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Abstract

Domain adaptation performance of a learning algorithm on
a target domain is a function of its source domain error and
a divergence measure between the data distribution of these
two domains. We present a study of various distance-based
measures in the context of NLP tasks, that characterize the
dissimilarity between domains based on sample estimates.
We first conduct analysis experiments to show which of these
distance measures can best differentiate samples from same
versus different domains, and are correlated with empirical
results. Next, we develop a DistanceNet model which uses
these distance measures, or a mixture of these distance mea-
sures, as an additional loss function to be minimized jointly
with the task’s loss function, so as to achieve better unsu-
pervised domain adaptation. Finally, we extend this model to
a novel DistanceNet-Bandit model, which employs a multi-
armed bandit controller to dynamically switch between mul-
tiple source domains and allow the model to learn an opti-
mal trajectory and mixture of domains for transfer to the low-
resource target domain. We conduct experiments on popular
sentiment analysis datasets with several diverse domains and
show that our DistanceNet model, as well as its dynamic ban-
dit variant, can outperform competitive baselines in the con-
text of unsupervised domain adaptation.

1 Introduction

In situations where large-scale annotated datasets are avail-
able, supervised learning algorithms have achieved remark-
able progress in various NLP challenges (LeCun, Bengio,
and Hinton 2015). Most supervised learning algorithms rely
on the assumption that data distribution during training is
the same as that during test. However, in many real-life sce-
narios, the data distribution of interest at test-time might be
different from that during training. The process of collecting
new datasets that reflect the new distribution is usually not
scalable due to monetary as well as time constraints. Hence,
the goal of domain adaptation is to construct a learning algo-
rithm, which, given samples of observations from a source
domain, is able to adapt its performance to a target domain
where the data distribution could be different.
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Two major research areas in domain adaptation include
supervised domain adaptation and unsupervised domain
adaptation. In the former setup, limited training data from
the target domain is available to provide supervision sig-
nals (Daumé III 2009), whereas in the latter case, only unla-
beled data from the target domain is available (Ganin et al.
2016; Long et al. 2017; Bousmalis et al. 2016; Sun, Feng,
and Saenko 2016; Sun and Saenko 2016; Tzeng et al. 2017).
In this work, we focus on the unsupervised domain adapta-
tion. It has been shown that the domain adaptation perfor-
mance is influenced by three major (and orthogonal) fac-
tors (Ben-David et al. 2010). The first factor is the model
performance on the source task, which benefits from recent
advancements in neural models and is orthogonal to our fo-
cus. The second factor is the difference in the labeling func-
tions across domains, which is inherent to the nature of the
dataset and expected to be small in practice (Ben-David et al.
2010). The third factor represents a measure of divergence
of data distributions – if the data distribution between the
source and target domain is similar, we can reasonably ex-
pect a model trained on the source domain to perform well
on the target domain. Our work primarily focuses on the last
factor and aims to study the following two questions in the
context of NLP: how to accurately estimate the dissimilar-
ity between a pair of domains (Sec. 3 and Sec. 6), and how
to leverage these domain dissimilarity measures to improve
domain adaptation learning (Sec. 4 and Sec. 7).

To this end, we first provide a detailed study (comparison,
models, and analyses) of several domain distance measures
from the literature, with the goal of scalability (easy to calcu-
late), differentiability (can be minimized), and interpretabil-
ity (in a simple analytical form with well-studied properties),
namely L2, Maximum Mean Discrepancy (MMD) (Gretton
et al. 2012), Fisher Linear Discriminant (FDA) (Friedman,
Hastie, and Tibshirani 2001), Cosine, and Correlation Align-
ment (CORAL) (Sun, Feng, and Saenko 2016). We start by
defining these distance measures in Sec. 3, and provide a set
of analyses to assess them in Sec. 6: (1) the ability of these
distance measures to separate domains, and (2) the correla-
tion between these distance measures and empirical results.
From these analyses, we note that there does not exist a sin-
gle best distance measure that fits all, and each measure pro-
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vides an estimate of domain distance that could be comple-
mentary (e.g., based on discrepancy versus class separation).
Thus, we also propose to use a mixture of distance measures,
where we additionally introduce an unsupervised criterion to
select the best distance measures so as to reduce the number
of extra weight hyperparameters when mixing them.

Motivated by the aforementioned analysis, we next
present a simple ‘DistanceNet’ model (in Sec. 4) that inte-
grates these measures into the training optimization. In par-
ticular, we augment the classification task loss function with
an additional distance measure. By minimizing the repre-
sentational distances between features from source and tar-
get domains, the model learns better domain-agnostic fea-
tures. Finally, when data from multiple source domains are
present, we learn a dynamic scheduling of these domains
that maximizes the learning performance on the no-training
target task by framing the problem of dynamic domain se-
lection as a multi-armed bandit problem, where each arm
represents a candidate source domain.

We conduct our analyses and experiments on a popu-
lar sentiment analysis dataset with several diverse domains
from Liu, Qiu, and Huang (2017), and present the domain
adaptation results in Sec. 7. We first show that a subset of
the domain discrepancy measures is able to separate sam-
ples from source and target domains. Then we show that our
DistanceNet model, which uses one or a mixture of multi-
ple domain discrepancies as an extra loss term, can outper-
form multiple competitive baselines. Finally, we show that
our dynamic, bandit variant of the DistanceNet can also out-
perform a fairly comparable multi-source baseline that has
access to the same amount of data.

We start by reviewing related work in Sec. 2, and then
introduce both the distance measures as well as the domain
adaptation models in Sec. 3-4. Finally, we present analyses
on distance measures and experimental results in Sec. 5-7.

2 Related Work

Building an algorithm for domain adaptation is an open the-
oretical as well as practical problem (Blitzer, McDonald, and
Pereira 2006; Pan and Yang 2010; Glorot, Bordes, and Ben-
gio 2011; Blitzer, Kakade, and Foster 2011; Kulis, Saenko,
and Darrell 2011; Saito et al. 2018; Kuroki et al. 2019;
Lee et al. 2019).1 When labeled data from target domain is
available, supervised domain adaptation can achieve state-
of-the-art results via fine-tuning, especially when source do-
main has orders of magnitude more data than target do-
main (Devlin et al. 2019; Radford et al. 2018). For unsuper-
vised domain adaptation (no labels for target domains), there
exist multiple approaches that have achieved remarkable
progress, such as instance selection/reweighting (Huang et
al. 2007; Gong, Grauman, and Sha 2013; Remus 2012) and
feature space transformation (Pan et al. 2011; Baktashmot-
lagh et al. 2013). In this work we mainly focus on measuring
domain discrepancy.

The works of Kifer, Ben-David, and Gehrke (2004), Ben-
David et al. (2007), and Ben-David et al. (2010) provide an

1Due to AAAI page limit, we discuss the primary related work
here, but we will add an extended version in the arxiv version.

upper bound on the performance of a classifier under do-
main shift. They introduce the idea of training a binary clas-
sifier to distinguish samples from source/target domains, and
the error H-divergence provides an estimate of the discrep-
ancy between domains. A tractable approximation, proxy
A-distance, applies a trained linear classifier to minimize a
modified Huber loss (Ben-David et al. 2007).

Recent works further aim to provide more efficient es-
timates of the domain discrepancy. One popular choice is
matching the distribution means in the kernel-reproducing
Hilbert space (RKHS) (Huang et al. 2007; Gong, Grau-
man, and Sha 2013; Tzeng et al. 2014; Long et al. 2015;
Bousmalis et al. 2016; Long et al. 2016; 2017; Zellinger
et al. 2017; Rozantsev, Salzmann, and Fua 2018) using
Maximum Mean Discrepancy (MMD) (Gretton et al. 2012).
These methods have also been used in generative models (Li,
Swersky, and Zemel 2015; Dziugaite, Roy, and Ghahramani
2015). Other methods explored in the literature include cen-
tral moment discrepancy (CMD) (Zellinger et al. 2017),
correlation alignment (CORAL) (Sun, Feng, and Saenko
2016; Sun and Saenko 2016), canonical correlation analysis
(CCA) (Blitzer, Kakade, and Foster 2011), cosine similar-
ity (Benaim and Wolf 2017). In addition to these directly-
computable metrics, another successful approach is to en-
courage learned representations to fool a classifier whose
goal is to distinguish samples from the source domain and
target domain (Ganin et al. 2016; Shen et al. 2018).

When multiple domain adaptation criteria are available,
Ruder and Plank (2017) use Bayesian optimization to de-
cide the choice of metric, and Ying et al. (2018) use a meta-
learning formulation. In our work, we provide a study of
multiple domain distance measures (introduced in statistical
learning/vision communities) in the context of NLP classi-
fication tasks such as sentiment analysis, where we analyze
the domain-separability skills of these metrics and explore
multiple ways of integrating them into the training dynam-
ics (e.g., in the loss and as a multi-armed bandit).

Many problems can be cast as a multi-armed bandit prob-
lem. For example, Graves et al. (2017) use a multi-armed
bandit (MAB) (Bubeck, Cesa-Bianchi, and others 2012)
to learn a curriculum of tasks to maximize learning effi-
ciency, Sharma and Ravindran (2017) use MAB to choose
which domain of data to feed as input to a single model (in
the context of Atari games), and Guo, Pasunuru, and Bansal
(2019) use MAB for task selection during multi-task learn-
ing of text classification. In our work, we instead use a MAB
controller with upper confidence bound (UCB) (Auer, Cesa-
Bianchi, and Fischer 2002) for the task of multi-source do-
main selection for domain adaptation.

3 Domain Distance Measures

In Sec. 1, we described that domain adaptation performance
is related to domain distance/dissimilarity. Here, we will first
describe our individual distance measures. Then we will de-
scribe our mixture of distances. Later in Sec. 6, we will
provide detailed analysis of these distance measures. Given
source domain samples Xs = {xs

1, x
s
2, ..., x

s
ns
} as well as

target domain samples Xt = {xt
1, x

t
2, ..., x

t
nt
}, where we
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assume x ∈ R
d are the embedding representations of the

input data (e.g., sentences) produced from some feature ex-
tractors (e.g., LSTM-RNN), the goal of the distance measure
is to estimate how different these two domains are. We will
introduce five such methods: L2 distance, Cosine distance,
Maximum Mean Discrepancy (MMD), Fisher Linear Dis-
criminant (FLD), as well as CORAL.2

3.1 L2 Distance

The L2 distance measures the Euclidean distance be-
tween source domain and target domain samples. Define
μs = 1

ns

∑
i x

s
i and μt = 1

nt

∑
i x

t
i, the L2 distance is:

DL2
(Xs, Xt) = ‖μs − μt‖2.

3.2 Cosine Distance

Cosine similarity is a measure of similarity between two
vectors of an inner product space that measures the cosine
of the angle of these vectors: Scos =

μs·μt

‖μs‖2‖μt‖2
, and cosine

distance is Dcos = 1− Scos.

3.3 Maximum Mean Discrepancy (MMD)

Given two sets of source domain and target domain samples
independently and identically distributed (i.i.d.) from Ps(X)
and Pt(X), respectively. The statistical hypothesis testing is
used to distinguish between the null hypothesis H0:Ps=Pt,
and the alternative hypothesis HA:Ps �=Pt via comparing
test statistic, which is described next. Maximum Mean Dis-
crepancy or MMD (Gretton et al. 2012), also known as ker-
nel two-sample test, is a frequentist estimator for answer-
ing the above question. MMD works by comparing statis-
tics between the two samples, and if they are similar then
they are likely to come from the same distribution. This is
known as an integral probability metric (IPC) (Müller 1997)
in statistics literature. Formally, let F be a class of functions
f : X → R, and the maximum mean discrepancy is:

MMDF [Ps, Pt] = sup
f∈F

Exs [f(xs)]− Ext [f(xt)]

Note that this equation involves a maximization over a fam-
ily of functions. However, Gretton et al. (2012) show that
when the function class F is the unit ball in a reproducing
kernel Hilbert space (RKHS) endowed with a characteristic
kernel k, this can be solved in closed form. A corresponding
unbiased finite sample estimate is:

MMD2
F [Ps, Pt] =

1

n2
s

ns∑
i=1

ns∑
i′=1

k (xs
i , x

s
i′)

-
2

nsnt

ns∑
i=1

nt∑
j=1

k
(
xs
i , x

t
j

)
+
1

n2
t

nt∑
j=1

nt∑
j′=1

k
(
xt
j , x

t
j′
)

For universal kernels like the Gaussian kernel k (x, x′) =

exp
(
− 1

2σ |x− x′|2
)

with bandwidth σ, minimizing MMD

2We also experimented with proxy A-distance from Ben-David
et al. (2007), which scored favorably on most of our evaluations.
However, due to its non-differential nature as well as high compu-
tation cost, we do not include it here.

is analogous to minimizing a distance between all moments
of the two distributions (Li, Swersky, and Zemel 2015). Here
we will use DMMD(Xs, Xt) = MMD2

F [Ps, Pt].

3.4 Fisher Linear Discriminant

Fisher linear discriminant analysis (FLD) (Friedman, Hastie,
and Tibshirani 2001) finds a projection (parameterized by w)
where class separation is maximized. In particular, the goal
of FLD is to give a large separation of class means while si-
multaneously keeping in-class variance small. This is formu-
lated as w� = argmaxw J(w) = argmaxw

wTSBw
wTSWw , where

SB is the between-class covariance matrix which is defined
as SB = (μs−μt)(μs−μt)

T , SW is the within-class covari-
ance matrix which is defined as SW =

∑
c∈{0,1}

∑
i(x

(c)
i −

μc)(x
(c)
i − μc)

T, μc is the class mean and {0, 1} here refers
to source/target domain. The optimal w� can be solved an-
alytically as: w� ∝ S−1

W (μ1 − μ2). Though the optimal w�

is usually desired, here we use the optimal J as a proxy
of domain distance, and thus define our Fisher distance as
DFLD(Xs, Xt)=J(w�), which is a measure of difference
between source/target representation means normalized by
a measure of within-class scatter matrix. Note that comput-
ing the DFLD is analogous to approximating the divergence
between two domains by training an FLD to discriminate be-
tween unlabeled instances from source and target domains.

3.5 Correlation Alignment (CORAL)

The CORAL (correlation alignment) (Sun and Saenko 2016;
Sun, Feng, and Saenko 2016) loss is defined as the distance
between the second-order statistics of the source and target
samples: DCORAL(Xs, Xt)=

1
4d2 ‖Cs − Ct‖2F , where ‖ ·‖2F

denotes the squared matrix Frobenius norm, d represents
feature dimension, and Cs and Ct are the covariance ma-
trices of source and target samples.

3.6 Mixture of Distances

As we will demonstrate in Sec. 6, no single distance mea-
sure outperforms all the others in our analyses. Also, note
that while different distance measures provide different es-
timates of domain distances, each distance measure has
its pathological cases. For example, samples from a Gaus-
sian distribution and a Laplace distribution with same mean
and variance might have small L2 distances even though
they are different, whereas MMD can differentiate between
them (Gretton et al. 2012). It is thus useful to consider a
mixture of distances:

Dm(Xs, Xt) =
∑
k

αkDk(Xs, Xt) (1)

where αk ∈ R is the coefficient for k-th distance. While
appealing at first, naively adding all the distance measures
to the mixture introduces unnecessary hyper-parameters. In
Sec. 6.3, we will introduce simple unsupervised criteria to
only include a subset of these distance measures.

4 Models
We will first describe the baseline and our DistanceNet
model (based on a single source domain) which actively
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Figure 1: Overview of the DistanceNet model. The model
takes both the source domain data (labeled) and target do-
main data (unlabeled), and computes feature representa-
tions. The distances, calculated via the distance measures,
between the source and target samples are added to the
(source) cross-entropy loss to be minimized jointly during
the training.

minimizes the distance between the source and target do-
main during the model training for domain adaptation. Then
we introduce the multi-source variant of DistanceNet that
additionally utilizes a multi-armed bandit controller to learn
a dynamic curriculum of multiple source domains for train-
ing a domain adaptation model.

4.1 Baseline Model

Given a sequence of tokens {w0, w1, ..., wT }, we first em-
bed these tokens into vector representations {e0, e1, ..., eT }.
Let hT = LSTM({et}, θ1) be the output of the LSTM-
RNN parameterized by θ1. The probability distribution of
labels is produced by ŷ = FC(hT , θ2), where FC is a fully
connected neural network with parameters θ2. The model is
trained to minimize the cross entropy between predicted out-
puts ŷ and ground truth y with N training examples and C

classes: LXE(ŷ, y) = −∑N
i=1

∑C
j=1 yi,j log ŷi,j .

4.2 DistanceNet

The work of Ben-David et al. (2010) shows that domain
adaptation performance is related to source domain per-
formance and source/target domain distance. The first part
(source domain performance) is already handled by the cross
entropy loss (Sec. 4.1), and it is thus natural to additionally
encourage the model to minimize the representational dis-
tances between source and target samples. To that end, we
augment the classification task’s loss function with a domain
distance term. Given a sequence of tokens from the source
domain {ws

0, w
s
1, ..., w

s
Ts
}, a sequence of tokens from the

target domain {wt
0, w

t
1, ..., w

t
Tt
}, and model parameterized

by (θ1, θ2), the new loss function for our DistanceNet (see
Fig. 1) is then:

L(ŷs, ys) = LXE(ŷ
s, ys) + βDk(h

s
Ts
, ht

Tt
) (2)

where ŷs, ys are the predicted and ground truth outputs of
source domain, hs

Ts
, ht

Tt
are the representations of source

and target domain, and Dk is the choice of distance measure
from Sec. 3.

[          ]

[  ]

[  ]

[          ]                   
[          ]
[          ]                   Source Inputs

Target Inputs

Bandit
Controller

Bandit Reward = Validation Performance

+

DistanceNet
Model

Figure 2: Overview of our multi-source DistanceNet model
with controller. During the training, a multi-armed bandit
controller dynamically selects the source domain from a set
of candidate source domains. The controller updates its be-
lief over the utility of each domain via receiving feedback
on validation set.

4.3 Dynamic Multi-Source DistanceNet using
Multi-Armed Bandit

In the previous section, we described our method for fitting
a model on a pair of source/target domains. However, when
we have access to multiple source domains, we need a bet-
ter way to take advantage of these extra learning signals.
One simple method is to treat these multiple source domains
as a single (big) source domain, and apply algorithms de-
scribed previously as usual. But as the model representation
changes throughout the training, the domain that can pro-
vide the most informative training signal might change over
time and based on the training curriculum history. This is
also related to learning importance weights (Ben-David et
al. 2010) of each source domain over time for the target do-
main. Thus, it might be more favorable to dynamically select
the sequence of source domains to deliver the best outcome
on the target domain task.

Here, we introduce a novel multi-armed bandit controller
for dynamically changing the source domain during train-
ing (Fig. 2). We model the controller as an M -armed ban-
dits (where M is the number of candidate domains) whose
goal is to select a sequence of actions/arms to maximize
the expected future payoffs. At each round, the controller
selects an action (candidate domain) based on noisy value
estimates and observes a reward. More specifically, as the
training progresses, the controller picks one of the training
domains and have the task model train on the selected do-
main using the loss function specified in Eq. 2, and the per-
formance on the validation data will be used as the reward
provided to the bandit as feedback. We use upper confidence
bound (UCB) (Auer, Cesa-Bianchi, and Fischer 2002) ban-
dit algorithm, which chooses the action (i.e., the source do-
main to use next) based on the performance upper bound:

aUCB
t = argmaxa∈A Q(a) +

√
2 log t
Nt(a)

, where at represents
the action at iteration time t, Nt(a) counts the number of
times the action has been selected, and A represents the set
of candidate actions (i.e., the set of candidate source do-
mains). Q(a) represents the action-value of the action, and
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is calculated as the running average of rewards.3

5 Experimental Setup

Dataset: We evaluate our methods using the datasets col-
lected by Liu, Qiu, and Huang (2017)4, which contains 16
datasets of product reviews (Blitzer, Dredze, and Pereira
2007) and movie reviews (Maas et al. 2011; Pang and Lee
2005), where the task is to classify these reviews as posi-
tive or negative. The performance of a model on this task
is measured by accuracy. Since the number of experiments
scales O(n2) and O(n) for single- and multi-source experi-
ments, we only evaluate on 3 and 5 datasets5 for experiments
in Sec. 7, respectively.6 However, we still use the full set of
domains for the analysis in Sec. 6.
Training Details: Our baseline model is similar to that
of Liu, Qiu, and Huang (2017). We use a single-layer Bi-
directional LSTM-RNN as sentence encoder and a two-layer
fully-connected with ReLU non-linearity layer to produce
the final model outputs. The word embeddings are initial-
ized with GloVe (Pennington, Socher, and Manning 2014).
We train the model using Adam optimizer (Kingma and Ba
2014). Following Ruder and Plank (2017) and Bousmalis et
al. (2016), we chose to use a small number of target domain
examples as validation set (for both tuning as well as provid-
ing rewards for the multi-armed bandit controller).7 We use
the adaptive experimentation platform Ax8 to tune the rest of
the hyperparameters and the search space for these hyper-
parameters are: learning rate ∈ (10−4, 10−3), dropout rate
∈ (0.25, 0.75), β ∈ (0.01, 1.0), and αk ∈ (0.0, 1.0). We run
each model for 3 times. We use the average validation per-
formance as our validation criteria, and report average test
performance.

6 Analysis of Distance Measures

Given our 5 distance measures (described in Sec. 3), we first
want to ask which of these distance measures are able to
measure domain (dis)similarities. Specifically, we conduct
experiments to answer the following questions:
Q1. Is the distance measure able to differentiate samples
from the same versus different domains?

3One could also consider weighting each domain based on
the distances, but these keep changing as DistanceNet’s training
evolves (which minimizes the distance). Further, our bandit decides
the arm to pull based on DistanceNet’s performance, thus already
behaving similar to the distance-weighting approach (while also
automatically learning these weights as a curriculum).

4The datasets include “unlabeled” split.
5MR, Apparel, Baby for single-source experiments. MR, Ap-

parel, Baby, Books, Camera for multi-source experiments.
6Note that for n tasks, there will be n×(n − 1) source/target

domain pairs experiments, and n multi-source/single-target domain
pairs experiments.

7Note that the two models in Table 5 should be fairly compara-
ble, since they have access to the same validation dataset for tuning
or “refining” their hyper-parameters or as weak reward feedback.
Further, there are scenarios in which querying the scalar rewards on
a small validation dataset is easier than accessing the rich gradient
information through them (Bousmalis et al. 2016).

8https://github.com/facebook/Ax

Q2. Does the distance measure correlate well with empirical
results?

These two questions are answered next in Sec. 6.1 and
Sec. 6.2, respectively. After that, we will describe our unsu-
pervised criteria for choosing a subset of distance measures
(Sec. 6.3) to be used in the mixture of distance measures
introduced in Sec. 3.6.

6.1 Domain Separability Test

Given two sets of source and target domain samples:
Xs={xs

1, x
s
2, ..., x

s
ns
} and Xt={xt

1, x
t
2, ..., x

t
nt
}, which are

independently and identically distributed (i.i.d.) from Ps(X)
and Pt(X), respectively. The goal here is to find whether
these samples come from the same domain or not. For this,
we compute the distance between the source and target sam-
ples, dk(Ps, Pt), via distance measure Dk (selected from the
distance measures defined in Sec. 3):

dk(Ps, Pt) = E
xs∼Ps,xt∼Pt

[Dk(xs, xt)] (3)

For distance measure to estimate domain similarity, we ex-
pect dk(Ps, Pt) to be low when Ps=Pt, and high otherwise
(similar to two sample test statistic (Gretton et al. 2012)).

Fig. 3 visualizes the results of our experiments, where
the distance between exhaustive source/target domain pairs
are measured on 16 datasets. We take 200 examples from
each domain9, and embed the sentences using pre-trained
model10, after which the distances are calculated. In partic-
ular, the entries on the diagonal refer to the in-domain dis-
tances (i.e., source and target domain is the same), and off-
diagonal entries refer to the between-domain distances. As
we want the in-domain distances to be small and between-
domain distances to be large, we expect the visualization of
a good distance measure to have a dark line on the diagonal
(indicating low values) and bright otherwise. From the visu-
alization plots (Fig. 3), we can see that DL2 , Dcos, DMMD

and DFLD, are able to separate domains well. However, all
these measures have different scales and sensitivity, hence,
we next define two statistics to quantitatively compare dif-
ferent distance measures dk, which are denoted by z1 and
z2 corresponding to method-1 and method-2, respectively.
These statistics are shown in Table. 1. We can see that most
of these methods are able to separate domains, with the ex-
ception of DCORAL. Next, we describe these methods.

Method-1. The first method assess whether distances be-
tween samples from the same domain are lower than those
between the samples from different domains, dk(Pi, Pi) ≤
dk(Pi, Pj)∀i �= j. This statistic is appealing because it is in-
variant to scaling and translation, but does not concern how
smaller in-domain distances are w.r.t. off-domain distances.

9We take source domain samples from the training set and tar-
get domain samples from the validation set to avoid overlapping
examples when sampling from the same domain.

10https://tfhub.dev/google/tf2-preview/nnlm-en-dim128/1
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Cosine MMD Fisher CORAL

Figure 3: Domain separability test of distance methods. The order is (left to right): DL2
, Dcos, DMMD, DFLD, DCORAL. The

value of each entry at position (i, j) refers to the distance between samples from i-th source domain and j-th target domain.
In particular, the entries on the diagonal refer to the in-domain distances, and off-diagonal entries refer to the between-domain
distances. Values shown are the log of the distances for visualization purposes.

Name Method-1 Method-2 Result-Corr

L2 1.00 6.35 ×10−3 0.67
Cosine 0.94 7.49 ×10−3 0.79
MMD 0.94 6.83 ×10−3 0.59
Fisher 0.88 5.99 ×10−3 0.65
CORAL 0.75 9.11 ×10−3 0.39

Table 1: Distance comparison statistics and result-
correlations. Note that for Method-1 and Result-Corr, higher
numerical values are better, however, for Method-2, lower
numerical values are better.

Specifically, we compute the z1 as:

z1(dk) =
1

N

∑
i

I
[
dk(Pi, Pi) ≤ dk(Pi, Pj)∧

dk(Pi, Pi) ≤ dk(Pj , Pi)∀i �= j
]

We can see that DL2 achieves the highest score, whereas
DCORAL achieves the lowest.

Method-2 The second method assesses how smaller the
value of dk(Pi, Pi) is in comparison to dk(Pi, Pj)∀i �=
j. To compute this, we first standardize11 the matrix
{dk(Pi, Pj), ∀i, j}, and then apply softmax function to en-
sure that all entries are positive. Then we compute the
sum of the diagonal entries of the transformed matrix
{d′k(Pi, Pj), ∀i, j} as our second quantitative assessment
(z2, note that smaller is better):

z2(dk) =
∑
i

d′k(Pi, Pi) (4)

We can see that DFLD obtains the lowest/best value, and
DCORAL scores the largest value.

6.2 Correlation With Results

The methods described previously answer the question of
whether Ps=Pt given the samples Xs and Xt. However, the
assessment we are interested in ultimately is whether the dis-
tance measures correlate with the true domain distances. As

11Subtracting the means and normalize by standard deviations.

the true domain distance is latent, here we will use a proxy.
We denote r(Ps, Pt) as the performance of the baseline
model trained on the source domain and evaluated on the
target domain. We want to measure the correlation between
dk(Ps, Pt) and r(Ps, Pt). Specifically, we train and evaluate
baseline models on all source/target domain pairs, and then
compute the Pearson correlation coefficient between the re-
sults (averaged over three runs) and distance measures. The
values are shown in Table 1, where we can see that most
of the distance measures are correlated with actual perfor-
mance, with DCORAL having the lowest correlation with
empirical performance (hence we ignore DCORAL for all fu-
ture experiments, given that it is the worst by large margins
on all 3 analysis methods above).

6.3 Informativeness of Mixture Components

Lastly, we present the basis for deciding which distances
to (not) include in the mixture formulation described in
Sec. 3.6. Specifically, our goal is to remove redundant dis-
tance measures from the mixture, subject to the constraint
that the reduced mixture still provides sufficient information
about the distances between two domains. We approach this
problem via estimating the ‘informativeness’ of each dis-
tance measure. This is analogous to influence functions, a
classic technique from robust statistics (Cook and Weisberg
1980; Koh and Liang 2017). To motivate our approach, let’s
say our mixture {Dk}Kk=1 includes all distance measures
which are previously defined (Sec, 3). Suppose we have a
function φ({Dk}Ki=1) which can give us an estimate of the
quality of the mixture. Now, we proceed by removing one
metric (say Dm) from the mixture and apply the function φ
to give us an estimate of the quality of the reduced mixture,
φ({Dk}Kk �=m). We can now define an estimate of distance
measure’s informativeness:

I(Dm) = φ({Dk}Ki=1)− φ({Dk}Ki �=m) (5)

If I(Dm) is small, we can say the removed metric is not
informative given other components in the mixture. Here,
we use the optimal z2 statistics12 (which is unsupervised)

12We do not use z1 because it is not differentiable (calculated
as multiple binary comparisons), and z1 already achieved almost-
maximum scores (Table 1) thus making the optimization less use-
ful. Also, since we evaluate using an unsupervised criterion, we
decided not to use correlation because it is a supervised evaluation.
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Name Informativeness Estimate

L2 -2.086 ×10−3

Cosine -0.001 ×10−3

MMD -1.775 ×10−3

Fisher -0.024 ×10−3

Table 2: Estimated importance of each distance measure as
a component in the mixture. Values are negative because the
full mixture achieves the lowest z2. Lower (more negative)
value means the distance measure provides more informa-
tion. We did not include DCORAL because it scored unfa-
vorably in our previous assessments.

Model MR Aprl Baby Books Camera

Liu (2017) 74.7 86.0 83.5 81.0 86.0
Ours 73.8 87.2 85.2 81.4 88.1

Table 3: Performance of our baseline compared with previ-
ous work (Liu, Qiu, and Huang 2017).

defined in Sec. 6.1 as the mixture evaluation function:

φ({Dk}Ki=1) = max
α1,...,αk

z2

(∑
k

αkDk(Xs, Xt)
)

where we estimate the maximum value using gradient de-
scent (via the JAX library). We found that removing Dcos

has far lower impact on the optimal z2, and thus in our exper-
iments using mixture of distances, we do not include Dcos

(see Table 2 for detailed scores of informativeness for all the
distance measures).

7 DistanceNet and Bandit Results

In this section, we show domain-adaptation experimental re-
sults for the sentiment classification task on the target do-
main (using out-of-domain source training data). We start
with comparing our (in-domain) baseline to previous work,
where the source and target domain are the same. Then we
will show the results of our DistanceNet (with both sin-
gle distance and mixture-of-distance measures), when the
source domain and target domain is different. Lastly, we will
show the results of our multi-source DistanceNet baseline
versus our multi-source DistanceNet bandit model which
dynamically selects source domains. Based on the results
of Sec. 6, we do not include DCORAL in our DistanceNet
experiments, and do not include both DCORAL and Dcos in
our DistanceNet with mixture-of-distance experiments.

7.1 Single Source DistanceNet Results

Baseline Results. In Table 3 we show the results of our
(in-domain) baseline compared with similar models in Liu,
Qiu, and Huang (2017). We can see that our baseline is
stronger than comparable previous work in four of the five
domains we considered.

DistanceNet Results. Table 4 shows the results of base-
lines and DistanceNet models when the source and target

Source MR(M) Aprl(A) Baby(B) Avg

Target A B M B M A

DataSel 68.1 65.2 64.3 74.3 65.6 78.9 69.39
DANN 69.9 65.3 63.7 78.2 65.5 80.0 70.46

Baseline 67.3 66.5 65.8 78.2 64.6 78.1 70.08
L2 70.9 66.5 64.7 76.6 65.3 78.2 70.37

Cosine 70.2 66.2 64.6 78.3 65.3 78.2 70.48
MMD 69.9 67.1 64.3 77.1 66.0 78.1 70.42
Fisher 69.1 64.2 64.6 77.9 65.4 79.4 70.10

Mixture 70.4 67.1 65.6 79.0 66.5 79.3 71.32

Table 4: Performance comparison of previous works
(DataSel: Remus (2012) ; DANN: Ganin et al. (2016)),
single-source baseline, and DistanceNet models.

domain is different, where the last column shows the aver-
age results.13 First, comparing the numbers to those in Ta-
ble 3, we can see that performance drops when there is a
shift in the data distribution. Next, we can see that by adding
our domain distance measure as an additional loss term, the
model is able to reduce the gap between in-domain perfor-
mance and out-of-domain performance. In particular, all of
our models perform better than our baseline in terms of av-
erage results, with MMD model better than the baseline by
one corresponding standard deviation.14

Mixture DistanceNet Results. Table 4 shows the results
of our DistanceNet with mixture of distance measures ex-
periments. From the results, we can see that leveraging the
power of multiple distance measures additionally improves
the results in out-of-domain settings, and achieving the high-
est average results (better than baseline by two standard de-
viations). We also compare our DistanceNet models to other
domain-adaptation approaches. DANN encourages similar
latent features by augmenting the model with a few standard
layers and a new gradient reversal layer (Ganin et al. 2016).
DataSel instead relies on data selection based on domain
similarity and complexity variance (Remus 2012). From the
results, we can see that our DistanceNet with mixture of dis-
tance measures outperforms these approaches (better w.r.t.
standard deviation margins).

7.2 Multi-Source DistanceNet-Bandit Results

Table 5 shows the results for our multi-source experiments,
where the source domains include all but the target domain,
thus we have one result for each target domain. Here the
baseline is the DistanceNet with mixture of distance mea-
sures, which selects domains in a round-robin fashion. Our
model instead applies a dynamic controller to select the

13Note that the single-distance methods, e.g., MMD, have been
used in previous works (Bousmalis et al. 2016; Tzeng et al. 2014;
Benaim and Wolf 2017) and can also be considered as baselines.

14To calculate the standard deviation of the average results, we
first compute the average results for each run, and compute the
standard deviation of the average results. This is equivalent to com-
puting the standard deviation of a single large prediction by con-
catenating model outputs for all tasks as a single output.

7836



Figure 4: Visualization examples of multi-armed bandits. Each line represents an arm (a source domain), X-axis refers to time,
and Y-axis refers to the values of each arm (higher value of an arm corresponds to potentially more usefulness of the task).

Model MR Aprl Baby Books Camera Avg

Mixture 69.8 80.8 82.5 77.0 80.9 78.20
+Bandit 72.0 82.3 82.8 78.3 81.3 79.30

Table 5: Multi-source DistanceNet versus bandit.

source domain to use. We can see from the results that us-
ing the dynamic controller improves the individual results,
and the average results (better by two standard deviations).15

In general, we observed that the bandit always improves
over the non-bandit baseline (with two std. deviations) even
when we simply reuse the best hyperparameters found in
the single-source experiments, and when we employ a ban-
dit without the DistanceNet loss (i.e., just cross-entropy).

7.3 Multi-Armed Bandit Visualization

Fig. 4 provides example visualizations of the usefulness of
each source domain for a given target domain during the
training trajectory of multi-source bandit experiments. We
provide a brief summary of our observations from these ex-
amples here. When the target task is “MR”, we observed that
“Books” and “Apparel” are more beneficial. When the target
task is “Apparel”, we found that “Camera” as well as “Baby”
are beneficial; moreover, there the bandit learns to switch
between “Books” and “MR” over time. When the target task
is “Baby”, we see that “Camera” and “Apparel” are benefi-
cial. When “Books” is the target task, we found that “MR”
seemed to be less helpful. Finally, when the target-task is
“Camera”, we see that “Books” had the highest value.

8 Conclusion

In this work, we presented a study of multiple domain dis-
tance measures to address the problem of domain adapta-
tion. We provided analyses of these measures based on their
ability to separate same/different domains and correlation
with results. Next, we introduced our model, DistanceNet,
which augments the loss function with the distance mea-
sures. Later, we extended our DistanceNet to the multi-
source setup via a multi-armed bandit controller. Our ex-
periment results suggest that our DistanceNet, as well as its

15Our single-source experiments suggested that “MR” and
“Books” are not helpful for the learning of the other three tasks,
thus we mask the DistanceNet loss from these domains when the
target domain is not “MR” or “Books”.

variant with the multi-armed bandit, is able to outperform
corresponding baselines.
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