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Abstract

A hallmark of human intelligence is the ability to understand
and communicate with language. Interactive Fiction games
are fully text-based simulation environments where a player
issues text commands to effect change in the environment
and progress through the story. We argue that IF games are
an excellent testbed for studying language-based autonomous
agents. In particular, IF games combine challenges of combi-
natorial action spaces, language understanding, and common-
sense reasoning. To facilitate rapid development of language-
based agents, we introduce Jericho, a learning environment
for man-made IF games and conduct a comprehensive study
of text-agents across a rich set of games, highlighting direc-
tions in which agents can improve.

1 Introduction

Interactive fiction (IF) games are software environments in
which players observe textual descriptions of the simulated
world, issue text actions, and receive score progress through
the story. As illustrated by Figure 1, humans bring com-
petencies in natural language understanding, commonsense
reasoning, and deduction to bear in order to infer the context
and objectives of a game. We believe IF environments will
provide a good testbed for studying artificial development
of these capabilities. Beyond games, real-world applications
such as voice-activated personal assistants also exist at the
intersection of natural language understanding, natural lan-
guage generation, and sequential decision making.

From a machine learning perspective, Interactive Fiction
games exist at the intersection of natural language process-
ing and sequential decision making. Like many NLP tasks,
they require natural language understanding, but unlike most
NLP tasks, IF games are sequential decision making prob-
lems in which actions change the subsequent world states
of the game and choices made early in a game may have
long term effects on the eventual endings. Reinforcement
Learning (Sutton and Barto 1998) studies sequential deci-
sion making problems and has shown promise in vision-
based (Jaderberg et al. 2016) and control-based (OpenAI et
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Observation: This bedroom is extremely spare, with
dirty laundry scattered haphazardly all over the floor.
Cleaner clothing can be found in the dresser. A bath-
room lies to the south, while a door to the east leads
to the living room. On the end table are a telephone,
a wallet and some keys.
The phone rings.

Action: Answer phone

Observation: You pick up the phone. ”Hadley!” a
shrill voice cries. ”Hadley, haven’t you even left
yet?? You knew that our presentation was at nine
o’clock sharp! First the thing with the printers, now
this - there won’t even be enough left of you for Bow-
man to fire once he’s done with you. Now get the hell
down here!!”

Action: Examine me

Observation: You’re covered with mud and dried
sweat. It was an exhausting night - no wonder you
overslept! Even making it to the bed before conking
out was a heroic accomplishment.

Figure 1: Excerpt from Adam Cadre’s 9:05.

al. 2018) environments, but has less commonly been applied
in the context of language-based tasks.

Why study environments that feature ungrounded natural
language instead of multimodal environments that provide
visual grounding for language? We believe that ungrounded
natural language is inescapable in certain real world tasks
such as voice-activated personal assistants.

The contributions of this paper are as follows: First, we in-
troduce Jericho, a learning environment for human-made IF
games. Second, we introduce a template-based action space
and that we argue is appropriate for language generation.
Third, we conduct an empirical evaluation of learning agents
across a set of human-made games.
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2 Research Challenges

From the perspective of reinforcement learning, IF games
can be modeled as partially observable Markov decision pro-
cesses (POMDPs) defined by (S, T,A,O,R). Observations
o ∈ O correspond to the game’s text responses, while la-
tent states s ∈ S correspond to player and item locations,
inventory contents, monsters, etc. Text-based actions a ∈ A
change the game state according to an latent transition func-
tion T (s′|s, a), and the agent receives rewards r from an un-
known reward function R(s, a). To succeed in these environ-
ments, agents must generate natural language actions, reason
about entities and affordances, and represent their knowl-
edge about the game world. We present these challenges in
greater detail:

Combinatorial Action Space Reinforcement learning
has studied agents that operate in discrete or continuous
action space environments. However, IF games require the
agent to operate in the combinatorial action space of nat-
ural language. Combinatorial spaces pose extremely diffi-
cult exploration problems for existing agents. For example,
an agent generating a four-word sentence from a modest
vocabulary of size 700, is effectively exploring a space of
|7004| = 240 billion possible actions. Further complicating,
this challenge is the fact that natural language commands are
interpreted by the game’s parser - which recognizes a game-
specific subset of possible commands. For example, out of
the 240 billion possible actions there may be only ten valid
actions at each step - actions that are both recognized by the
game’s parser and generate a change in world state.

As discussed in Section 4.1, we propose the use of a
template-based action space in which the agent first chooses
from a template of the form put OBJ in OBJ and then fills in
the blanks using the vocabulary. A typical game may have
around 200 templates each with up to two blanks - yield-
ing an action space |200 ∗ 7002| = 98 million, three orders
of magnitude smaller than the naive space but six orders of
magnitude greater than most discrete RL environments.

Commonsense Reasoning Due to the lack of graphics,
IF games rely on the player’s commonsense knowledge as
a prior for how to interact with the game world. For exam-
ple, a human player encountering a locked chest intuitively
understands that the chest needs to be unlocked with some
type of key, and once unlocked, the chest can be opened and
will probably contain useful items. They may make a men-
tal note to return to the chest if a key is found in the future.
They may even mark the location of the chest on a map to
easily find their way back.

These inferences are possible for humans who have years
of embodied experience interacting with chests, cabinets,
safes, and all variety of objects. Artificial agents lack the
commonsense knowledge gained through years of grounded
language acquisition and have no reason to prefer opening a
chest to eating it. Also known as affordance extraction (Gib-
son 1977; Fulda et al. 2017), the problem of choosing which
actions or verbs to pair with a particular noun is central to
IF game playing. However, the problem of commonsense
reasoning extends much further than affordance extraction:
Games require planning which items to carry in a limited
inventory space, strategically deciding whether to fight or

flee from a monster, and spatial reasoning such as stack-
ing garbage cans against the wall of a building to access a
second-floor window.

Knowledge Representation IF games span many distinct
locations, each with unique descriptions, objects, and char-
acters. Players move between locations by issuing naviga-
tional commands like go west. Due to the large number of
locations in many games, humans often create maps to nav-
igate efficiently and avoid getting lost. This gives rise to
the Textual-SLAM problem, a textual variant of Simultane-
ous localization and mapping (SLAM) (Thrun, Burgard, and
Fox 2005) problem of constructing a map while navigating
a new environment. In particular, because connectivity be-
tween locations is not necessarily Euclidean, agents need to
be able to detect when a navigational action has succeeded
or failed and whether the location reached was previously
seen or new. Beyond location connectivity, it’s also helpful
to keep track of the objects present at each location, with
the understanding that objects can be nested inside of other
objects, such as food in a refrigerator or a sword in a chest.

3 Related Work
In contrast to the parser-based games studied in this paper,
choice-based games provide a list of possible actions at each
step, so learning agents must only choose between the can-
didates. The DRRN algorithm for choice-based games (He
et al. 2016; Zelinka 2018) estimates Q-Values for a particu-
lar action from a particular state. This network is evaluated
once for each possible action, and the action with the max-
imum Q-Value is selected. While this approach is effective
for choice-based games which have only a handful of can-
didate actions at each step, it is difficult to scale to parser-
based games where the action space is vastly larger.

In terms of parser-based games, such as the ones ex-
amined in this paper, several approaches have been in-
vestigated: LSTM-DQN (Narasimhan, Kulkarni, and Barzi-
lay 2015), considers verb-noun actions up to two-words in
length. Separate Q-Value estimates are produced for each
possible verb and object, and the action consists of pairing
the maximally valued verb combined with the maximally
valued object. LSTM-DQN was demonstrated to work on
two small-scale domains, but human-made games, such as
those studied in this paper, represent a significant increase
in both complexity and vocabulary.

Another approach to affordance extraction (Fulda et al.
2017) identified a vector in word2vec (Mikolov et al. 2013)
space that encodes affordant behavior. When applied to the
noun sword, this vector produces affordant verbs such as
vanquish, impale, duel, and battle. The authors use this
method to prioritize verbs for a Q-Learning agent to pair
with in-game objects.

An alternative strategy has been to reduce the combina-
torial action space of parser-based games into a discrete
space containing the minimum set of actions required to
finish the game. This approach requires a walkthrough or
expert demonstration in order to define the space of mini-
mal actions, which limits its applicability to new and unseen
games. Following this approach, (Zahavy et al. 2018) em-
ploy this strategy with their action-elimination network, a
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classifier that predicts which predefined actions will not ef-
fect any world change or be recognized by the parser. Mask-
ing these invalid actions, the learning agent subsequently
evaluates the set of remaining valid actions and picks the
one with the highest predicted Q-Value.

The TextWorld framework (Côté et al. 2018) supports
procedural generation of parser-based IF games, allowing
complexity and content of the generated games to be scaled
to the difficulty needed for research. TextWorld domains
have already proven suitable for reinforcement learning
agents (Yuan et al. 2018) which were shown to be capable
of learning on a set of environments and then generalizing
to unseen ones at test time. Recently, Yuan et al. (2019)
propose QAit, a set of question answering tasks based on
games generated using TextWorld. QAit focuses on help-
ing agents to learn procedural knowledge in an information-
seeking fashion, it also introduces the practice of generating
unlimited training games on the fly. With the ability to scale
the difficulty of domains, TextWorld may be key to creating
a curriculum of learning tasks and helping agents scale to
human-made games.

Ammanabrolu and Riedl (2019a) present the Knowledge
Graph DQN or KG-DQN, an approach where a knowledge
graph built during exploration is used as a state represen-
tation for a deep reinforcement learning based agent. They
also use question-answering techniques—asking the ques-
tion of what action best next to take—to pretrain a deep Q-
network. These techniques are then shown to aid in over-
coming the twin challenges of a partially observable state
space and a combinatorial action space. Ammanabrolu and
Riedl (2019b) further expand on this work, exploring meth-
ods of transferring control policies in text-games, using
knowledge graphs to seed an agent with useful common-
sense knowledge and transfer knowledge between differ-
ent games within a domain. They show that training on a
source game and transferring to target game within the same
genre—e.g. horror or slice of life—is more effective and ef-
ficient than training from scratch on the target game.

Finally, although not a sequential decision making prob-
lem, Light (Urbanek et al. 2019) is a crowdsourced dataset
of text-adventure game dialogues. The authors demonstrate
that supervised training of transformer-based models have
the ability to generate contextually relevant dialog, actions,
and emotes.

4 Jericho Environment

Jericho is an open-source1 Python-based IF environment,
which provides an OpenAI-Gym-like interface (Brockman
et al. 2016) for learning agents to connect with IF games.

4.1 Template-Based Action Generation

Template-based action generation involves first selecting a
template, then choosing words to fill in the blanks in that
template. The set of game-specific templates are identi-
fied by decompiling a game to extract the possible sub-
routines – each template corresponds to a different sub-
routine. Templates contain a maximum of two blanks to

1Jericho is available at https://github.com/microsoft/jericho.

be filled. Additionally, game-specific vocabulary is also ex-
tracted and provides a list of all words recognized by the
game’s parser. Combining templates with vocabulary yields
a game-specific action space, which is far more tractable
than operating in the pure vocabulary space.

4.2 World Object Tree

The world object tree is a semi-interpretable representation
of game state that IF games use internally to codify the re-
lationship between the objects and locations that populate
the game world. Each object in the tree has a parent, child,
and sibling. These relationships between objects are used to
encode presence: a location contains children objects that
correspond to the items present at that location. Similarly,
there is an object corresponding to the player, whose parent
is the player’s location and whose children are the objects in
the player’s inventory.

Jericho’s ability to extract world-object-trees forms the
basis for world-change-detection (described in the next sub-
section) and ground-truth object detection. Ground truth ob-
ject detection searches the object tree for all non-player ob-
jects present at the current location, thus sidestepping the
challenge of identifying interactive objects from a location’s
description.

4.3 World Change Detection

Jericho has the ability to best-guess detect whether an action
changed the world state of the game. Using this facility, it’s
possible to identify the valid actions from a state by perform-
ing a search over template-based actions and excluding any
actions that don’t change the world state. We demonstrate
the feasibility of valid action detection by training a choice-
based learner, DRRN (Section 5.2). World change detection
is based on identifying changes to the world-object tree2 and
can fail to detect valid actions whose effects alter only global
variables instead of the object tree. In practice, these failures
are rare.

4.4 Supported Games

For supported games, Jericho is able to detect game score,
move count, and world change. Jericho supports a set of
fifty-six human-made IF games that cover a variety of gen-
res: dungeon crawl, Sci-Fi, mystery, comedy, and horror.
Games were selected from classic Infocom titles such as
Zork and Hitchhiker’s Guide to the Galaxy, as well as newer,
community-created titles like Anchorhead and Afflicted. All
supported games use a point-based scoring system, which
serves as the agent’s reward.

Unsupported games may be played through Jericho, with-
out the support of score detection, move counts, or world-
change detection. There exists a large collection of over a
thousand unsupported games 3, which may be useful for un-
supervised pretraining or intrinsic motivation.

2Game trees are standardized representations for all Z-Machine
games. To learn more see https://inform-fiction.org/zmachine/
standards/z1point1/index.html

3https://github.com/BYU-PCCL/z-machine-games
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4.5 Identifying Valid Actions

Valid actions are actions recognized by the game’s parser
that cause changes in the game state. When playing new
games, identifying valid actions is one of the primary dif-
ficulties encountered by humans and agents alike. Jericho
identifies valid actions using the following procedure:

Algorithm 1 Procedure for Identifying Valid Actions
1: E ← Jericho environment
2: T ← Set of action templates
3: o← Textual observation
4: P ← {p1 . . . pn} Interactive objects identified with

noun-phrase extraction or world object tree.
5: Y ← ∅ List of valid actions
6: s← E .save() – Save current game state
7: for template u ∈ T do
8: for all combinations p1, p2 ∈ P do
9: Action a← u⇐ p1, p2

10: if E .world changed(E .step(a)) then
11: Y ← Y ∪ a
12: E .load(s) – Restore saved game state

return Y

4.6 Handicaps

To ease the difficulty of IF games, Jericho has the option of
the following handicaps:

• Inputs: Addition of a location description, player’s inven-
tory, and game score.

• Outputs: Game-specific templates T and vocabulary V .

• World Objects: Use of world object tree for identifying
interactive objects or player’s current location.

• Valid Actions: Use of world-changed-detection to identify
valid actions.

For reproducibilty, we report the handicaps used by all
algorithms in the next section and encourage future work to
do the same.

5 Algorithms

IF game playing has been approached from the perspec-
tive single-game agents that are trained and evaluated on
the same game and general game playing agents which are
trained and evaluated on different sets of games. In this sec-
tion we present three agents: a choice-based single-game
agent (DRRN), a parser-based single-game agent (TDQN),
and a parser-based general-game agent (NAIL).

5.1 Common Input Representation

The input encoder φo converts observations into vectors
using the following process: Text observations are tok-
enized by a SentencePiece model (Kudo and Richardson
2018) using an 8000-large vocab trained on strings extracted
from http://www.allthingsjacq.com/index.html sessions of
humans playing a variety of different IF games. Tokenized
observations are processed by separate GRU encoders for

Q(o, a)

Linear
ReLU
Linear

Concat

νo
νa

φa

Concat

GRUn %tiny GRUiGRUd GRUa

φo

onar oinv odesc a

Figure 2: DRRN architecture estimates a joint Q-Value
Q(o, a) over the observation o and an action a. The obser-
vation encoder φo uses separate GRUs to process the nar-
rative text onar, the players inventory oinv , and the loca-
tion description odesc into a vector νo. DRRN uses a sepa-
rate GRUa for processing action text into a vector νa. The
action-scorer φa concatenates the input and action vectors
and outputs a scalar Q-Value.

the narrative (i.e., the game’s response to last action), de-
scription of current location, contents of inventory, and pre-
vious text command. The outputs of these encoders are con-
catenated into a vector νo. DRRN and Template-DQN build
on this common input representation.

5.2 DRRN

The Deep Reinforcement Relevance Network (DRRN) (He
et al. 2016) is an algorithm for choice-based games that
present a set of valid actions Avalid(s) at every game state
s. We re-implement DRRN using a GRU φact(a) to en-
code each valid action into a vector νa, which is concate-
nated with the encoded observation vector νo. Using this
combined vector, DRRN then computes a Q-Value Q(o, a)
estimating the total discounted reward expected if action
a is taken and πDRRN is followed thereafter. This proce-
dure is repeated for each valid action ai ∈ Avalid(s). Ac-
tion selection is performed by sampling from a softmax dis-
tribution over Q(o, ai). The network is updated by sam-
pling a minibatch of transitions (o, a, r, o′, Avalid(s

′)) ∼ D
from the prioritized replay memory (Schaul et al. 2016)
and minimizing the temporal difference error δ = r + γ ∗
max′a Q(o′, a′)−Q(o, a). From an optimization perspective,
rather than performing a separate forward pass for each valid
action, we batch valid-actions and perform a single forward
pass computing Q-Values for all valid actions.

In order to make DRRN applicable to parser-based IF
games, it’s necessary to identify the list of valid actions
available at each step. This is accomplished through a search
over template-based actions, pruned by Jericho’s world
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Q(o, u) Q(o, p1) Q(o, p2)

Linear Linear Linear

ReLU

Linear

νo
Concat

GRUn GRUi GRUd GRUa

onar oinv odesc at−1

Figure 3: Template-DQN estimates Q-Values Q(o, u) for all
templates u ∈ T and Q(o, p) for all vocabulary p ∈ V . Sim-
ilar to DRRN, separate GRUs are used to encode each com-
ponent of the observation, including the text of the previous
action at−1.

change detection (Algorithm 1). This handicap bypasses lan-
guage generation, one of the challenges of IF games.

5.3 Template-DQN

LSTM-DQN (Narasimhan, Kulkarni, and Barzilay 2015) is
an agent for parser-based games that handles the combina-
torial action space by generating verb-object actions using a
set possible verbs and possible objects. Specifically, LSTM-
DQN uses two output layers to estimate Q-Values over pos-
sible verbs and objects. Actions are selected by pairing the
maximally valued verb with the maximally valued noun.

Template-DQN (TDQN) extends LSTM-DQN by incor-
porating template-based action generation (Section 4.1).
This is accomplished using three output heads: one for es-
timating Q-Values over templates Q(o, u);u ∈ T and two
for estimating Q-Values Q(o, p1), Q(o, p2); p ∈ V to fill in
the blanks of the template using vocabulary.

The largest action space considered in the original LSTM-
DQN paper was 222 actions (6 verbs and 22 objects). In con-
trast, Zork1 has 237 templates with a 697 word vocabulary,
yielding an action space of 115 million. Computationally,
this space is too large to naively explore as the vast majority
of actions will be un-grammatical or contextually irrelevant.
To help guide the agent towards valid actions, we introduce
a supervised binary-cross entropy loss based on the valid ac-
tions in the current state. Valid actions are identified using
the same procedure as in DRRN. This loss is mixed with the
standard temporal difference error during each update.

We further optimize by decoding large batches of actions
with each forward pass over the network and executing them
sequentially until a valid action is found. When decoding
actions that are often invalid, this provides a considerable
speedup compared to performing an separate forward pass
for each action.

5.4 NAIL

NAIL (Hausknecht et al. 2019) is the state-of-the-art agent
for general interactive fiction game playing (Atkinson et al.
2018). Rather than being trained and evaluated on a single
game, NAIL is designed to play unseen IF games and accu-
mulate as much score as possible in a single episode. Operat-
ing without the handicaps outlined in Section 4.6, NAIL em-
ploys a set of manually-created heuristics to build a map of
objects and locations, reason about which actions were valid
or invalid, and uses a web-based language model to decide
how to interact with novel objects. We include NAIL’s per-
formance on the same set of games in order to highlight the
difference between general and single-game playing agents,
and to provide a reference scores for future work in general
IF game playing.

6 Experiments

We evaluate the agents across a set of thirty-two Jericho-
supported games with the aims of 1) showing the feasi-
bility of reinforcement learning on a variety of different
IF games, 2) creating a reproducible benchmark for future
work, 3) investigating the difference between choice-based
and template-based action spaces, and 4) comparing perfor-
mance of general IF game playing agents (NAIL), single-
game agents (DRRN and TDQN), and a random agent
(RAND) which uniformly sample commands from a set of
canonical actions: {north, south, east, west, up, down, look,
inventory, take all, drop, yes}.

Results in Table 1, supported by learning curves in Fig-
ure 4 show that reinforcement learning is a viable approach
for optimizing IF game playing agents across many different
types of games. Experimentally, TDQN and DRRN agents
are trained and evaluated on each game individually, but
their hyperparameters are fixed across the different games.

In order to quantify overall progress towards story com-
pletion, we normalize agent score by maximum possi-
ble game score averaged across all games. The resulting
progress scores are as follows: RANDOM 1.8%, NAIL
4.9%, TDQN 6.1%, and DRRN 1.7% completion.

Comparing the different agents, the random agent shows
that more than simple navigation and take actions are needed
to succeed at the vast majority of games. Comparing DRRN
to TDQN highlights the utility of choice-based game playing
agents who need only estimate Q-Values over pre-identified
valid-actions. In contrast, TDQN needs to estimate Q-Values
over the full space of templates and vocabulary words. As
a result, we observed that TDQN was more prone to over-
estimating Q-Values due to the Q-Learning update comput-
ing a max over a much larger number of possible actions.

Comparing the general game playing NAIL agent to
single-game agents: the NAIL agent performs surprisingly
well considering it uses no handicaps, no training period,
and plays the game for only a single episode. It should be
noted that the NAIL agent was developed on many of the
same games used in this evaluation. The fact that the rein-
forcement learning agents outperform NAIL serves to high-
light the difficulty of engineering an IF agent as well as
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the promise of learning policies from data rather than hand-
coding heuristics.

Broadly, all algorithms have a long way to go before they
are solving games of even average difficulty. Five games
prove too challenging for any agents to get a nonzero reward.
Games like Anchorhead are highly complex and others pose
difficult exploration problems like 9:05 which features only
a single terminal reward indicating success or failure at the
end of the episode.

Additional experiment details and hyperparameters are
located in the supplementary material.

Game |T | |V| RAND NAIL TDQN DRRN

905 82 296 0 0 0 0
acorncourt 151 343 0 0 .05 .33

anchor 260 2257 0 0 0 0
advent 189 786 .1 .1 .1 .1

adventureland 156 398 0 0 0 .21
afflicted 146 762 0 0 .02 .03
awaken 159 505 0 0 0 0

balances 156 452 0 .2 .09 .2
deephome 173 760 0 .04 0 0

detective 197 344 .32 .38 .47 .55
dragon 177 1049 0 .02 -.21 -.14

enchanter 290 722 0 0 .02 .05
gold 200 728 0 .03 .04 0

inhumane 141 409 0 0 0 0
jewel 161 657 0 .02 0 .02
karn 178 615 0 .01 0 .01

library 173 510 0 .03 .21 .57
ludicorp 187 503 .09 .06 .04 .09
moonlit 166 669 0 0 0 0

omniquest 207 460 0 .11 .34 .1
pentari 155 472 0 0 .25 .39
reverb 183 526 0 0 .01 .16

snacktime 201 468 0 0 .19 0
sorcerer 288 1013 .01 .01 .01 .05

spellbrkr 333 844 .04 .07 .03 .06
spirit 169 1112 .01 0 0 0

temple 175 622 0 .21 .23 .21
tryst205 197 871 0 .01 0 .03

yomomma 141 619 0 0 0 .01
zenon 149 401 0 0 0 0
zork1 237 697 0 .03 .03 .09
zork3 214 564 .03 .26 0 .07

ztuu 186 607 0 0 .05 .22

Table 1: Normalized scores for Jericho-supported games.
Results are averaged over the last hundred episodes of train-
ing and across five independent training runs (i.e., with dif-
ferent seeds for initializing the environment and agent sam-
pling process) conducted for each algorithm.

7 Notable Games

Jericho supports a vast array of games, covering a diverse set
of structures and genres. These games provide us with differ-
ent challenges from the perspective of reinforcement learn-
ing based agents. In this section, we highlight some specific
challenges posed by Jericho supported games and provide
notable examples for each of the types of challenges in ad-
dition to examples of games that the two types of deep re-
inforcement learning agents do well on. Learning curves for
some of these examples using DRRN and TDQN are pre-
sented (Figure 4), underscoring the difficulties current rein-

forcement learning agents have in solving these games and
showcasing effective training paradigms for different games.

7.1 Sanity Checks

The first set of games are essentially sanity checks, i.e. they
are games that can be solved relatively well by existing
agents. These games thus fall on the lower end on the dif-
ficulty spectrum and serve as good initial testbeds for devel-
oping new agents.

Detective in particular is one of the easier games, and with
existing agents such as the random agent and NAIL being
able to solve the majority of the game. The relatively good
performance of the random agent is likely due to the game
mostly requiring only navigational actions in order to accu-
mulate score. On this game, TDQN has comparable perfor-
mance to DRRN. Acorncourt also serves as a sanity check,
albeit a more difficult one—with the DRRN outperforming
all other agents. This game requires a higher proportion of
higher complexity actions, which make generation—such as
in the case of TDQN—more difficult. Omniquest is an ex-
ample of a dungeon-crawler style game where TDQN out-
performs the rest of the agents. In this game, due to there
being a relatively smaller number of valid templates as com-
pared to valid actions—i.e. many valid actions come from
the same template—the TDQN has an effective search space
that is smaller than the DRRN.

7.2 Varying Rewards

Most IF games provide you with positive scores in varying
increments as you achieve objectives and negative scores
for failing them. This reward structure is similar to most
games in general and gives the player an indication of rel-
ative progress within the game. Some games such as Deep-
home and Adventure, however, provide relatively unintuitive
scoring functions that can prove to be a challenge for rein-
forcement learning agents.

Deephome gives you an additional point of score for each
new room that you visit in addition to rewards for achieving
game objectives. This encourages exploration but could also
prove tricky for an agent as it may not be necessary to finish
the game. In Adventure, you start with a score of 36, and
as the game progresses you are first given mostly negative
scores followed by positive scores until you finish the game.
As seen in Figure 4, this gives a reinforcement learning agent
no indication that it is progressing in the short term.

7.3 Moonshots

Here we highlight some of the most difficult games in Jeri-
cho, current agents are quite far from being able to solve
them. Zork1 is one of the original IF games and heavily in-
fluences later games using this medium. The game can best
be described as a dungeon-crawler in which a player must
make their way through a large dungeon, collecting trea-
sures and fighting monsters along the way. The collection
of these treasures forms the basis of Zork1’s scoring sys-
tem, although some score is rewarded at intermediate steps
to aid in finding the treasures. Being a dungeon-crawler,
Zork1 features branching game path in terms of reward col-
lection as well as stochasticity. The game can be completed
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Figure 4: Episode score as a function of training steps for
DRRN (top) and TDQN (bottom). Shaded regions denote
standard deviation across five independent runs for each
game. Additional learning curves in supplementary material.

in many different ways, often affected by the random move-
ment of a thief and number of hits required to kill mon-
sters. It is also interesting to note that NAIL and TDQN
perform comparably on Zork1, with DRRN far outperform-
ing them—indicating the difficulty of language generation in
such a large state space. It has also been the subject of much
prior work on IF game-playing agents (Zahavy et al. 2018;
Yin and May 2019).

Anchorhead is a Lovecraftian horror game where the
player must wade through a complex puzzle-based narrative.
The game features very long term dependencies in piecing
together the information required to solve its puzzles and is
complex enough that it has been the subject of prior work
on cognition in script learning and drama management (Gi-
annatos et al. 2011). This complexity is further reflected in
the size of the vocab and number of templates—it has the
largest action space of any Jericho supported game. None of
our agents are able to accumulate any score on this game.

Although Anchorhead’s game structure is more sequen-
tial than Zork1, it also contains a more sparse reward—often
giving you a positive score only after the completion of a
puzzle. It is also stochastic, with the exact solution depend-
ing on the random seed supplied when the game is started.

8 Future Work

Unsupervised learning: DRRN and TDQN agents were
trained and evaluated on individual games. While this is suf-
ficient for a proof-of-concept, it falls short of demonstrating
truly general IF game playing. To this end, it’s valuable to
evaluate agents on a separate set of games which they have
not been trained on. In the Jericho framework, we propose
to use the set of Jericho supported games as a test set and the
larger set of unsupported games4 as the training set. In this

4https://github.com/BYU-PCCL/z-machine-games

paradigm, it’s necessary have a strong unsupervised learn-
ing component to guide the agent’s exploration and learning
since unsupported games do not provide rewards, and in fact
many IF games do not have scores. We hypothesize that sur-
rogate reward functions, like novelty-based rewards (Belle-
mare et al. 2016; Pathak et al. 2017), will be useful for dis-
covering locations, successful interactions and objects.

Better Template-based Agents: There are several direc-
tions for creating better template-based agents by improv-
ing on the limitations of TDQN: When generating actions,
TDQN assumes independence between templates and vo-
cabulary words. To understand the problem with this as-
sumption consider the templates “go ” and “take ” and the
vocabulary words “north, apple”. Independently, “take” and
“north” may have the highest Q-Values together yield the in-
valid action “take north”. Conditional generation of words
based on the chosen template may go far to improve the
quality of TDQN’s actions.

Second, recent work on transformer-based neural ar-
chitectures has yielded impressive gains in many NLP
tasks (Devlin et al. 2018), including text-adventure game
dialogues (Urbanek et al. 2019). We expect these advances
may be applicable to human-made IF games, but will need
to be adapted from a supervised training regime into rein-
forcement learning.

9 Conclusion

Interactive Fiction games are rich narrative adventures that
challenge even skilled human players. In contrast to other
video game environments like ALE (Machado et al. 2017),
Vizdoom (Kempka et al. 2016), and Malmo (Johnson et al.
2016), IF games stress natural language understanding and
commonsense reasoning, and feature combinatorial action
spaces. To aid in the study of these environment, we intro-
duce Jericho, an experimental platform with the key of fea-
ture of extracting game-specific action templates and vocab-
ulary. Using these features, we proposed a novel template-
based action space which serves to reduce the complexity
of full scale language generation. Using this space, we in-
troduced the Template-DQN agent, which generates actions
first by selecting a template then filling in the blanks with
words from the vocabulary.

We evaluated Template-DQN as well as a choice-based
agent DRRN and a general IF agent NAIL on a set of thirty-
two human-made IF games. Overall, DRRN outperformed
the other agents with Template-DQN in second place. How-
ever, in many senses these agents represent very different
training paradigms, sets of assumptions, and levels of handi-
cap. Rather than comparing agents we aim to provide bench-
mark results for future work in these three categories of
IF game playing. All in all, we believe Jericho can help
the community propel research on language understanding
agents and expect these environments can serve the commu-
nity as benchmarks for years to come.
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