 ± 9.34 42.27 ± 20.64 90.37 ± 6.54 77.81 ± 10.53
Lsimple 63.51 ± 6.33 54.56 ± 12.13 81.72 ± 5.90 62.12 ± 13.28
Lsimple+BACKLM+UNIFORM 74.74 ± 3.25 44.60 ± 12.01 90.02 ± 2.24 80.08 ± 3.31
Lsimple+BACKLM+UNIGRAM 81.19 ± 3.53 27.00 ± 8.71 93.97 ± 1.85 87.57 ± 3.38
Lsimple+BACKLM+UNIROOT 78.75 ± 3.25 35.24 ± 11.08 92.66 ± 1.89 84.84 ± 3.36
Lgen 67.31 ± 7.06 44.60 ± 18.53 85.17 ± 7.18 68.11 ± 14.29
Lgen+BACKLM+UNIFORM 78.37 ± 6.60 29.28 ± 4.23 92.35 ± 2.77 82.84 ± 7.33
Lgen+BACKLM+UNIGRAM 85.47 ± 6.90 18.48 ± 11.26 95.79 ± 2.67 90.98 ± 6.73
Lgen+BACKLM+UNIROOT 81.91 ± 6.83 22.24 ± 6.26 94.15 ± 2.59 86.60 ± 7.03

Table 3: Performance of the baseline methods and our proposed models on ROSTD, ROSTD-COARSE and SNIPS. ↓ (↑) indicates lower
(higher) is better. We can see that the Lgen+BACKLM+<Noise> (where <Noise> is one of three noising schemes) approaches outdo
their non LLR counterparts on most measures. For SNIPS, −KL(P |R) ≈ −KL(P |U) since the training set is almost evenly distributed
between the ID classes. We can also observe that the differences in performance between different approaches are much more observable on
ROSTD as compared to SNIPS.

computing the other OOD evaluation metrics. For the label-
agnostic approaches (Lsimple), the checkpoint with low-
est validation perplexity is chosen. For the +BACKLM ap-
proaches, we use pnoise = 0.5. We also experimented with
pnoise ∈ {0.1, 0.3, 0.7}, but find 0.5 works best.

Base Classifier Architectures For the discriminative clas-
sifier, we use a bidirectional LSTM [1-layer] with embed-
ding size 100, projection layer of 100×300 (to project up
embeddings), hidden size 300 and embeddings initialized
with Glove (glove.6B.100D) (Pennington, Socher, and Man-
ning 2014). Generative classifier approaches have similar ar-
chitecture except that they are unidirectional and have addi-

tional label embeddings of dimension 20

LOF implementation We use the scikit-learn 0.21.2 im-
plementation9 (Pedregosa et al. 2011) of LOF. We fix the
number of nearest neighbors to 20 but tune the contami-
nation rate as a hyperparameter. We also corroborated over
email correspondence with the authors of (Lin and Xu 2019)
that they had used a similar hyperparameter setting for LOF.

9https://scikit-learn.org/stable/modules/generated/sklearn.
neighbors.LocalOutlierFactor.html
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(a) Lgen (b) Lgen+BACKLM+UNIROOT

Figure 2: Effect of BACKLM+UNIROOT. In the right graph, we can see that the OOD has shifted considerably to the right then before and
overlaps less with the ID set

Observations

From Table 3, we see that Lgen outperforms uncertainty
based and nearest neighbour approaches by a reasonable
margin on both datasets. It is also significantly better than
the language model likelihood based Lsimple. This validates
our hypothesis that generative classifiers effectively com-
bine the benefits of likelihood-based and uncertainty-based
approaches.

Furthermore, LLR based approaches always outperform
the respective likelihood-only approach, whether Lsimple or
Lgen. Amongst different noising methods, the performance
improvement is typically largest using the UNIROOT ap-
proach we proposed. For instance, on ROSTD,

Lgen + BACKLM + UNIROOT > Lgen + BACKLM + UNIFORM

Lgen + BACKLM + UNIFORM > Lgen

Lsimple+BACKLM+UNIROOT > Lsimple+BACKLM+UNIFORM

Lsimple + BACKLM + UNIFORM > Lsimple

A clear advantage of ROSTD which is clear from the exper-
iments is that differences in performance between the var-
ious methods are much more pronounced when tested on
it, as compared to SNIPS. On SNIPS, the simple MSP,
τ = 1e3 baseline is itself able to reach ≈ 80-90% of the
best performing approach on most metrics.

6 Conclusion

To the best of our knowledge, we are hitherto the first work
to use an approach based on generative text classifiers for
OOD detection. Our experiments show that this approach
can outperform existing paradigms significantly on multiple
datasets.

Furthermore, we are the first to flesh out ways to use like-
lihood ratio based approaches first formalized by (Ren et
al. 2019) for OOD detection in NLP. The original work had
tested these approaches only for DNA sequences which have
radically smaller vocabulary than NL sentences. We propose
UNIROOT, a new way of noising inputs which works better
for NL. Our method improves two different likelihood based
approaches on multiple datasets.

Lastly, we curate and plan to publicly release ROSTD, a
novel dataset of OOD intents w.r.t the intents in (Schuster
et al. 2019). We hope ROSTD fosters further research and
serves as a useful benchmark for OOD Detection
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