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Abstract

We propose TANDA, an effective technique for fine-tuning
pre-trained Transformer models for natural language tasks.
Specifically, we first transfer a pre-trained model into a model
for a general task by fine-tuning it with a large and high-
quality dataset. We then perform a second fine-tuning step to
adapt the transferred model to the target domain. We demon-
strate the benefits of our approach for answer sentence selec-
tion, which is a well-known inference task in Question An-
swering. We built a large scale dataset to enable the trans-
fer step, exploiting the Natural Questions dataset. Our ap-
proach establishes the state of the art on two well-known
benchmarks, WikiQA and TREC-QA, achieving the impres-
sive MAP scores of 92% and 94.3%, respectively, which
largely outperform the the highest scores of 83.4% and 87.5%
of previous work. We empirically show that TANDA gener-
ates more stable and robust models reducing the effort re-
quired for selecting optimal hyper-parameters. Additionally,
we show that the transfer step of TANDA makes the adapta-
tion step more robust to noise. This enables a more effective
use of noisy datasets for fine-tuning. Finally, we also confirm
the positive impact of TANDA in an industrial setting, using
domain specific datasets subject to different types of noise.

1 Introduction

In recent years, virtual assistants have become a central asset
for technological companies. This has increased the interest
of AI researchers in studying and developing conversational
agents, some popular examples being Google Home, Siri
and Alexa. This has renewed the research interest in Ques-
tion Answering (QA) and, in particular, in two main tasks:
(i) answer sentence selection (AS2), which, given a question
and a set of answer sentence candidates, consists in selecting
sentences (e.g., retrieved by a search engine) correctly an-
swering the question; and (ii) machine reading (MR) (Chen
et al. 2017) or reading comprehension, which, given a ques-
tion and a reference text, consists in finding a text span an-
swering it. Even though the latter is gaining more and more
popularity, AS2 is more relevant to a production scenario

∗Work done while the author was an intern at Amazon Alexa.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

since, a combination of a search engine and an AS2 model
already implements an initial QA system.

The AS2 task was originally defined in the TREC com-
petition (Wang, Smith, and Mitamura 2007). With the ad-
vent of neural models, it has had significant contributions
from techniques such as (He and Lin 2016; Yang et al. 2018;
Wang and Jiang 2016).

Recently, approaches for training neural language models,
e.g., ELMO (Peters et al. 2018), GPT (Radford et al. 2018),
BERT (Devlin et al. 2018), RoBERTa (Liu et al. 2019), XL-
Net (Dai et al. 2019) have led to major advancements in
several NLP subfields. These methods capture dependencies
between words and their compounds by pre-training neural
networks on large amounts of data. Interestingly, the result-
ing models can be easily applied to solve different NLP ap-
plications by just fine-tuning them on the training data of
the target tasks. For example, the Transformer (Vaswani et
al. 2017) can be pre-trained on a large amount of data obtain-
ing a powerful language model, which can then be special-
ized for solving specific NLP tasks by just adding new layers
and training them on the target data. Although the approach
is simple, the procedure for fine-tuning a Transformer-based
model is not completely understood, and can result in high
accuracy variance, with a possible on-off behavior, e.g.,
models may always predict a single label. As a consequence,
researchers need to invest a considerable effort in selecting
suitable parameters, with no theory or a well-assessed best
practice helping them. Such problem also affects QA, and,
in particular, AS2 since no large and and accurate dataset
has been developed for it.

In this paper, we study the use of Transformer-based mod-
els for AS2 and provide effective solutions to tackle the data
scarceness problem for AS2 and the instability of the fine-
tuning step. In detail, the contributions of our papers are:
• We improve stability of Transformer models by adding an

intermediate fine-tuning step, which aims at specializing
them to the target task (AS2), i.e., this step transfers a pre-
trained language model to a model for the target task.

• We show that the transferred model can be effectively
adapted to the target domain with a subsequent fine-
tuning step, even when using target data of small size.

• Our Transfer and Adapt (TANDA) approach makes fine-
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tuning: (i) easier and more stable, without the need of
cherry picking parameters; and (ii) robust to noise, i.e.,
noisy data from the target domain can be utilized to train
an accurate model.

• We built ASNQ, a dataset for AS2, by transforming
the recently released Natural Questions (NQ) corpus
(Kwiatkowski et al. 2019) from MR to AS2 task. This was
essential as our transfer step requires a large and accurate
dataset. ASNQ is an important contribution of our work
to the research community. 1

• Finally, the generality of our approach and empirical in-
vestigation suggest that our TANDA findings also apply
to other NLP tasks, especially, textual inference, although
empirical analysis is essential to confirm these claims.

We evaluated TANDA on two well-known academic bench-
marks, i.e., TREC-QA (Wang, Smith, and Mitamura 2007)
and WikiQA (Yang, Yih, and Meek 2015), as well as three
different industrial datasets, where questions are derived
from Alexa traffic and candidate sentences are selected from
web data. The results show that:

• TANDA improves the stability of Transformer models.
In the adapt step, the model accuracy throughout differ-
ent epochs show a smooth and convex behavior, which is
ideal for estimating optimal parameters.

• We improved the state of the art in AS2 by just applying
BERT and RoBERTa to AS2 and further improved it by
almost 10 absolute percent points in MAP with TANDA.

• TANDA achieves much higher accuracy than traditional
fine-tuning, especially in case of noise data. For example,
the drop in performance is up to one order of magnitude
lower with TANDA, i.e., 2.5%, when we inject 20% of
noise in the WikiQA and TREC-QA datasets.

• Our experiments with real-world datasets built from
Alexa traffic data confirm all our above findings. Specifi-
cally, we observe the same robustness to noise, which, in
this case, is generated by real sources.

The rest of the paper is structured as follows: we describe
related work in Section 2, details of our TANDA approach
in Section 3, present the new AS2 dataset in Section 4. The
experimental results on academic benchmarks, including ex-
periments with noise data, are reported in Section 5, while
the results on real-world data are illustrated in Section 6. Fi-
nally, we derive conclusions in Section 7.

2 Related Work

Recent AS2 models are based on Deep Neural Networks
(DNNs), which learn distributed representations of the in-
put data and are trained to apply a series of non-linear trans-
formations to the input question and answer, represented as
compositions of word or character embeddings. DNN archi-
tectures learn answer sentence-relevant patterns using intra-
pair similarities as well as cross-pair, question-to-question
and answer-to-answer similarities, when modeling the input

1The ASNQ dataset and trained models can be accessed at
https://github.com/alexa/wqa tanda

texts. For example, the CNN network by Severyn and Mos-
chitti has two separate embedding layers for the question
and answer, which are followed by the respective convo-
lution layers. The output of the latter is concatenated and
then passed through the final fully-connected joint layer.
They also added embeddings encoding relational links be-
tween matching words (Severyn and Moschitti 2016): a sort
of hardcoded attention, which highly increases accuracy.

More recent papers (Shen, Yang, and Deng 2017; Tran
et al. 2018; Tay, Tuan, and Hui 2018) also propose a tech-
nique of inter-weighted alignment networks for this task.
While others (Wang and Jiang 2016; Bian et al. 2017;
Yoon et al. 2019) use a compare aggregate architecture,
which also exploits an attention mechanism over the ques-
tion and answer sentence embeddings. Tayyar Madabushi,
Lee, and Barnden (2018) propose a method that integrates
fine-grained Question Classification with a Deep Learning
model designed for AS2.

Previous work (Wang, Smith, and Mitamura 2007) was
carried out on relatively small datasets compared to other
NLP tasks, such as machine translation, e.g., the WMT15
English-Czech dataset (Luong and Manning 2016) contains
15.8 million sentence pairs. This further motivates our work
of creating a new large scale AS2 dataset, ASNQ, which is
two orders of magnitudes larger than datasets such as TREC-
QA (Wang, Smith, and Mitamura 2007).

ASNQ is based on the NQ dataset, which is a corpus de-
signed to (i) study MR tasks, and (ii) solve several problems
of previous corpora such as SQuAD (Rajpurkar et al. 2016).
MR models, e.g., (Seo et al. 2016), are different from those
used for AS2 and beyond the purpose of our paper. It is still
worthwhile to mention that Min, Seo, and Hajishirzi (2017)
explored transfer learning for the BiDAF model for MR.

Very recent works (Devlin et al. 2018; Yang et al. 2019)
use pre-trained Transformer models for MR. In this context,
TANDA and ASNQ may provide alternative research direc-
tions, e.g., a more stable model that can then be fined tuned
to the MR task.

Wang et al. (2019) report some marginal improvement for
the task of text classification by fixing weights of Trans-
former models derived by BERT, when training the classi-
fication layer. Sun et al. (2019) carried out additional pre-
training of BERT-derived models on the target dataset. They
also used different learning rates for different model layers.

3 TANDA: Transfer and Adapt
We propose to train Transformer models for the AS2 by ap-
plying a two-step fine-tuning, called Transfer AND Adapt
(TANDA). The first step transfers the language model of the
Transformer to the AS2 task; and the second fine-tuning step
adapts the obtained model to the specific target domain, i.e.,
specific types of questions and answers. We first provide a
background on AS2 and Transformer models, and, then ex-
plain our approach in more detail.

3.1 AS2 task and model definition

AS2 can be defined as follows: given a question q and a set
of answer sentence candidates S = {s1, .., sn}, select a sen-
tence sk that correctly answers q. We can model the task as a
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Figure 1: Transfer and Adapt for Answer Sentence Selection, applied to BERT

function r : Q×P(S) → S, defined as r(q, S) = sk, where
k = argmaxi p(q, si) and p(q, si) is the probability of cor-
rectness of si. We estimate p(q, si) using neural networks,
in particular, Transformer models, as explained below.

Figure 2: Transformer architecture with on top a linear clas-
sifier for fine-tuning on AS2. Here [CLS] Tok1

1,...,Tok1
N

[SEP] Tok2
1,...,Tok2

M [EOS] is the input to the model.

3.2 Transformer models for AS2

Transformer-based models are neural networks designed to
capture dependencies between words, i.e., their interdepen-
dent contexts. Fig. 2 shows the standard architecture for a
text pair classification task. The input consists of two pieces
of text, Tok11,...,Tok1

N and Tok2
1,...,Tok2

M delimited by three
tags, [CLS], [SEP] and [EOS] (beginning, separator and end
of sentence). The input is encoded as embeddings based on

tokens, segments and their positions. These are fed as input
to several blocks (up to 24) containing layers for multi-head
attention, normalization and feed forward processing. The
result of this transformation is an embedding, x, represent-
ing the text pair, which models the dependencies between
words and segments of the two sentences. For a downstream
task, x is fed (after applying a non linearity function) to a
fully connected layer having weights: WT and BT . The out-
put layer can be used to implement the task function. For
example, a softmax can be used to model the probability
of a text pair classification, as described by the equation:
ŷ = softmax(WT × tanh(x) +BT ).

Theoretically, this model can be trained using the log
cross-entropy loss: L = −∑

l∈{0,1} yl × log(ŷl) on pairs
of text. In practice, a large amount of supervised data will
be required for this step of training. The important contribu-
tion by Devlin et al., (2018) was to pre-train the language
model, i.e., the sentence pair representation, on using sur-
rogate tasks such as masked language modeling and next
sentence prediction.

The left block in Fig. 1 illustrates the pre-training step of
a Transformer model, highlighting that some words in the
pair are masked. This way the model learns to generalize the
input while providing the same output. The default transfer
approach, defined in previous work, fine-tunes the Trans-
former model to the target task and domain (in one shot).
For AS2, the training data comprises of question and sen-
tence pairs with positive or negative labels according to the
test: the sentence correctly answers the question or not. This
fine-tuning is rather critical as the initial task learned during
the pre-training stage is very different from AS2.

When only small target data is available, the transfer pro-
cess from the language model to AS2 task is unstable. We
conjecture that a large number of examples are required to
fine-tune the large number of Transformer parameters on the
new task. An evidence of this is the on-off effect, that is,
the fine-tuned model always predicts a single label for all
examples. More in general, the model accuracy is unstable
showing a large variance over different fine-tuning attempts.

We explain this behavior considering the quality and
quantity of the training data required for the transfer step
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(from the pre-trained model to AS2). More precisely, a small
number of data examples prevents an effective convergence
to the task, while noisy data leads to incorrect convergence.
Thus, we propose to divide the fine-tuning process in two
steps: transfer to the task and then adapt to the target domain
(TANDA). This is advantageous over a single fine-tuning
step, since the latter would require either (i) the availability
of a large dataset for the target domain, which is undesirable
due to higher difficulty and cost of collection of domain spe-
cific data over general data; or (ii) merging the general and
domain specific data in a single training step, which is not
optimal since the the model needs to be specialized only to
the target data. In principle when using a combination of
general and domain specific data, instance weighting can be
used by giving more importance to the target data. However,
finding the right weights is complex as neural models do not
converge to a global optimum: thereby leading to very dif-
ferent outcomes for different weights.

3.3 TANDA

The two steps of our approach are depicted in the center and
right blocks of Fig. 1. We apply a standard fine-tuning step
using a large scale general purpose dataset for AS2. This
step is supposed to transfer the Transformer language model
to the AS2 task. The resulting model will not perform opti-
mally on the data of the target domain due to the specificity
of the latter. We thus apply a second fine-tuning step to adapt
the classifier to the target AS2 domain. For example, in the
transfer step, we may have general questions such as, What
is the average heart rate of a healthy person while, in the
adapt step, the target domain, e.g., sport news, may contain
specific questions such as: When did the Philadelphia eagles
play the fog bowl?

Using different training steps on the target data to improve
performance is a rather intuitive approach. In this paper, we
highlight the role of the transfer step, which (i) greatly re-
duces the amount of data required in the adaptation step;
and (ii) stabilizes the model, making it robust to noise. We
empirically demonstrate both claims in our experiments.

4 Answer-Sentence Natural Questions

We needed an accurate, general and large AS2 corpus
to validate the benefits of TANDA. Since existing AS2
datasets are small in size, we built a new AS2 dataset
called Answer Sentence Natural Questions (ASNQ) derived
from the recently released Google Natural Questions (NQ)
dataset (Kwiatkowski et al. 2019).

NQ is a large scale dataset intended for the MR task,
where each question is associated with a Wikipedia page.
For each question, a long paragraph (long answer) that
contains the answer is extracted from the reference page.
Each long answer may contain phrases annotated as
short answer. A long answer can contain multiple
sentences, thus NQ is not directly applicable for AS2.

For each question in ASNQ, the positive candidate an-
swers are those sentences that occur in the long answer para-
graphs in NQ and contain annotated short answers. The re-
maining sentences from the document are labeled as nega-

Figure 3: An example of data instance conversion from NQ
to ASNQ.

Label S ∈ LA SA ∈ S # Train # Dev
1 No No 19,446,120 870,404
2 No Yes 428,122 25,814
3 Yes No 442,140 29,558
4 Yes Yes 61,186 4,286

Table 1: Label description for ASNQ. Here S, LA, SA refer
to answer sentence, long answer passage and short answer
phrase respectively.

tive for the target question. The negative examples can be of
the following types:

1. Sentences from the document that are in the
long answer but do not contain the annotated
short answers. It is possible that these sentences might
contain the short answer.

2. Sentences from the document that are not in the
long answer but contain the short answer string,
that is, such occurrence is purely accidental.

3. Sentences from the document that are neither in the
long answer nor contain the short answer.

The generation of negative examples is particularly im-
pactful to the robustness of the model in identifying the best
answer out of the similar but incorrect ones. ASNQ has four
labels that describe possible confusing levels of a sentence
candidate. We apply the same processing both to training
and development sets of NQ. An example is shown in Fig. 3,
while the ASNQ statistics are reported in Table 1.

ASNQ contains 57,242 distinct questions in the training
set and 2,672 distinct questions in the dev. set, which is an
order of magnitude larger than most public AS2 datasets. For
the transfer step in TANDA, we use ASNQ sentence pairs
with labels 1, 2 and 3 as negatives and Label 4 as positives.

5 Experiments on Standard Benchmarks

We provide empirical evidence on the benefits of using
TANDA on two commonly used benchmarks for AS2:
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Mode Train Dev Test
Q A Q A Q A

raw 2118 20360 296 2733 633 6165
no all- 873 8672 126 1130 243 2351
Clean 857 8651 121 1126 237 2341

Table 2: WikiQA dataset statistics

WikiQA and TREC-QA, which enable a direct comparison
with previous work.

5.1 Academic Datasets

WikiQA (Yang, Yih, and Meek 2015) has some questions
with no correct answer sentence (all-) or with only correct
answer sentences (all+). Table 2 reports the corpus statistics
of the versions: raw (as distributed), without all- questions,
and without both all- and all+ questions (Clean). We follow
the most used setting: training with the no all- mode and
then answer candidate sentences per question in testing with
the Clean mode.
TREC-QA is another popular benchmark (Wang, Smith,
and Mitamura 2007) for AS2. We removed questions with-
out answers, or with only correct or only incorrect answer
sentence candidates, from the dev. and test sets. This resulted
in 1, 229, 65 and 68 questions, and 53, 417, 1, 117 and 1, 442
question-answer pairs for training, dev. and test sets, respec-
tively. This setting refers to the Clean setting (Shen, Yang,
and Deng 2017), which is a TREC-QA standard.
QNLI, namely, Question Natural Language Inference is a
dataset (Wang et al. 2018) derived from the Stanford Ques-
tion Answering Dataset (SQuAD) (Rajpurkar et al. 2016)
by converting question-paragraph pairs into sentence pairs,
resulting in dataset with 105k question-answer pairs for
training and 5.4k pairs in the dev. data. We carry out ex-
periments of using QNLI for the transfer step in TANDA
and compare it with previous methods (Yoon et al. 2019),
which are based on QNLI for sequential fine-tuning of non-
Transformer models for AS2.

5.2 Training and testing details

Metrics We measure system accuracy with Mean Average
Precision (MAP) and Mean Reciprocal Recall (MRR) evalu-
ated on the test set, using the entire set of candidates for each
questions (this varies according to the different datasets).

Models We use the pre-trained BERT-Base (12 layer),
BERT-Large (24 layer), RoBERTa-Base (12 layer) and
RoBERTa-Large-MNLI (24 layer) models, which were re-
leased as checkpoints for use in downstream tasks.

Training We adopt Adam optimizer (Kingma and Ba
2014) with a learning rate of 2e-5 for the transfer step on the
ASNQ dataset and a learning rate of 1e-6 for the adapt step
on the target dataset. We apply early stopping on the dev. set
of the target corpus for both steps based on the highest MAP
score. We set the max number of epochs equal to 3 and 9 for
adapt and transfer steps, respectively. We set the maximum
sequence length for BERT/RoBERTa to 128 tokens.

Model MAP MRR

Comp-Agg + LM + LC 0.764 0.784
Comp-Agg + LM + LC+ TL(QNLI) 0.834 0.848
BERT-B FT WikiQA 0.813 0.828
BERT-B FT ASNQ 0.884 0.898
BERT-B TANDA (ASNQ → WikiQA ) 0.893 0.903
BERT-L FT WikiQA 0.836 0.853
BERT-L FT ASNQ 0.892 0.904
BERT-L TANDA (ASNQ → WikiQA) 0.904 0.912
RoBERTa-B FT ASNQ 0.882 0.894
RoBERTa-B TANDA (ASNQ → WikiQA) 0.889 0.901
RoBERTa-L FT ASNQ 0.910 0.919
RoBERTa-L TANDA (ASNQ → WikiQA ) 0.920 0.933

Table 3: Performance of different models on WikiQA
dataset. Here Comp-Agg + LM + LC refers to a Compare-
Aggregate model with Language Modeling and Latent Clus-
tering as proposed by Yoon et al. (2019). TL(QNLI) refers
to Transfer Learning from the QNLI corpus. L and B stand
for Large and Base, respectively.

Parameter Tuning We selected learning rates for Adam
optimizer in the transfer and adapt steps as follows: (i) We
tested a reasonable set of values for the transfer and adapt
steps, identifying two promising values, 1e − 6 and 2e − 5,
for the former, and five values {1e− 6, 2e− 6, 5e− 6, 1e−
5, 2e−5} for the latter. These are within the range of typical
learning rates for the Adam optimizer. (ii) We tested the ten
combinations for the TANDA approach and we selected the
value pair, (2e − 5,1e − 6), for the transfer and adapt step
respectively, which optimizes the MAP on the dev. set of
the target dataset. As TANDA makes fine-tuning stable, we
ended up selecting the same parameter values for all tested
datasets. It should be noted that the optimality of a larger
learning rate for the first step and a smaller learning rate for
the second step supports our claim of considering the second
step of TANDA as domain adaptation process. For the exper-
iments with one fine-tuning step (baseline), we again chose
either 1e − 6 or 2e − 5, i.e, following the common practice
of BERT fine-tuning.

5.3 Main Results

WikiQA Table 3 reports the MAP and MRR of different
pre-trained Transformer models for two methods: standard
fine-tuning (FT) and TANDA. The latter takes two argu-
ments that we indicate as transfer dataset → adapt dataset.
The table shows that:

• BERT-Large and BERT-Base with standard fine-tuning on
WikiQA match the current state of the art by Yoon et
al. (2019).2 The latter uses the compare aggregate model
with latent clustering, ELMO embeddings, and transfer
learning from the QNLI corpus.

• TANDA provides a large improvement over the state of the
art, which has been regularly contributed to by hundreds
of researchers.
2https://aclweb.org/aclwiki/Question Answering (State of

the art)
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Model MAP MRR

Comp-Agg + LM + LC 0.868 0.928
Comp-Agg + LM + LC + TL(QNLI) 0.875 0.940
BERT-B FT TREC-QA 0.857 0.937
BERT-B FT ASNQ 0.823 0.872
BERT-B TANDA (ASNQ → TREC-QA) 0.912 0.951
BERT-L FT TREC-QA 0.904 0.946
BERT-L FT ASNQ 0.824 0.872
BERT-L TANDA (ASNQ → TREC-QA ) 0.912 0.967
RoBERTa-B FT ASNQ 0.849 0.907
RoBERTa-B TANDA (ASNQ →TREC-QA ) 0.914 0.952
RoBERTa-L FT ASNQ 0.880 0.928
RoBERTa-L TANDA (ASNQ → TREC-QA) 0.943 0.974

Table 4: Performance of different models on TREC-QA
dataset. Here Comp-Agg + LM + LC refers to a Compare-
Aggregate model with Language Modeling and Latent Clus-
tering as proposed in (Yoon et al. 2019). TL(QNLI) refers to
Transfer Learning from the QNLI corpus. L and B stand for
Large and Base, respectively.

• RoBERTa-Large TANDA using ASNQ → WikiQA estab-
lish an impressive new state of the art for AS2 on WikiQA
of 0.920 and 0.933 in MAP and MRR, respectively.

• Finally, we note that the standard fine-tuning on ASNQ
already outperforms the previous state of the art. This is
mainly due to the fact that as ASNQ and WikiQA are both
based on answers from Wikipedia.

The next section confirms the results above on TREC-QA.

TREC-QA Table 4 reports the results of our experiments
with TREC-QA. We note that:

• RoBERTa-Large TANDA with ASNQ → TREC-QA
again establishes an impressive performance of 0.943 in
MAP and 0.974 in MRR, outperforming the previous state
of the art by Yoon et al. (2019).

• Both BERT-Base and Large fine purely tuned on the
TREC-QA corpus can surpass the previous state of the
art, probably because the size of TREC-QA training cor-
pus is larger than that of WikiQA.

• TANDA improves all the models: BERT-Base, RoBERTa-
Base, BERT-Large and RoBERTa-Large, outperforming
the previous state of the art with all of them.

• Finally, the model obtained with FT on just ASNQ pro-
duces the expected results: it performs much lower than
any TANDA model and also lower than FT on just
TREC-QA since the target domain of TREC questions is
significantly different from that of ASNQ.

We also tried FT on the merged ASNQ and TREC-QA
dataset to show that the sequential FT, i.e., TANDA, im-
proves over this. BERT-Base model fine-tuned on ASNQ ∪
TREC-QA achieves a MAP and MRR of 0.898 and 0.929,
respectively. These are significantly lower than 0.912 MAP
and 0.951 MRR, obtained with TANDA. We also stress the
other important benefits of TANDA: (i) it enables modular-
ity, thereby avoiding to retrain on the large ASNQ data (FT
on any target dataset can start from the model transferred

Figure 4: MAP and MRR on the WikiQA-Test-data varying
with number of fine-tuning epochs on the WikiQA-Train-
data for simple FT and TANDA.

with ASNQ); and (ii) it has a higher training efficiency (tar-
get datasets are much smaller than ASNQ).

5.4 Properties of TANDA

Stability of TANDA Systematic and effective fine-tuning
of Transformer models is still an open problem. There is no
theory or even a well-assessed best practice suggesting the
optimal number of epochs to be used for fine-tuning. We
claim that TANDA can robustly transfer language models to
the target task and this produces more stable models. For sta-
bility, we mean a low variance of the model accuracy (i) be-
tween two consecutive training epochs, and (ii) between two
pairs of models that have close accuracy on the development
set. For example, BERT FT has a high variance in accuracy
with the number of epochs, leading to some extreme cases of
an on-off behavior, i.e, the classifier may only predict nega-
tive labels for target task (due to unbalanced datasets).

To test our hypothesis, we compared TANDA with stan-
dard FT by varying the number of training epochs for the
adaptation step (here we do not use early stopping for
TANDA). Figure 4 shows the plots of MAP and MRR scores
with BERT-Base on WikiQA test set with different number
of training epochs on the train set. As expected FT has a
high variance while TANDA shows a small variance. A di-
rect consequence of this better behavior is the higher proba-
bility to select an optimal epoch parameter on the dev. set.

Robustness to Noise in WikiQA and TREC-QA Better
model stability also means robustness to noise. We empir-
ically studied this conjecture by artificially injecting noise
in the training sets of WikiQA and TREC-QA, by randomly
sampling questions-answer pairs from the training set and
switching their label values. We chose random samples of
10% and 20% of the training data, generating 867 and 1734
noisy labels, on WikiQA, respectively, and 5341 and 10683
noisy labels, on TREC-QA, respectively. We used the same
Clean data setting to directly compare with the original per-
formance. Table 5 shows the MAP and MRR of BERT-
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BERT-base
WikiQA TREC-QA

MAP % Drop MRR % Drop MAP % Drop MRR % Drop
No noise Fine-tuning 0.813 - 0.828 - 0.857 - 0.937 -

10% noise Fine-tuning 0.775 4.67% 0.793 4.22% 0.826 3.62% 0.902 3.73%
20% noise Fine-tuning 0.629 22.63% 0.645 22.10% 0.738 13.88% 0.843 10.03%

No noise TANDA (ASNQ → *) 0.893 - 0.903 - 0.912 - 0.951 -
10% noise TANDA (ASNQ → *) 0.876 1.90% 0.889 1.55% 0.896 1.75% 0.941 1.05%
20% noise TANDA (ASNQ → *) 0.870 2.57% 0.886 1.88% 0.891 2.30% 0.937 1.47%

Table 5: Model accuracy when noise is injected into WikiQA and TREC-QA datasets. ∗ indicates the target dataset for the
second step of fine-tuning (adapt step).

Base using FT and TANDA, also indicating the drop per-
centage (% ) in accuracy due to the injection of noise. We
note that standard FT is highly affected by noisy data, e.g.,
on WikiQA the accuracy decreases by 22.63%, when 20%
of noise is injected. Very interestingly, the models using
TANDA are affected an order of magnitude less, i.e., just
2.57%. A similar trend can be observed aslo for the results
on TREC-QA.

Model WikiQA TREC-QA
MAP MRR MAP MRR

Neg: 1 Pos: 4 0.870 0.880 0.808 0.847
Neg: 2 Pos: 4 0.751 0.763 0.662 0.751
Neg: 3 Pos: 4 0.881 0.895 0.821 0.869
Neg: 2,3 Pos: 4 0.883 0.898 0.823 0.871
Neg: 1,2,3 Pos: 4 0.884 0.898 0.823 0.872

Table 6: Impact of different labels of ASNQ on fine-tuning
BERT for answer sentence selection. Neg and Pos refers
to question-answer (QA) pairs of that particular label being
chosen for fine-tuning.

5.5 Insights on ASNQ

Ablation studies Fig. 3 shows that we generated different
types of negative examples for the AS2 task, namely, labels
1,2 and 3. We carried out experiments by fine-tuning BERT-
Base on ASNQ with specific label categories assigned to the
negative class. Table 6 shows the results: Label 3 is the most
effective negative type of the three, i.e., the models only us-
ing Label 3 as negative class are just subject to a marginal
drop in performance with respect to the model using all la-
bels. Labels 2 and 3 provide the same accuracy than the three
labels as the negative class.

BERT-Base
WikiQA TREC-QA
MAP MRR MAP MRR

FT QNLI 0.760 0.766 0.820 0.890
FT ASNQ 0.884 0.898 0.823 0.872
TANDA (QNLI →) 0.832 0.852 0.863 0.906
TANDA (ASNQ →) 0.893 0.903 0.912 0.951

Table 7: Comparison of TANDA with ASNQ and QNLI

ASNQ vs. QNLI Another way to empirically evaluate the
impact of ASNQ is to compare it with other similar datasets,
e.g., QNLI, observing the performance of the latter when
used for a simple FT or in TANDA. Table 7 shows that both
FT and TANDA using ASNQ provide significantly better
performance than QNLI on the WikiQA dataset.

On TREC-QA dataset the results show that (i) FT on
QNLI performs better than ASNQ but (ii) when TANDA
uses ASNQ as transfer step, the models can better adapt to
TREC-QA data than when using QNLI for the same transfer
type. On one hand, this confirms the claim about the high
quality of ASNQ. It is a more general and accurate AS2
dataset and is better suited for transferring the Transformer
language model. On the other hand, it provides some evi-
dence that the transfer step is very important and is not just
a way for initializing weights of the adaptation step.

Dataset Questions QA Pairs Pos. Neg.
Sample 1 435 21,530 19,598 1,932
Sample 2 441 44,593 40,136 4,457
Sample 3 452 45,300 42,131 3,169

Table 8: Statistics of samples 1, 2 and 3 (accurate test sets)

6 Experiments on data from Alexa

To show that our results generalize well, we tested our mod-
els using four different AS2 datasets created with questions
sampled from the customers’ interaction with Alexa Virtual
Assistant.

6.1 Datasets

We built three test sets based on three samples of ques-
tions labelled with information intent that can be answered
using unstructured text. Questions from Sample 1 are ex-
tracted from NQ questions while questions for samples 2
and 3 are generated from Alexa users’ questions. For each
questions, we selected 100 sentence candidates from the top
documents retrieved by a search engine: (i) for samples 1
and 2, we used an elastic search system, ingested with sev-
eral web domains, ranging from Wikipedia to reference.com,
coolantarctica.com, www.cia.gov/library, etc. (ii) For Sam-
ple 3, we retrieved the candidate answers using a commer-
cial search engine, to have a higher retrieval quality.
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MODEL Sample 1 Sample 2 Sample 3
Prec@1 MAP MRR Prec@1 MAP MRR Prec@1 MAP MRR

BERT

Base
NAD 49.80 0.506 0.638 52.69 0.432 0.629 41.86 0.352 0.543

ASNQ 55.06 0.557 0.677 44.31 0.395 0.567 44.19 0.369 0.561
TANDA (ASNQ → NAD) 58.70 0.585 0.703 58.68 0.474 0.683 49.42 0.391 0.613

Large
NAD 53.85 0.537 0.671 53.29 0.469 0.629 43.61 0.395 0.558

ASNQ 57.49 0.552 0.686 50.89 0.440 0.630 45.93 0.399 0.585
TANDA (ASNQ → NAD) 61.54 0.607 0.725 63.47 0.514 0.727 51.16 0.439 0.616

RoBERTa

Base
NAD 59.11 0.563 0.699 56.29 0.511 0.670 48.26 0.430 0.612

ASNQ 58.70 0.587 0.707 54.50 0.473 0.656 45.35 0.437 0.608
TANDA (ASNQ → NAD) 65.59 0.623 0.757 62.87 0.537 0.714 56.98 0.473 0.679

Large
NAD 70.81 0.654 0.796 63.47 0.581 0.734 52.91 0.490 0.651

ASNQ 64.37 0.627 0.750 59.88 0.526 0.705 54.65 0.478 0.674
TANDA (ASNQ → NAD) 71.26 0.680 0.805 74.85 0.625 0.821 58.14 0.514 0.699

Table 9: Comparison between FT and TANDA on real-world datasets derived from Alexa Virtual Assistant traffic

The statistics of the three sample test sets are reported in
Table 8. Their aim is to capture variations in terms of ques-
tion sources and retrieval systems, thus providing more gen-
eral results. Additionally, since questions without annotated
answers do not affect system accuracy, the results we pro-
vide refer to a Clean setting, i.e., questions with all positive
or negative answers are removed (no all+ and no all-).

Data Split Questions QA Pairs Neg. Pos.
Train 25,226 134,765 125,779 8,986
Dev 2,802 14,974 14,014 960

Table 10: Statistics of the Noisy Alexa dataset (NAD)

We also built a noisy dataset (NAD) with a similar ap-
proach to Sample 2, with the restriction of retrieving only
10 candidates per question. This enables the cheaper anno-
tation of a larger number of questions, which is important to
build an effective training set. Indeed, the number of ques-
tions in NAD is one order of magnitude larger than those
used for the previous samples (test questions). Additionally,
NAD required an increased velocity of annotations result-
ing in a higher error rate, which we quantify around 20-25%
(as estimated on a small sample). The statistics of NAD are
presented in Table 10.

6.2 Results

In these experiments, we used, as usual, ASNQ for the trans-
fer step, and NAD as our target dataset for the adapt step.
Table 9 reports the comparative results using simple FT on
NAD (denoted simply by NAD) and tested on samples 1, 2
and 3. We note that:

• applying ASNQ for the transfer step always provides im-
provement over FT.

• BERT Large TANDA improves over BERT Base TANDA
for all the three different dataset samples.

• Using TANDA with RoBERTa produces an even higher
improvement than with BERT.

• All these experiments using NAD for training and accu-
rate datasets for testing, show that TANDA is robust to

real-world noise of NAD as it always provides signifi-
cantly large gains over simple FT.

7 Conclusions

In this paper, we have presented a novel approach for fine-
tuning pre-trained Transformer models and tested it on a
general natural language inference task, namely, answer sen-
tence selection (AS2). Our approach, TANDA, performs two
fine-tuning steps sequentially: (i) on a general, large and
high-quality dataset, which transfers a pre-trained model
to the target task; and (ii) on the target dataset to perform
domain adaptation. The results on two well-known AS2
datasets, WikiQA and TREC-QA, show an impressive im-
provement over the state of the art. Additionally, our exper-
iments in an industrial setting derive the same results and
conclusions we found with the academic benchmarks.

Our research deepens the general understanding of trans-
fer learning for Transformer models. The first step of
TANDA produces an intermediate model with three main
features: (i) it can be more effectively used for fine-tuning
on the target NLP application, being more stable and easier
to adapt to other tasks; (ii) it is robust to noise, which might
affect the target domain data; and (iii) it enables modular-
ity and efficiency, i.e., once a Transformer model is adapted
to the target general task, e.g., AS2, only the adapt step
is needed for each targeted domain. This is an important
advantage in terms of scalability as the data of (possibly
many) different target domains can be typically smaller than
the dataset for the transfer step(ASNQ), thereby causing the
main computation to be factorized on the initial transfer step.

We conjecture that one caveat of using simple fine-tuning
on a combination of ASNQ and target data may produce
an accuracy improvement similar to TANDA. However,
such a combination can be tricky to optimize as the target
data requires greater weighting than the more general data
of ASNQ during fine-tuning the model. Our experiments
with TREC-QA show that a simple union of the dataset
with ASNQ is sub-optimal than sequential fine-tuning over
ASNQ followed by TREC-QA. In any case, the important
modular aspect of TANDA will not hold in such a scenario.

Interesting future work can be devoted to address the
question about the applicability and generalization of the
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TANDA approach to other NLP tasks. In the specific con-
text of AS2, it would be interesting to test if ASNQ can pro-
duce the same benefits for related but clearly different tasks,
e.g., paraphrasing or textual entailment, where the relation
between the members of text pairs are often different from
those occurring between questions and answers.
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