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Abstract

Identifying the quality of free-text arguments has become an
important task in the rapidly expanding field of computational
argumentation. In this work, we explore the challenging task
of argument quality ranking. To this end, we created a corpus
of 30,497 arguments carefully annotated for point-wise qual-
ity, released as part of this work. To the best of our knowl-
edge, this is the largest dataset annotated for point-wise ar-
gument quality, larger by a factor of five than previously re-
leased datasets. Moreover, we address the core issue of in-
ducing a labeled score from crowd annotations by perform-
ing a comprehensive evaluation of different approaches to
this problem. In addition, we analyze the quality dimensions
that characterize this dataset. Finally, we present a neural
method for argument quality ranking, which outperforms sev-
eral baselines on our own dataset, as well as previous methods
published for another dataset.

1 Introduction

Computational Argumentation is a rapidly emerging disci-
pline within the Natural Language Processing community
(Reed 2016), dealing with various sub-tasks such as ar-
gument detection (Lippi and Torroni 2016; Ein-Dor et al.
2019), stance detection (Bar-Haim et al. 2017) and argument
clustering (Reimers et al. 2019).

Recently, IBM introduced Project Debater, the first AI
system able to debate humans on complex topics. The sys-
tem participated in a live debate against a world champion
debater, and was able to mine arguments, use them for com-
posing a speech supporting its side of the debate, and also
rebut its human competitor.1 The underlying technology is
intended to enhance decision-making.

More recently, IBM also introduced Speech by Crowd,
a service which supports the collection of free-text argu-
ments from large audiences on debatable topics to gener-
ate meaningful narratives (Toledo et al. 2019). An impor-
tant sub-task of this service is automatic assessment of argu-

∗ These authors equally contributed to this work.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1For more details: https://www.research.ibm.com/
artificial-intelligence/project-debater/live/

ment quality, which is the focus of the present work. Detect-
ing argument quality is a prominent task due to its impor-
tance in automated decision making (Bench-Capon, Atkin-
son, and McBurney 2009), argument search (Wachsmuth et
al. 2017b), and writing support (Stab and Gurevych 2014).

Earlier work on assessing argument quality relied on
a comparative pair-wise approach, aiming to identify the
higher-quality argument within each pair of arguments
(Habernal and Gurevych 2016; Simpson and Gurevych
2018). Recently Toledo et al. (2019) proposed a point-
wise argument quality prediction scheme, which scales lin-
early with data size. Correspondingly, here we focus on this
paradigm which is clearly less demanding, especially in sce-
narios where many arguments should be considered.

A major contribution of this work is introducing a novel
dataset of arguments, carefully annotated for point-wise
quality, IBM-ArgQ-Rank-30kArgs, referred henceforth as
IBM-Rank-30k. The dataset includes around 30k arguments,
5 times larger than the largest annotated point-wise data re-
leased to date (Toledo et al. 2019). Similarly to Toledo et al.
(2019), arguments were collected actively – as opposed to
being extracted from debate portals (Habernal and Gurevych
2016) – with strict length limitations, accompanied by exten-
sive quality control measures.

Although a continuous argument quality score seems nat-
ural, asking annotators to provide a continuous score per ar-
gument will probably introduce a subjective scale that varies
from one annotator to another, hindering downstream anal-
ysis. Instead, we take a simplified approach, asking each
annotator to answer a binary question per argument, indi-
cating if its quality is satisfactory in a particular context.
The question remains, of how to extract a continuous quality
score out of the binary annotations provided by many anno-
tators. Toledo et al. (2019) took a straightforward simple-
average approach; here, we provide an extensive compari-
son between potential scoring functions, analyzing the dif-
ferences between these models, and their impact on training
and evaluating a learning algorithm.

While an exact definition of argument quality is poten-
tially elusive, it seems clear that it is a function of various
linguistic phenomena. As exemplified in Table 1, low quality
can be manifested by dimensions such as bad grammar and
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low clarity (Row 3), or lack of impact and relevance (Row
4). In contrast, high quality arguments are typically clear,
relevant, and with high impact (Rows 1 and 2). A model
that aims to automatically infer argument quality should take
such subtleties into account. A recent development in this
context is that of deep contextual language models, such as
ELMo (Peters et al. 2018) and BERT (Devlin et al. 2018).
Due to its bidirectional nature, BERT achieves remarkable
results when fine-tuned to different tasks without the need
for specific modifications per task. As part of this work, we
introduce various neural methods that exploit the value of
BERT for our task. In particular, we suggest a model that
outperforms several baselines on our data. Our experimental
results further indicate that this method is either compara-
ble to or outperforms state-of-the-art methods on previously
released data.

Argument Topic Label

the interest rates are too
high and trap people in
debt

Payday loans should be banned 1

racial profiling unfairly
targets minorities and
the poor

We should end racial profiling 1

we should subsidize
student loans for reach
excelent education

We should subsidize student loans 0.05

i think the same as you,
they should ban

Payday loans should be banned 0.09

Table 1: Examples of high (rows 1-2) and low (rows 3-4)
quality arguments from the IBM-Rank-30k dataset. The label
is a weighted aggregation of annotations.

The main contributions of our work are: (1) Introducing
a carefully annotated argument quality dataset which is the
largest of its kind; (2) Conducting extensive analysis of dif-
ferent approaches to induce a quality label from given binary
annotations; (3) Proposing a BERT-based method to predict
argument quality, and report the results of extensive experi-
ments that convey the potential of this method.

2 Related Work

Assessing argument quality is a long standing challenge. For
centuries there has been a multi-disciplinary effort to define
and research aspects of quality in argumentation (Aristotle,
Kennedy, and Kennedy 1991; Walton, Reed, and Macagno
2008; Perelman and Olbrechts-Tyteca 1969). A core issue
in the field is the presumed subjectivity of the task at hand.
There have been several practical and theoretical approaches
on how to overcome the supposed lack of objectivity.

Swanson, Ecker, and Walker (2015) approach argument
quality as a point-wise ranking task, with the goal of se-
lecting argument segments that clearly express an argument
facet in a given dialogue. Arguments are labeled by a real
value in the range of [0, 1], where a score of 1 indicates that
an argument can be easily interpreted. They then develop an
automatic regression method using these labels. Their cor-
pus, which we refer to henceforth as SwanRank, contains
5.3k labeled arguments.

An alternative approach to assess arguments is to focus

on their relative convincingness, by comparing pairs of ar-
guments with similar stance. This approach is introduced
in Habernal and Gurevych; Simpson and Gurevych (2016;
2018), and further assessed in Potash, Bhattacharya, and
Rumshisky (2017), Gleize et al. (2019), and Potash, Fer-
guson, and Hazen (2019). As part of their work, Habernal
and Gurevych (2016) introduce two datasets: UKPConvAr-
gRank (henceforth, UKPRank) and UKPConvArgAll, which
contain 1k and 16k arguments and argument-pairs, respec-
tively. In their work, the point-wise scores are induced from
the pair-wise labels, rather than annotated directly. Gleize
et al. (2019) focus of ranking convincingness of evidence.
Their solution is based on a Siamese neural network, which
outperforms the results achieved in Simpson and Gurevych
(2018) on the UKP datasets, as well as several baselines on
their own dataset, IBM-ConvEnv. Potash, Bhattacharya, and
Rumshisky (2017) present a method that is based on repre-
senting an argument by the sum of its token embeddings,
extended in Potash, Ferguson, and Hazen (2019) to include
a Feed Forward Neural Network. These two works outper-
form Simpson and Gurevych (2018) on the UKP datasets for
both the pair-wise and point-wise tasks, respectively.

Durmus, Ladhak, and Cardie (2019) present a new dataset
comprised of over 47k claims in 471 topics from the website
kialo.com, aimed at evaluating the effect of pragmatic and
discourse context when determining argument quality. They
propose models to predict the impact value of each claim,
as determined by the users of the website. Their dataset is
somewhat different from ours as it focuses on argument im-
pact, rather than overall quality, and doing so in the context
of an argumentative structure, instead of independently. In
addition, their impact values are based on spontaneous input
from users of the website, whereas our dataset was carefully
annotated with clear guidelines. Still, it further highlights the
importance of this field.2

Toledo et al. (2019) consider both point-wise and pair-
wise quality approaches, as well as the interaction between
them. They introduce two datasets: IBMRank, which con-
tains 5.3k point-wise labeled arguments (6.3k before cleans-
ing) and IBMPairs, which contains 9.1k labeled argument-
pairs (14k before cleansing). Arguments in their datasets,
collected in the context of Speech by Crowd experiments,
are suited to the use-case of civic engagement platforms,
giving premium to the usability of an argument in oral
communication. Our dataset differs in three respects: (1)
our dataset is larger by a factor of 5 compared to previous
datasets annotated for point-wise quality; (2) our data were
collected mainly from crowd contributors that presumably
better represent the general population compared to targeted
audiences such as debate clubs; (3) we performed an exten-
sive analysis of argument scoring methods and introduce su-
perior scoring methods that consider annotators credibility
without removing them entirely from the labeled data, as is
done in Toledo et al. (2019).

2The work by Durmus, Ladhak, and Cardie (2019) was pub-
lished after our submission, therefore we were not able to fully
address it.
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3 IBM-Rank-30k Dataset

In the next two sections, we present the creation of the IBM-
Rank-30k dataset. First, we describe the process of argument
collection. We then move to describing how arguments were
annotated for quality. Finally, we discuss and analyze how
we derive point-wise continuous quality labels from binary
annotations, by conducting a comprehensive comparison be-
tween different scoring functions. We release this dataset as
part of this work.3

3.1 Argument Collection

For the purpose of collecting arguments for the IBM-Rank-
30k dataset, we conducted a crowd annotation task, using the
Figure Eight platform.4 A small portion of arguments (8.6%)
was also collected from expert annotators who work closely
with our team. We selected 71 common controversial topics,
for which arguments were collected (e.g., We should abolish
capital punishment).

We follow similar guidelines to that presented in Toledo
et al. (2019). Annotators were presented with a single topic
each time, and asked to contribute one supporting and one
contesting argument for it, requiring arguments to be writ-
ten using original language. To motivate high-quality contri-
butions, contributors were informed they will receive extra
payment for high quality arguments, as determined by the
subsequent argument quality labeling task (Section 3.2). It
was explained that an argument will be considered as a high-
quality one, if a person preparing a speech on the topic will
be likely to use this argument as is in her speech.

Similarly to Toledo et al. (2019), we place a limit on argu-
ment length - a minimum of 35 characters and a maximum
of 210 characters. In total, we collected 30,497 arguments
from 280 contributors, each contributing no more than 6 ar-
guments per topic.

3.2 Argument Quality Annotations Collection

In this section we describe the argument quality annotation
process, performed for all collected arguments. As above,
we used the Figure Eight platform, with 10 annotators per
argument. Following Toledo et al. (2019), annotators were
presented with a binary question per argument, asking if
they would recommend a friend to use that argument as is in
a speech supporting/contesting the topic, regardless of per-
sonal opinion. In addition, annotators were asked to mark
the stance of the argument towards the topic (pro or con).

To monitor and ensure the quality of the collected anno-
tations, we employed the following measures introduced in
Toledo et al. (2019):

Test Questions. Before the labeling of 1/5 of the argu-
ments, a hidden test question about the stance of the argu-
ment towards the topic was presented, aimed to verify the
annotator is reading the argument carefully. Annotators that
failed more than 20% of the test questions were removed
from the task, and their judgments were ignored. Typically
5%− 10% of the contributors were removed from each sub-
task due to this reason.

3http://ibm.biz/debater-datasets
4http://figure-eight.com/

Annotator-reliability score. Defined in Toledo et al.
(2019) as the Annotator-κ for a single score (and task-
average-κ averaged on all valid scores) and denoted here as
Annotator-Rel. This score was used both to monitor tasks
in real time, and as a basis for the weighted score func-
tion described in Section 4. It is obtained by averaging all
pair-wise κ for a given annotator, with other annotators that
share at least 50 common judgements. Annotators who do
not share at least 50 common judgments with at least 5 other
annotators, do not receive a value for this score.

The average of valid annotators reliability scores on the
quality annotations is 0.12. This task reproduces the task
from Toledo et al. (2019), and as established there, such an
average is acceptable due to the subjectivity of the task.5
Among other things, Toledo et al. (2019) rely on the task-
average-κ of the stance annotations in the same task, which
was 0.69 in that work, and here it is 0.83.

To further ensure high quality annotations, rather than in-
troducing the task to any crowd worker, we used a selected
group of 600 crowd annotators, which had high Annotator-
reliability in past tasks of our team.

4 Deriving an Argument Quality Score from

Binary Annotations

As mentioned in section 3.2, for each argument several an-
notators answered a binary question regarding its quality. We
chose this format to simplify the annotation process of this
subjective question, aiming to avoid an additional subjective
element - the scale. However, we still need to provide a sin-
gle continuous score per argument, reflecting its quality, that
can be compared with the scores of other arguments. To that
end, we evaluate approaches to derive such a quality score,
on a bounded scale, from a set of binary annotations.

4.1 Quality Scoring Functions

First, we describe two scoring functions. Each function pro-
vides the likelihood of the positive label, between 0 (bad
quality) and 1 (good quality).

MACE probability (MACE-P) - Habernal and Gurevych
(2016) suggested MACE (Hovy et al. 2013) as a scoring
function for the quality of an argument based on crowd an-
notations. MACE is an unsupervised item-response gener-
ative model which predicts the probability for each label
given the annotations. MACE also estimates a reliability
score for each annotator which it then uses to weigh this an-
notator’s judgments. We use the probability MACE outputs
for the positive label as the MACE-P scoring function.

Weighted-Average (WA) - We suggest to use a weighted-
average score to incorporate annotator-reliability, in the
spirit of MACE. This is designed to decrease the influence of
non-reliable annotators on the final quality score, thus pro-
viding an intuitive and gradual form of data cleansing. For
each argument a, we define Pa as the set of annotators who
labeled it as positive, and Na as the set of annotators who
labeled it as negative. The WA score of an argument a is de-

5In Toledo et al. (2019) it was 0.1.
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fined as:

Score(a) =

∑
Annotatori∈Pa

Annotator-Reli
∑

Annotatorj∈Na+Pa
Annotator-Relj

There is a clear distinction between the distribution of
scores obtained by WA and MACE-P scoring functions (see
Figure 1). WA outputs values close to 0 or 1 only if there is
a strong annotation consensus. As generally there are more
positive annotations in our data, the histogram of this scor-
ing function is skewed towards 1, with an almost linear de-
crease. On the other hand, MACE assigns probabilities to
both labels. As a result, the quality scores lean strongly to
both extreme values, creating a U-shaped histogram.
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Figure 1: Histogram of arguments according to MACE-P and
WA quality scores. X axis - quality scores. Y axis - counts of
arguments in IBM-Rank-30k.

4.2 Comparing Scoring Functions

Next, we compare the quality scoring functions described
above via the following three experiments.

Disagreements in choosing the better argument We first
ask which of the two methods is ‘correct’ more often when
examining the cases in which given a pair of arguments,
they disagree on which argument should get a higher score.
We created all possible argument pairs from IBM-Rank-30k,
such that arguments in the same pair are taken from the same
topic and have the same stance towards it (to avoid annotator
bias).6

We focus on the set of pairs in which the two methods dis-
agree on the preferred argument, i.e. the one that received
a higher score (about 20% of the pairs). We sample 850
such disagreement pairs and send them for pair-wise an-
notation, i.e., asking the annotators to choose the better of
the two arguments. Each pair was annotated by 7 annota-
tors from our selected group of crowd annotators. We dis-
carded pairs for which the agreement between annotators
was less than 70% (this filtered out 27% of the pairs). In

6Arguments were selected from the training set, which is de-
tailed in Section 6.1.

55% of the remaining pairs the annotators chose the argu-
ment preferred by MACE-P, making this method somewhat
more correlated with the pair-wise judgments. Both methods
were also compared to simple-average, the scoring method
applied in Toledo et al. (2019). In 61% of the pairs that dif-
fer between simple-average and MACE-P, annotators chose
the argument preferred by the latter. In 59% of the pairs that
differ between simple-average and WA, annotators chose the
argument preferred by WA. As the simple-average method
was found inferior, it was omitted from subsequent evalua-
tion experiments.

Agreement with pair-wise annotation In this experi-
ment, we present each scoring function with pairs of argu-
ments, and compare their preferred arguments with a gold
standard obtained by pair-wise annotation, following the
consistency evaluation performed in Toledo et al. (2019).
Similar to the previous experiment, we generate all argu-
ment pairs (of the same topic and stance). Next, we bin all
pairs into four sets by the size of the delta between the scores
of their arguments (e.g., all pairs with score difference be-
tween 0.25 and 0.5). From each such delta bin we randomly
sample 150 pairs and send them for pair-wise annotation as
described in the previous experiment. We repeat this process
for both scoring functions.

We calculate the precision of each scoring function in
each delta bin, based on its agreement with the pair-wise
annotation. Table 2 depicts the results for MACE-P, and
Table 3 for WA. The results show that as the score differ-
ence increases (larger delta bin), precision also increases
(for both scoring functions). Interestingly, this tendency is
more prominent for WA, reaching a perfect match when the
difference in point-wise quality scores is higher than 0.75.7
The tables also depict the percent of pairs filtered due to
low (less than 70%) agreement between annotators. Interest-
ingly, in the 3 bins with more than 0.25 difference in point-
wise scores, less pairs are filtered when using WA, suggest-
ing that when WA is confident about which argument is bet-
ter, annotators also tend to agree more often, which is not
the case for MACE-P.

Delta bin Filtered pairs Precision
≤ 0.25 15% 0.64

(0.25, 0.50] 23% 0.77
(0.50, 0.75] 14% 0.81
> 0.75 13% 0.88

Table 2: Comparing MACE-P scoring function preference to
gold standard of pair-wise annotation.

Split annotations consistency A desirable property for a
scoring function is that it will be relatively consistent with
respect to different sets of annotators; namely, if we split the
binary annotations into two sets and construct the continu-
ous annotation from each set independently, we will end up
with approximately the same score.

7However, we note that while for MACE-P the > .75 delta bin
holds for 19.5% of the pairs, for WA it holds less than 1%.
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Delta bin Filtered pairs Precision
≤ 0.25 15% 0.66

(0.25, 0.50] 13% 0.74
(0.50, 0.75] 6% 0.90
> 0.75 3% 1.00

Table 3: Comparing WA scoring function preference to gold
standard of pair-wise annotation.

To examine that, we randomly split the 10 binary anno-
tations we have for each argument into two sets (each con-
taining 5 annotations), similar to Habernal et al. (2018). We
then calculate two quality scores for each argument, based
on these two smaller annotation sets, respectively. While
Habernal et al. (2018) utilized agreement to measure con-
sistency, we can measure correlation between the two con-
tinuous scores.

We note that since each score was calculated on a set
which is half the size of the original annotation set, we have
less information for assessing the reliability score of each
annotator. This fact can harm the accuracy of the scoring
functions, as they both utilize annotators reliability scores.
Nevertheless, for both scoring functions we considered, we
find a good correlation between the scores calculated over
the two smaller annotation sets. WA achieves 0.42 and 0.36
Pearson and Spearman correlations, respectively. MACE-P
achieves 0.42 in both.

In summary, we point out a key difference between the
two scoring functions: the tendency of WA to present a grad-
ual continuous scale, as opposed to MACE-P, which aims at
discovering the ‘true’, hence the binary, labels. For this rea-
son we tend to prefer WA as a scoring function for this task,
which is inherently deriving a non-binary score. However,
as our experiments do not show a clear preferred function,
we utilize both for the evaluation of neural methods in Sec-
tion 6.1. For brevity, in the analyses in sections 5 and 7 we
only use WA scores. Finally, in the dataset we release as part
of this work, we include the quality scores of both scoring
functions. We conclude that the induction of a quality score
on top of existing annotations is not necessarily trivial, and
should be carefully considered, as it impacts the scores dis-
tribution and the performance of learning algorithms trained
on the score.

5 Analysis of Quality Dimensions

We seek to further explore the consistency and accuracy of
the IBM-Rank-30k dataset. To that end, we employ a qual-
ity dimensions model, i.e. a model that decomposes a holis-
tic quality score to several dimensions. Such a model was
suggested by Wachsmuth et al. (2017a) - a meta-model that
was created via a broad literature survey on previous quality
models. They decompose quality to 15 sub-dimensions that
aim to determine fine-grained properties of argument qual-
ity.

We conducted an annotation task similar in spirit to
Wachsmuth et al. (2017a), in the context of the IBM-Rank-
30k dataset. Our goal is to quantitatively assess the reasons
for arguments having low or high quality, through the prism

of this theoretical model. First, we decided to exclude 5 di-
mensions from this task, as they lack high potential to em-
body relevant characteristics over our data.8 We split the
IBM-Rank-30k dataset to 5 equally populated bins according
to the WA quality scores (1-5, where 1 is the lowest quality
bin), and randomly sample 100 arguments with a uniform
distribution over the bins. Each argument was labeled by 3
expert annotators that have extensive background in related
tasks of our team. The annotators were not aware of the orig-
inal quality bins. We have asked the annotators to annotate
each argument according to each of the 10 dimensions on
a scale of 1-3, to stay consistent with the scale offered by
Wachsmuth et al. (2017a), and calculate the average for each
dimension.

We observe that even though the task is complex, across
all dimensions, the arguments from the highest bin achieve a
higher average over the middle bins, and arguments from the
middle bins achieve a higher score over the lower bins. The
2 dimensions that present the largest difference between bins
5 and 1 are Global Relevance and Effectiveness, with an av-
erage difference of 0.72 and 0.64, respectively. Global Rel-
evance asks whether an argument provides information that
helps to arrive at an ultimate conclusion regarding the dis-
cussed issue, while Effectiveness asks whether the argument
is effective in helping to persuade in the author’s stance.
These results suggest that the differences between low and
high arguments in the IBM-Rank-30k dataset are best ex-
plained by how related the annotator found the argument to
the topic, and how effectively the argument was presented.
Such results corroborate several notions. Firstly, our quality
labeling is broadly consistent with a known quality model.
Moreover, the outcome serves as an initial proof of concept
of decomposing quality in a large dataset to gain explain-
abilty. The detection of quality dimensions can be used in a
range of applications, from more exact research on what de-
termines quality, to feedback systems that can recommend
users more precisely what they need to improve to advance
their argumentation skills.

6 Argument Quality Ranking

We now move to apply the IBM-Rank-30k dataset to the
task of learning to rank the quality of arguments. For this
purpose, we evaluate the following methods, which include
several neural methods, as well as some simpler baselines.

Arg-Length. Although we placed a strong limit on argu-
ment length, it is possible that there is still a bias towards
longer arguments. To inspect this, we evaluate a ranking
baseline based on an argument’s length in characters.

SVR BOW. We evaluate a Support Vector Regression
ranker, implemented by the scikit-learn toolkit,9 with an
RBF kernel and bag-of-words features, using the most fre-
quent 1000 tokens in the training set.

Bi-LSTM GloVe. As a simple neural baseline we imple-
ment a Bi-LSTM model with self-attention, following the
model used in Levy et al. (2018). The model was trained

8Those 5 dimensions are: Appropriateness, Arrangement, Cred-
ibility, Emotional Appeal and Reasonableness.

9https://scikit-learn.org/

7809



with a dropout of 0.15, an LSTM layer of size 128 and an
attention layer of size 100. For input features we used the
300 dimensional GloVe embeddings (Pennington, Socher,
and Manning 2014).

We use the following three methods based on BERT:
BERT-Vanilla (henceforth, BERT-V). In this network,

for each argument, we concatenate the last 4 layers of the
[CLS] token obtained from BERT’s pre-trained model, re-
sulting in a feature vector of size 4× 768 = 3072. The fea-
tures are passed through a fully-connected hidden layer of
size 100 with ReLU activation, after which we apply a sig-
moid activation layer with a single output.

BERT-Finetune (henceforth, BERT-FT). This method
fine-tunes BERT’s pre-trained model. The official code
repository of BERT10 supports fine-tuning to classification
tasks, which is done by applying a linear layer on the [CLS]
token of the last layer of BERT’s model, which is then
passed through a soft-max layer. The weights of the pre-
ceding layers are initialized with BERT’s pre-trained model,
and the entire network is then trained on the new data. To
adapt the fine-tuning process to a regression task, the fol-
lowing were performed: (1) Changing the label type to rep-
resent real values instead of integers; (2) Replacing the soft-
max layer with a sigmoid function, to support a single out-
put holding values in the range of [0,1]; (3) Modifying
the loss function to calculate the Mean Squared Error of the
logits compared to the labels.11

BERT-FTTOPIC. We also evaluate the addition of the topic
to the input of BERT-FT. The topic is concatenated to the
argument, separated by a [SEP] delimiter, and the model is
fine-tuned as in BERT-FT.

6.1 Experiments on IBM-Rank-30k
For the purpose of evaluating our methods on the IBM-Rank-
30k dataset, we split its 71 topics to 49 topics for training, 7
for tuning hyper-parameters and determining early stopping
(dev set) and 15 for test.

We present results for both WA and MACE-P scoring
functions, aiming to shed some more light on their prop-
erties. All models were trained for 5 epochs over the train-
ing data, taking the best checkpoint according to the perfor-
mance on the dev set, with a batch size of 32 and a learning
rate of 2e-5. We calculate Pearson (r) and Spearman (ρ) cor-
relations on the entire test set.

For significance testing, we use the Williams test
(Williams 1959) which evaluates the significance of a differ-
ence in dependent correlations (Steiger 1980). The Williams
test has been successfully used in Machine Translation in the
evaluation of MT metrics (Graham and Baldwin 2014) and
quality estimation (Graham 2015).

6.2 Results and Discussion

The results on the IBM-Rank-30k dataset are presented in
Table 4. Using BERT-V improves on the Bi-LSTM GloVe

10https://github.com/google-research/bert
11The implementation of BERT fine-tuning in regression mode

is adapted from: https://github.com/google-research/bert/issues/
160\#issuecomment-445066341.

method by .4-.6 points for Pearson correlation, and .2-
.6 points for Spearman correlation. Fine-tuning BERT im-
proves on BERT-V by .2-.4 points for both correlation mea-
sures. Adding the topic adds a statistically significant im-
provement of .1-.2 points (p � 0.01 for both correlation
measures and quality score methods). Interestingly, when
using MACE-P scores, the model is able to achieve higher
Spearman correlation for most methods. Also, argument
length is not an indicator for quality, as evident by the poor
performance of the Arg-Length baseline.

WA MACE-P
r ρ r ρ

Arg-Length .21 .22 .22 .23
SVR BOW .32 .31 .33 .33
Bi-LSTM GloVe .44 .41 .43 .42
BERT-V .48 .43 .49 .48
BERT-FT .51 .47 .52 .5
BERT-FTTOPIC .52 .48 .53 .52

Table 4: Correlations on the IBM-Rank-30k test set.

An important property of a good model is that its perfor-
mance increases when considering arguments that are on the
extremes of the argument quality scale. To evaluate this, we
define a cut-off percentile d as a view of the test data that
considers only the top d and bottom d percent of the data.
For each cut-off we calculate Pearson and Spearman correla-
tions w.r.t the predictions of the BERT-FTTOPIC model. Fig-
ure 2 presents the correlations for cut-off percentiles rang-
ing from 10% to 50% (50% is equivalent to taking the entire
data), for the models trained on MACE-P and WA quality
scores. A clear trend emerges in which the correlations in-
crease as arguments are taken from a smaller percentile, i.e.
from further extremes of the quality scale, reaching up to
.71-.73 and .67 for Pearson and Spearman correlations, re-
spectively, when considering only the bottom and top 10%
of the test set for evaluation.

0.55

WA r

0.45

0.50

0.60

0.65

0.70

0.75
MACE-P r MACE-P p

WA p

30 3040 4020 2010 1050 50

Figure 2: Pearson (left) and Spearman correlations of var-
ious cut-off percentiles for the BERT-FTTOPIC models,
trained on data containing WA and MACE-P quality scores.
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6.3 Experiments on SwanRank and UKPRank

In this section we demonstrate the strength of the two best
methods – BERT-FT and BERT-FTTOPIC – by applying them
on two related datasets, SwanRank and UKPRank. We chose
SwanRank as it also contains direct point-wise quality la-
bels. UKPRank was chosen as an established dataset which
also contains point-wise quality scores. However, it should
be noted that as opposed to the IBM-Rank-30k and Swan-
Rank datasets, the point-wise labels in UKPRank were in-
duced from a pair-wise labeling task, and not obtained di-
rectly, as mentioned previously.

SwanRank dataset. In Swanson, Ecker, and Walker
(2015) the SwanRank dataset was evaluated both in in-
domain and cross-domain scenarios. In this work, we fo-
cus on the latter, more challenging scenario. Their model
is a SVR with RBF kernel, with features coming from one
of many feature sets they experiment with. They randomly
split each topic to train (75%) and test sets, and run their
model, with each possible feature set, on each train-test
cross-domain pair. That is, the topics of the train and the
test sets are distinct. We adapt to their approach as follows:

• For each topic, we create our own random split to train
and test, as the exact split to train and test for each topic
was not available to us.

• For each topic, we consider its best result achieved in
Swanson, Ecker, and Walker (2015) in the cross-domain
scenario. For example, for evaluating the gun control
topic, the best result in Swanson, Ecker, and Walker
(2015) is obtained by training on the gay marriage topic.
By this we obtain 4 train-test pairs: gay-marriage (GM,
train)–gun control (GC, test), gun-control–gay marriage,
death penalty (DP)–evolution (EV), and evolution–death
penalty. It should be noted, that adapting to this setup puts
our work at a disadvantage, because the best results for
different pairs in Swanson, Ecker, and Walker (2015) are
achieved by using different feature sets, as opposed to a
single learning framework. Thus, this setting represents
an upper limit rather than an actual obtained result.

• For each of the 4 pairs, we train our BERT-FT and BERT-
FTTOPIC methods for 2 epochs on the train topic, and
test the model on the test topic. We compute Root Rel-
ative Squared Error (rrse), following Swanson, Ecker, and
Walker (2015), and report results for each pair as well as
the weighted-average.

Results. Results on the SwanRank dataset are presented
in Table 5. Using the BERT-FTTOPIC method yielded an av-
erage improvement of .8 points compared to the optimal re-
sult taken from Swanson, Ecker, and Walker (2015). Per-
formance has improved in 3/4 test topics (gay marriage,
gun control and death penalty), and decreased in the evolu-
tion topic. However, in Swanson, Ecker, and Walker (2015)
the performance on the death penalty and evolution topics is
low even in the easier in-domain task, presumably indicating
they are much more difficult to predict.

UKPRank dataset. We conduct cross-validation where
in each fold we trained on 31 topics and tested on the held-
out topic. The model was evaluated after 5 training epochs.

Train GC GM EV DP Avg
Test GM GC DP EV
Swanson 0.84 0.81 1 0.97 0.89
BERT-FT 0.8 0.82 1.1 0.98 0.91
BERT-FTTOPIC 0.65 0.71 0.96 1.01 0.81

Table 5: Weighted-average RRSE on the 4 topic pairs of the
SwanRank dataset (a lower score is better). Swanson row:
the result by averaging the best train-test pairs cross-domain
results published in Swanson, Ecker, and Walker (2015).

Following Simpson and Gurevych (2018), we report average
Pearson (r) and Spearman (ρ) correlations, and compare the
results of our methods to the Bi-LSTM and GPPL methods
published there, as well as to the EviConvNet method, the
best result from Gleize et al. (2019), and to the SWE+FFNN
method, the best result from Potash, Ferguson, and Hazen
(2019).

Results. The results on the UKPRank dataset are pre-
sented in Table 6. Both of our methods obtain Pearson corre-
lations which are comparable to the SWE+FFNN, EviCon-
vNet, and GPPL methods, and worse Spearman correlations.
However, as the point-wise quality scores were obtained via
a pair-wise proxy, previous methods assume the existence of
a pair-wise labeled dataset for training, and EviConvNet, for
example, trains on the pair-wise labels directly. Our method
is less suitable for this setting, as it does not depend on any
pairs being labeled for training, making this comparison less
trivial.

r ρ
Bi-LSTM GloVe .32 .37
Bi-LSTM ling+GloVe .37 .43
GPPL ling .38 .62
GPPL GloVe .33 .44
GPPL ling+GloVe .45 .65
GPPL opt. ling+GloVe .44 .67
EviConvNet .47 .67
SWE+FFNN .48 .69

BERT-FT .45 .63
BERT-FTTOPIC .46 .62

Table 6: Average correlation on the UKPRank dataset.

7 Learning to Represent Quality

During fine-tuning BERT to a new task, the weights of the
pre-trained model are updated, and as a result, the contex-
tual representations of tokens change. In this section, we
exemplify how these new embeddings are enriched with
contextual quality properties. Using an anecdotal example,
we show how quality is encoded in BERT’s token embed-
dings, after being exposed to the IBM-Rank-30k dataset dur-
ing training. We do this by comparing the contextual embed-
dings retrieved from BERT’s pre-trained model and from the
BERT-FT model, of a common token in the IBM-Rank-30k
dataset, people. For the purpose of this analysis, we use
the model fine-tuned for the IBM-Rank-30k dataset with WA
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scores. First, we split the data to 5 equally populated bins,
according to the WA quality score.12 We then retrieve the
contextual embeddings of people in a sample of 20 ar-
guments which contain it, 10 from the lowest and 10 from
the highest quality bins. Embeddings are taken from the last
layer of BERT’s model before and after fine-tuning, result-
ing in two sets of 20 embeddings overall. We cluster each set
of embeddings using Hartigan’s K-Means (Hartigan 1975;
Slonim et al. 2005), and calculate the adjusted mutual in-
formation (AMI) of the clusters with respect to the low
and high quality bins. When clustering the embeddings re-
trieved from BERT’s pre-trained model, the AMI is 0.08,
a low result which is expected given that BERT’s language
model should not have any preference to argument quality.
However, when clustering the embeddings extracted from
BERT-FT, the AMI reaches 0.31, indicating that these rep-
resentations absorb the qualitative nature of the arguments
they come from. We use t-SNE (van der Maaten and Hin-
ton 2008) to visualize these embeddings in a 2D space (Fig-
ure 3). Before fine-tuning, the embeddings are clustered to-
gether, whereas after fine-tuning, the embeddings are par-
tially separated by the quality of the arguments, further in-
dicating that the quality contributes to the contextual repre-
sentation of this token.

Figure 3: A 2D t-SNE projection of the embeddings of the
term people taken from a sample of high (x) and low (o)
quality arguments from the dev and test sets of the IBM-
Rank-30k dataset. Left - using BERT’s pre-trained model.
Right - after fine-tuning.

8 Conclusions and Future Work

In the rapidly expanding field of computational argumen-
tation, argument quality is an increasingly prominent is-
sue, having substantial implications. To advance the devel-
opment of argument quality ranking models, the creation
of new datasets is a critical step. In this work, we present
a novel argument dataset labeled for point-wise quality,
IBM-Rank-30k, containing 30,497 arguments. To the best of
our knowledge, this dataset is the largest to include point-
wise quality labels, 5 times larger than previously released
datasets. We follow Toledo et al. (2019) by collecting the
arguments actively, while employing elaborate annotation
control measures. A practical question, overlooked in pre-
vious datasets, is how to induce continuous labels from bi-
nary annotations. We address this issue by conducting an ex-
tensive comparison of two common approaches and analyz-
ing their appropriateness to our dataset. We also exploit this

12We exclude the training set, to avoid a trivial bias of the BERT-
FT model having trained on this set.

dataset to the task of argument quality ranking, by present-
ing a BERT-based neural method which outperforms sev-
eral baselines. We show this method is capable of achieving
promising results on other datasets as well. We believe that
the approach to argument collection, the analysis of differ-
ent labeling scores, as well as the sheer size of the dataset,
make it useful for further advancements in this field.

As an attempt to provide insight regarding the character-
istics of IBM-Rank-30k, we conducted an analysis of quality
dimensions, showing that the dimensions of Global Rele-
vance and Effectiveness are the most indicative to overall
quality scores. As future work, we would like to further ex-
plore this, by investigating how quality dimensions impact
overall quality, and whether a prediction model can capture
these dimensions effectively.
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