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Abstract

In this paper, we define and study a new task called Context-
Aware Semantic Expansion (CASE). Given a seed term in a
sentential context, we aim to suggest other terms that well
fit the context as the seed. CASE has many interesting ap-
plications such as query suggestion, computer-assisted writ-
ing, and word sense disambiguation, to name a few. Previous
explorations, if any, only involve some similar tasks, and all
require human annotations for evaluation. In this study, we
demonstrate that annotations for this task can be harvested
at scale from existing corpora, in a fully automatic manner.
On a dataset of 1.8 million sentences thus derived, we pro-
pose a network architecture that encodes the context and seed
term separately before suggesting alternative terms. The con-
text encoder in this architecture can be easily extended by
incorporating seed-aware attention. Our experiments demon-
strate that competitive results are achieved with appropriate
choices of context encoder and attention scoring function.

Introduction

Have you ever googled “Lionel Messi championships”,
browsed the results, and wanted more soccer stars with
comparable championships? Have you ever wanted to know
types of nutrients rich in barley grass, but were only able
to remember amino acid? In this paper, we study context-
aware semantic expansion (or CASE for short). In CASE,
user provides a seed term wrapped in a sentential context as
in Figure 1. The system returns a list of expansion terms,
each of which is a valid substitute for the seed, i.e., the sub-
stitution is supported by some sentence in a (testing) corpus.
This task is not easy due to the large number of potential
expansions, as well as the necessity of modeling their inter-
actions with both the context and the seed. Despite the chal-
lenge, the task is of practical importance and benefits many
applications. We list a few examples here.
Query suggestion (Wen, Nie, and Zhang 2001). In the
aforementioned query “Lionel Messi championships”, key-
words “Lionel Messi” can be a seed term to expand, and a
CASE system may suggest related entities, e.g., “Christiano
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Seed in context: “Young barley grass is high in
amino acid.”
Expansion terms: vitamin, antioxidant, en-
zyme, mineral, chlorophyll, . . .

Figure 1: A seed term “amino acid” in context. Here, “fat” is
an invalid substitute. It is irrelevant to barley grass and tends
not to be supported by general corpora.

Ronaldo”, as expansion terms. Those terms may be used to
suggest queries like “Christiano Ronaldo championships”.
Computer-assisted writing (Liu et al. 2011). For casual or
academic writing, exemplifications often help to explain and
convince. It is desirable to suggest contextually appropriate
alternative words when an author can think of only one.
Other NLP tasks. CASE can potentially enhance natural
language processing (NLP) tasks. For example, in word
sense disambiguation (Navigli 2009), an ambiguous word
like “apple” can be first expanded w.r.t. its context. The sug-
gested context-aware terms (e.g., fruits or companies) pro-
vide cues for the disambiguation task.

Comparison with Related Tasks

Despite its significance, explorations on CASE remain lim-
ited. Lexical substitution (McCarthy and Navigli 2007) is
the most similar task to CASE. Given a word in a sentential
context, e.g., “the bright girl is reading a book”, lexical sub-
stitution predicts synonyms fitting the context, e.g., “wise”
or “clever” rather than “shining”. The synonym candidates
generally come from high-quality but relatively small dictio-
naries like WordNet (Fellbaum 1998). Compared with lex-
ical substitution, candidate expansion terms of CASE, e.g.,
entity names, are not required to be aliases of the seeds but
could be far more in number and less organized.

Besides lexical substitution, another task similar to CASE
is set expansion (Tong and Dean 2008; Wang and Cohen
2007; He and Xin 2011; Chen, Cafarella, and Jagadish 2016;
Shen et al. 2017; Shi et al. 2010). It is to expand a few seeds
(e.g., amino acid and vitamin) to more terms in the same se-
mantic class (i.e., nutrition). However, set expansion does
not involve possible textual contexts with the seeds. This
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may cause “fat” to appear in the results of Figure 1, which
is irrelevant to barley grass.

While the above two tasks differ considerably from CASE
by task definition, we further note that their model tuning
and evaluation require manual annotations, which are hard
to collect at scale. Fortunately, CASE benefits from large-
scale natural annotations, as described below.

Dataset and Formal Task Definition

A first step toward CASE with today’s deep learning ma-
chinery is to accumulate large-scale annotations. For this
task, an ideal piece of annotation would be different terms
appearing separately in identical contexts. While this form
of annotations is hard to obtain manually and rare in natu-
ral corpora, we note that people often list examples, which
effectively serve as natural annotations.

In a general corpus, lists of examples usually follow
Hearst patterns (Hearst 1992; Snow, Jurafsky, and Ng 2005),
e.g., “h such as t1, t2, . . . ”, “t1, t2, . . . , and other h”, etc. Here
h denotes a hypernym, and {ti} are hyponyms. We note that,
in the context, if all hyponyms other than one is removed,
the sentence is still “correct” in the sense of the corpus.

By post-processing a web-scale corpus (detailed in exper-
iments), we derive a collection of 1.8 million naturally anno-
tated sentences. All of them are of the form 〈C, T 〉 as below.

Context C: “Young barley grass is high in and other
phyto-nutrients.”
Terms T : {vitamin, antioxidant, enzyme, mineral,
amino acid, chlorophyll}

Here C is the sentential context with a placeholder “ ”.
T = {ti} are hyponyms appearing at the placeholder in
Hearst patterns. The CASE task is to use a seed term s ∈ T
and the context C to recover the remaining terms T \ {s}.

Taking advantage of the large dataset derived, we pro-
pose a neural network architecture with attention mecha-
nism (Bahdanau, Cho, and Bengio 2014) to learn supervised
expansion models. Readers may notice that, due to the use
of Hearst patterns, the context C above has an additional
hypernym “phyto-nutrient” compared with Figure 1. In ex-
periments, in addition to comparisons among solutions, we
will also study the impact of this gap.

To summarize, our contributions are:
• We define and study a novel task, i.e., CASE, which sup-

ports many interesting and important applications.
• We identify an easy yet effective method to collect natural

annotations.
• We propose a neural network architecture for CASE, and

further enhance it with the attention mechanism. On mil-
lions of naturally annotated sentences, we experimentally
verify the superiority of our model.

Model Overview
Given the inherent variability of natural language and the
sufficient annotations, we tackle CASE by a supervised
neural-network-based approach.

Our network to model P (.|s, C) is shown in Figure 2. The
network consists of three parts: a context encoder, a seed

Figure 2: The network architecture of CASE.

encoder, and a prediction layer. Given a seed s in a context
C, the network encodes them into two vectors vs and vC

with the seed and context encoders, respectively. The two
vectors are then concatenated as input to the prediction layer
to predict potential expansion terms.

On training sentences T , we aim to optimize:

max
∑

〈C,T 〉∈T

∑

s∈T

logP (T \ {s}|s, C) (1)

Note that, a sentence 〈C, T 〉 is regarded as |T | training sam-
ples. Each sample treats one term as the seed, and predicts
the other terms within the context. In the remainder of this
section, we briefly describe each of the three components.

Encoding Sentential Contexts

Given one or two seed terms, the traditional set expansion
task simply finds other terms in the same semantic class.
However, the sentential context C may contain additional
descriptions or restrictions, thus narrowing down the scope
of the listed terms. Therefore, it is vital to appropriately
model C to capture its underlying information in CASE.

In Figure 2, we employ the context encoder component
to encode a variable-length context C into a fixed-length
vector vC . There are various off-the-shelf neural models to
encode sentences or sentential contexts. On the one hand,
by treating C as a bag or a sequence of words, conven-
tional sentence encoders may be applied, e.g., Neural Bag-
of-Words (NBOW) (Kalchbrenner, Grefenstette, and Blun-
som 2014), RNN (Pearlmutter 1989), and CNN (LeCun
et al. 1989). On the other hand, there are also techniques
that explicitly model placeholders, e.g., CNN with positional
features (Zeng et al. 2014) and CONTEXT2VEC (Melamud,
Goldberger, and Dagan 2016). In this paper, we mainly in-
vestigate NBOW-based and RNN-based encoders. We also
involve other encoders for comparison, e.g., CNN-based and
placeholder-aware encoders.
Neural Bag-of-Words Encoder. Given words {ci}ni=1 in
a context C, an NBOW encoder looks up their vectors
ci ∈ R

d in an embedding matrix, and average the vectors
as vC = 1

n

∑n
i=1 ci. The word embedding matrix is initial-

ized with embeddings pre-trained on the original sentences
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in training set, and is updated during training. Due to its sim-
plicity, NBOW is efficient to train. However, it ignores the
order of context words.
RNN- and CNN-Based Encoders. To study the impact of
word order on context encoding, we consider RNN-based
encoders as alternatives to NBOW. RNNs take a sequence
of context word vectors (c1, c2, . . . , cn), and iteratively en-
codes information before each position i as a sequence of
hidden vectors (h1,h2, . . . ,hn), hi ∈ R

d. Following Wang
et al. (2016), we take the last hidden vector hn as the context
vector vC :

hi = RNN(ci,hi−1), i = 1 . . . n, (2)
vC = hn. (3)

Besides the vanilla version of RNN, other RNN vari-
ations like LSTM (Hochreiter and Schmidhuber 1997),
GRU (Chung et al. 2014), and bi-directional LSTM
(BILSTM) (Graves and Schmidhuber 2005) have proven ef-
fective in various NLP tasks. In our experiments, we com-
pare all these RNN variations.

Other than the NBOW- and RNN-based encoders de-
scribed above, CNNs (LeCun et al. 1989) have also been
used as sentence encoders (Kalchbrenner, Grefenstette, and
Blunsom 2014; Kim 2014; Hu et al. 2014). Specifically, we
perform the convolution operation on the input vector se-
quence (c1, c2, . . . , cn), and apply max-pooling to get the
context representation vC .
Position-Aware Encoders. All above encoders ignore the
the position of the placeholder, i.e., where the seed term ap-
pears. For CASE, one may hypothesize that words at dif-
ferent distances to the placeholder contributes differently to
vC . Zeng et al. (2014) propose CNN with positional fea-
tures (CNN+PF) as a counterpart for CNN. Each context
word vector ci fed into CNN is concatenated with a posi-
tion vector pi that models its distance to the placeholder.
The positional vectors are treated as parameters and updated
during training. In CONTEXT2VEC (Melamud, Goldberger,
and Dagan 2016), two LSTMs are used to encode the left
and right contexts of placeholders, respectively. The output
are concatenated as the final context representation vC . We
implement and compare it with BILSTM as a counterpart.

Encoding the Seed Term

Due to its short length, we simply adopt the same NBOW
to encode seed term, for it is less prone to overfitting (Shi-
maoka et al. 2017). Given words {si}mi=1 of a seed term s,
we obtain vs by vs =

1
m

∑m
i=1 si. Because of their different

role, seed word embeddings si ∈ R
d are from another em-

bedding matrix, but are initialized and updated in the same
manner with context word embeddings.

Predicting Expansion Terms

After encoding the seed and the context into vs and vC , re-
spectively, we feed their concatenation x = vs ⊕ vC to the
prediction layer for expansion terms. We treat the predic-
tion as a classification problem, and each candidate term as
a classification label. Given a sufficiently large T , we con-
sider all terms appearing in Hearst pattern lists in T as can-
didates, and constitute the label set L by pooling them, i.e.,

L = ∪〈C,T 〉∈T T . The prediction layer is then instantiated
by a fully connected layer (with bias) followed by a softmax
layer over L. The probability of a term t is then

P (t|s, C) =
exp(w�

t x+ bt)∑
t′∈L exp(w�

t′x+ bt′)
. (4)

Here {wt, bt}t∈L are weight and bias parameters of the fully
connected layer.

Note that we simultaneously predict multiple terms, i.e.,
T \ {s}, so the classification is essentially multi-labeled.
Moreover, the softmax layer introduces summed exponen-
tials on the denominator of P (t|s, C). This makes training
inefficient on a large L (over 180k on our dataset). To relieve
both issues, we use a multi-label implementation1 of sam-
pled softmax loss (Jean et al. 2015). That is, a much smaller
candidate set from L is sampled to approximate gradients
related to L.

Incorporating Attention on Contexts

So far, we have detailed various encoders for context C.
They all essentially aggregate the information in every word
with or without position information in C. Given potentially
long input C and the fixed output dimension, it is vital for
encoders to capture the most useful information into vC .

Recent studies (Bahdanau, Cho, and Bengio 2014; Luong,
Pham, and Manning 2015; Wang et al. 2016; Shimaoka et
al. 2017) suggest that attention-based encoders can focus
on more important parts of sentences, thus achieving bet-
ter representations. In this section, we explore approaches
to incorporate attention into the context encoders. Based on
whether they exploit information in the seed term, we cate-
gorize them as seed-oblivious or seed-aware.

Seed-Oblivious Attention

By seed-oblivious attention, we aim to model the importance
of different words or positions in a sentential context. Fol-
lowing conventional approaches (Bahdanau, Cho, and Ben-
gio 2014), we use a feed-forward network to estimate the
importance of each word or position. For the NBOW en-
coder, the importance score of word i is defined by

f(i) = w�
a tanh(Waci). (5)

Here wa ∈ R
d′

and Wa ∈ R
d′×d are parameters of the

feed-forward network. The score f(i) is then fed through
a softmax layer and used as weights to combine the word
vectors ci:

αi =
exp(f(i))∑
i′ exp(f(i

′))
, (6)

vC =

n∑

i=1

αici. (7)

For RNN, attention is applied in a similar manner, except
that ci is substituted by hidden vector hi.

1https://www.tensorflow.org/api docs/python/tf/nn/
sampled softmax loss
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Seed-Aware Attention

So far, we have discussed various context encoders and an
attention-based improvement. For them, the seed does not
contribute to context encoding. However, a seed like “amino
acid” may conversely indicate informative words or parts
in the context, e.g., “barley” and “grass”, to further narrow
down the semantic scope of expansion. Following this obser-
vation, we propose involving the seed vector vs to compute
a seed-aware importance score f(s, i) instead of f(i). In-
spired by Luong, Pham, and Manning (2015), we consider
the following instantiations of seed-aware attention.
DOT In this variant, we estimate the word importance with
the inner product of the seed vector vs and each word vector
ci. Formally, the score is

f(s, i) = v�
s ci. (8)

CONCAT Instead of directly taking the inner product of vs

and ci, this variant feeds their concatenation through a feed-
forward network:

f(s, i) = w�
a tanh(Wa[vs; ci]). (9)

Here wa ∈ R
d′

and Wa ∈ R
d′×2d are parameters of the

feed-forward network. By involving additional parameters
wa and Wa, we expect the CONCAT variant to be more ca-
pable than DOT.
TRANS-DOT In DOT, we multiply the seed and word vec-
tors vs and ci. Note that the context word vectors ci need
to both interact with the seed vector vs and constitute the
context representation vC . To distinguish between the two
potentially different roles, we additionally consider the fol-
lowing TRANS-DOT scoring function:

f(s, i) = v�
s tanh(Waci). (10)

Here, we use a fully connected layer with parameters Wa ∈
R

d×d to transform ci before taking a dot product with vs.
Compared with DOT, the TRANS-DOT scoring function only
introduce a medium-sized parameter space, which is smaller
than that of CONCAT.

In order to apply seed-aware attention to our network
structure, we use the respective scoring functions f(s, i) to
replace f(i) in Eq. 6. The resulted attention weights αs,i are
fed to Eq. 7, and make the context vector vC seed-aware.

Experimental Settings

Dataset Processing

We earlier briefed that CASE exploits sentences with Hearst
patterns for training and evaluation. For this reason, large-
scale natural annotations can be easily obtained without
manual effort.

Specifically, we employ an existing web-scale dataset,
WebIsA2 (Seitner et al. 2016), to derive large-scale anno-
tated sentences. This dataset has 400 million hypernymy
relations, extracted from 2.1 billion web pages. For each
hyponym-hypernym pair, the dataset provides IDs of source
sentences and matched patterns where the pair occurs. For

2http://webdatacommons.org/isadb/

Item Count

Number of sentences 1,847,717
Number of training sentences |T | 1,478,173
Number of testing sentences 369,544
Average number of context words |C| 31.39
Average number of hyponym terms |T | 3.46
Number of unique terms 182,167
Number of unique terms on training set |L| 180,684
Vocabulary size of all contexts 941,603
Vocabulary size of all training contexts 119,270(discarding words with freq < 5)

Table 1: Summary of the derived dataset.

example, a sentence “Young barley grass is high in vita-
min, antioxidant, enzyme, mineral, amino acid, chlorophyll
and other phyto-nutrients.” leaves its ID and pattern “. . . and
other . . . ” in the lists of hypernymy pairs “vitamin → phyto-
nutrient”, “antioxidant → phyto-nutrient”, etc. Precisions of
all patterns are also summarized as global information. We
use the information to decompose the sentence, obtaining
the example in the Dataset and Formal Task Definition sec-
tion. Specifically, we follow the below steps.

1. We convert all words to lowercase and lemmatize them.
2. We then filter the dataset with the pattern precision in-

formation, due to the noisy web pages and the error-
prone hypernymy extraction procedure. That is, we iden-
tify and keep high-quality sentences where a hypernym is
extracted with at least three hyponyms by a pattern with
precision ≥ 0.5.

3. We regard hyponym terms appearing in at least ten high-
quality sentences as high-quality terms. We select high-
quality sentences with at least three high-quality terms in
the final dataset.
Finally, our dataset contains 1,847,717 naturally labeled

sentences, involving over 180k hyponym terms. From them,
we sample 20% of sentences to form the test set, and use the
remainder for training. Table 1 summarizes our dataset.

Baseline Approaches

Since no previous study addresses the exact CASE task, we
evaluate our models against the solutions proposed for the
most similar task, i.e., lexical substitution. Specifically, we
compare with Melamud et al. (2015)’s unsupervised method
and one of its variants. We also evaluate a supervised method
by Roller and Erk (2016).
LEXICAL SUBSTITUTION (LS). Word embedding models
such as Mikolov et al. (2013) compute two types of word
vectors, i.e., IN and OUT. Melamud et al. (2015)’s analysis
suggests that the IN-IN similarity favors synonyms or words
with similar functions, while the IN-OUT similarity charac-
terizes word compatibility or co-occurrence. By promoting
terms t having the same meaning with the seed s and good
compatibility with the context C, they score a term t by

LS = λ1cos(s
I , tI) +

1− λ1

|C|
∑

c∈C

cos(cI , tO) (11)
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Figure 3: Tuning λ2 in the LSCO baseline.

Model Recall MAP MRR nDCG

LS (Melamud et al. 2015) 2.84 1.80 1.79 1.66
LSCO (λ2 = 0.1) 3.54 2.65 2.69 2.23
PIC (Roller and Erk 2016) 19.62 17.78 18.84 14.71

CASE (ours, with NBOW) 23.42 21.30 22.71 17.80

Table 2: Comparison with LS baselines (top-10 results).

Here the superscripts I and O stands for IN and OUT, re-
spectively. We train word vectors on all sentences in T , and
use averaged vectors to represent multi-word terms. We fol-
low the original paper and set λ1 = 0.5.
LS WITH TERM CO-OCCURRENCE (LSCO). Considering
that expansion terms are not simply synonyms of seeds, and
tend to co-occur with seeds (in Hearst patterns), we also
study a modified version of Eq. 11:

LSCO = λ2LS + (1− λ2)cos(s
I , tO) (12)

We tune λ2 and adopt the best-effort results.
PROBABILITY IN CONTEXT (PIC) (Roller and Erk 2016).
Different from the second term of Eq. 11, PIC models the
context compatibility by introducing a parameterized linear
transformation on cI . Therefore, it needs data to train the
additional parameters and is inherently supervised.

Parameters and Evaluation Metrics

We trim or pad all contexts to length 100, and treat words
occurring less than 5 times as OOVs. Word vectors are pre-
trained with cbow (Mikolov et al. 2013). Their dimensions
d as well as encoded contexts’ and seeds’ are set to 100.
The intermediate dimension d′ of attention-related network
is set to 10. Each batch is of size 128 with 1,000 nega-
tive samples to compose the sampled candidates. We iterate
for 10 epoches with the Adam optimizer. All other hyper-
parameters are found to work well by default and not tuned.

For all approaches, we uniformly rank all t ∈ L accord-
ing to the corresponding probability. We concentrate on top-
10 results. Note that, due to the nature of natural language,
ground-truth term lists may not be exhaustive. This is an in-
trinsic limitation of the original dataset, and our processed
dataset is probably the best we can access. To this end, we
use Recall as the main metric and do not involve Precision.
We also report MAP, MRR, and nDCG for reference.

Context Encoder Recall MAP MRR nDCG

No Encoder 15.81 14.02 14.85 11.62

RNN-Based
RNN-VANILLA 17.51 16.17 17.08 13.26
GRU 18.99 17.28 18.31 14.24
LSTM 19.02 17.40 18.43 14.31
BILSTM 14.59 13.45 14.22 10.96

CNN 20.97 19.40 20.61 15.94

Placeholder-Aware
CNN+PF 20.88 19.04 20.20 15.70
CONTEXT2VEC 20.21 18.53 19.66 15.29

NBOW 23.42 21.30 22.71 17.80

Table 3: Performance of context encoders (top-10 results).

Experimental Results

In this section, we aim to experimentally answer the follow-
ing questions: 1) Are lexical substitution solutions applica-
ble to CASE? 2) Do contexts have impact on semantic ex-
pansion? 3) Is seed-aware attention superior as expected? 4)
Do additional hypernyms make the experiments biased?

Comparison with LS Baselines

When introducing Melamud et al. (2015)’s lexical substitu-
tion baseline, we mention that expansion terms should co-
occur with, rather than be synonyms of, the seed term. In
Figure 3, we compare the Recall@10 scores of baselines LS
and LSCO, w.r.t. different λ2. Note that LSCO degenerates
to LS when λ2 = 1, so their lines overlap at this point. The
figure demonstrates that, when λ2 < 1, the LSCO baseline
outperforms LS, and achieves optimum when λ2 = 0.1.

In Table 2, we report the top-10 metrics of all three lex-
ical substitution baselines, as well as those of our approach
with the preliminary NBOW encoder. By additionally advo-
cating co-occurrence between s and t, LSCO outperforms
LS on all metrics. However, it is remarkably inferior due to
its unsupervised nature.

By parameterizing the context compatibility in LS, PIC
achieves reasonably better results. However, PIC only mod-
els the similarity of seed and expansion terms through non-
parameterized IN-IN similarity like the first term in Eq. 11.
This may be inadequate, with reasons similar to the infe-
riority of LS to LSCO. In our solution, the embedding-
initialized parameters allow our seed encoder and prediction
layer to capture type-based similarity beyond IN-IN and IN-
OUT through training. With the simplest NBOW encoder,
the joint training of the two components helps our approach
outperform PIC by a large margin.

Comparison of Context Encoders

The Introduction section mentioned that set expansion is
similar to CASE without context. We find that one seed is
usually sufficient to retrieve terms of the same type. The
result thus heavily depend on the context to pick the right
terms out of many others with the same type. Table 3 re-
flects this by the inferior results of the “No Encoder” setting,
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Model
Recall MAP MRR nDCG

@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

LSTM 13.08 19.02 26.19 16.80 17.40 17.14 17.15 18.43 19.13 11.88 14.31 16.73
+ATTN 13.73 19.85 27.15 17.72 18.29 17.96 18.11 19.41 20.11 12.55 15.04 17.51

NBOW 16.32 23.42 31.64 20.78 21.30 20.79 21.29 22.71 23.45 14.91 17.80 20.58
+ATTN 16.69 23.88 32.24 21.36 21.87 21.30 21.89 23.32 24.06 15.29 18.22 21.06
+DOT 15.54 22.13 29.89 20.12 20.60 20.12 20.61 21.95 22.66 14.36 17.03 19.66
+CONCAT 16.85 24.12 32.53 21.57 22.04 21.47 22.10 23.54 24.28 15.46 18.41 21.27
+TRANS-DOT 17.20 24.51 33.01 21.97 22.41 21.80 22.53 23.96 24.70 15.80 18.77 21.65

Table 4: Performance of different scoring functions in attention. TRANS-DOT is significantly better at p < 0.01.

With Hypernym Without Hypernym

NBOW +TRANS-DOT NBOW +TRANS-DOT

protein mineral protein mineral
sugar sugar calcium etc

vitamin protein salt sugar
mineral vitamin sugar vitamin

carbohydrate b vitamin vitamin protein
herb enzyme enzyme herb

enzyme amino acid herb carbohydrate
fat herb potassium salt

fiber antioxidant mineral fat
salt salt etc vitamin c

Table 5: Case study on attention and hypernyms.

where contexts are removed in both training and testing.
Although contexts are important, complex encoders do

not necessarily lead to better results. In Table 3, encoders
at lower semantic levels, i.e., NBOW at the word level and
CNN at the phrase level, are the most effective. Among
them, the simpler NBOW achieves better scores. Moreover,
RNN-based ones are not very competitive, with the best
LSTM variation poorer than CNN. This may be due to that
RNNs are only effective where predictions are sensitive to
word orders, e.g., in POS tagging and dependency parsing.
Finally, being placeholder-aware, the CONTEXT2VEC en-
coder performs better than its LSTM counterpart. However,
CNN with positional embedding, the stronger placeholder-
aware encoder, is inferior to its CNN counterpart. This in-
dicates that CASE is inherently different from tasks like re-
lation classification and aspect/targeted sentiment analysis,
which rely on relative position between the placeholder and
some key words.

Based on the above observations, we confirm that con-
texts have major impacts on CASE and deserve appropriate
modeling. However, complex encoders are inferior because
CASE is insensitive to either word orders or seed term po-
sitions. Modeling these signals leads to more unnecessary
parameters to learn and brings in noises.

Effectiveness of the Attention Mechanism

In previous sections, we proposed two types of scoring func-
tions to incorporate the attention mechanism in the context
encoder. In Table 4, we denote the vanilla seed-oblivious at-

Model (w/o Hypernym) Recall MAP MRR nDCG

NBOW 22.64 20.68 22.03 17.22
+TRANS-DOT 23.41 21.52 22.98 17.94

Table 6: Scores after removing hypernyms (top-10 results).

tention by ATTN, and the three seed-aware functions by their
names, respectively. Due to the relatively small margin be-
tween the scores of different functions, we report the metrics
for top-5 and 20 results in addition to top-10. Although seed-
aware attention is applicable to LSTM, we do not include
the results since they do not outperform the corresponding
combinations of NBOW. The limited improvement may be
due to the low potential of the base LSTM encoder.

Table 4 shows that seed-oblivious attention can improve
both LSTM and NBOW. Although seed-aware, the DOT
scoring function turns out to adversely affect the quality of
expansion terms. We speculate that the two different roles
of context word vectors c render the simple dot function in-
sufficient to characterize its interactions with vs. The CON-
CAT function, on the other hand, partially demonstrates su-
periority of seed-aware attention with limited improvement
over ATTN. By slightly modifying DOT with even fewer ad-
ditional parameters than CONCAT, TRANS-DOT outperforms
all competitors. Further paired t-tests show that the superior-
ity of TRANS-DOT (as well as the most competitive runs in
Tables 2 and 3) to all competitors is significant at p < 0.01.
We attribute the statistical significance to the huge size of
our testing set, i.e., 369,544 sentences.

To illustrate the impact of TRANS-DOT, we show expan-
sion terms of “amino acid” for the example in the Dataset
and Formal Task Definition section, in the first two columns
of Table 5. Observe that TRANS-DOT-based attention helps
promote the ground truth terms (in bold) in the ranking. It
also removes nutrition “fat” from the top results, which is
irrelevant to barley grass.

Impacts of Hypernyms

The contexts from WebIsA always contain hypernyms, e.g.,
“phyto-nutrients” in the example of the Dataset and For-
mal Task Definition section. However, practical scenarios
may involve sentences without hypernyms as in Figure 1. To
study the potential impact, we remove all hypernyms in con-
texts, retrain and test NBOW with or without TRANS-DOT.
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The last two columns in Table 5 show the results of our run-
ning example without the suffix “and other phyto-nutrients”.
It is observed that removing hypernyms causes some non-
nutrient or noisy terms (e.g., “salt” and “etc”) to rise. Table 6
reports the overall scores for top-10 results. Compared with
the corresponding results in Table 4, all scores slightly de-
crease by around one point. This comparison suggests that,
trained with sufficient term co-occurrences, our model is
able to find terms of the same types, without the help of
hypernyms in most cases. To conclude, the hypernym bias
introduced by the data harvesting approach has very small
impacts on the practical use of our solution.

Related Work

Lexical Substitution This task has been investigated for
over a decade (McCarthy and Navigli 2007). It differs from
CASE in that the substitutes are required to preserve the
same meaning with the original word. Previous solutions
follow two stages, i.e., candidate generation and candidate
ranking. Synonym candidates are generally generated from
external dictionaries or by pooling the testing data. The
ranking stage then boils down to estimating the compatibil-
ity between candidates and the context.

Giuliano, Gliozzo, and Strapparava (2007) rely on n-
grams to model candidates’ compatibility. Erk and Padó
(2008) argues that syntactic relations in contexts are cru-
cial, e.g., “a horse draws something” and “someone draws
a horse”. In Melamud et al. (2015), word vectors (Mikolov
et al. 2013) are applied to score candidates’ similarity
with the original word and their context compatibility.
Their method is nearly state-of-the-art, yet remains rela-
tively simple. Besides unsupervised approaches, supervised
methods (Szarvas, Biemann, and Gurevych 2013; Szarvas,
Busa-Fekete, and Hüllermeier 2013; Roller and Erk 2016)
prove superior at the cost of requiring more annotations.
We have experimentally compared with representative ones
from both categories.
Set Expansion This task aims to expand a couple of seeds
to more terms in the underlying semantic class. Most exist-
ing approaches involve bootstrapping on a large corpus of
web pages (Tong and Dean 2008; Wang and Cohen 2007;
He and Xin 2011; Chen, Cafarella, and Jagadish 2016) or
free text (Shi et al. 2010; Shen et al. 2017; Shi et al. 2014;
Thelen and Riloff 2002). HTML-tag-based or lexical pat-
terns covering a few seeds are extracted, which are then ap-
plied to the same corpus for new terms. The process is iter-
ated until certain stopping criterion is met.

Both this task and ours face the challenge of ambiguous
terms, e.g., “apple”. With multiple seeds, set expansion may
rely on the other seeds, e.g., “samsung” or “orange”, for dis-
ambiguation. However, since CASE accepts only one seed
as input, it is essential to model the additional context to
make up for the scarce information. To this end, we resort to
neural networks, where many off-the-shelf context modeling
architectures are available.
Multi-Sense or Contextualized Word Representation
This technique deals with sense-mixing in traditional word
representation. Traditional word representations assign a

single vector to each word. They mix different senses of pol-
ysemous words, and block downstream tasks from exploit-
ing the sense information. Reisinger and Mooney (2010)
cluster the contexts of polysemous words and represent
senses by the cluster centroids. By sequentially carrying
out context clustering, sense labeling, and representation
learning, Huang et al. (2012) obtain low-dimensional sense
embeddings. Non-parametric (Neelakantan et al. 2014) and
probabilistic models with fewer parameters (Tian et al.
2014) are proposed later to accelerate training.

In multi-sense embedding, polysemous words get static
embeddings for coarse-grained senses. Some recent efforts
explore dynamic embeddings that vary with the context.
Melamud, Dagan, and Goldberger (2015) use context-aware
substitutions of target words to obtain contextualized em-
beddings. Peters et al. (2018) employ multi-layered bi-
directional language models on words in contexts. Embed-
dings are obtained by aggregating different hidden layers
with task-specific weights. CASE separately models con-
texts and seed terms, because the model needs to general-
ize to unseen multi-word seeds. For more studies, we refer
readers to a survey (Camacho-Collados and Pilehvar 2018).

Conclusion

We define and address context-aware semantic expansion.
To the best of our knowledge, this is the first study on this
task. To facilitate training and evaluation without human an-
notations, we derive a large dataset with about 1.8 million
naturally annotated sentences from WebIsA. We propose
a network structure, and study different alternatives of the
context encoder. Experiments show that solutions for lexical
substitution are not competitive on CASE. Comparisons on
various context encoders indicate that, the simplest NBOW
encoder achieves surprisingly good performance. Based on
NBOW, seed-aware attention, which models the interaction
between seed and context words, further improves the per-
formance. The TRANS-DOT scoring function finally shows
its capability to focus on indicative words, and outperforms
other seed-oblivious or -aware competitors. In further analy-
sis, we also confirm small impacts of a bias introduced when
harvesting our data.
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