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Abstract 
By modeling the context information, ELMo and BERT 
have successfully improved the state-of-the-art of word rep-
resentation, and demonstrated their effectiveness on the 
Named Entity Recognition task. In this paper, in addition to 
such context modeling, we propose to encode the prior 
knowledge of entities from an external knowledge base into 
the representation, and introduce a Knowledge-Graph Aug-
mented Word Representation or KAWR for named entity 
recognition. Basically, KAWR provides a kind of 
knowledge-aware representation for words by 1) encoding 
entity information from a pre-trained KG embedding model 
with a new recurrent unit (GERU), and 2) strengthening 
context modeling from knowledge wise by providing a rela-
tion attention scheme based on the entity relations defined 
in KG. We demonstrate that KAWR, as an augmented ver-
sion of the existing linguistic word representations, pro-
motes F1 scores on 5 datasets in various domains by 
+0.46~+2.07. Better generalization is also observed for 
KAWR on new entities that cannot be found in the training 
sets. 

1.  Introduction   
Named entity recognition plays an important role in vari-
ous applications such as search engines and question-
answering systems, and has always been studied as a se-
quence-tagging problem in Nature Language Processing. 
Recent progress is reported either by constructing more 
sophisticated classifiers like Bi-LSTM-CRF (Huang et al., 
2015) and Bi-LSTM-CNN (Chiu and Nichols, 2016) or by 
more powerful word representations like ELMo (Peters et 
al., 2018) and BERT (Devlin et al., 2018). In this paper, we 
focus on the representation part and propose a more de-
scriptive representation by introducing the information of 
entities and their relations which are defined in a 
knowledge base. 
 The motivation for this paper comes from an intuitive 
idea: the entities and their relations provided by the 
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knowledge base can provide strong signals to recognize the 
named entities. In a typical classifier for Named Entity 
Recognition (NER), such signals can be captured by man-
made features. To relieve the pressure on feature engineer-
ing and to provide a uniform word representation that is 
both context-aware and knowledge-aware, we present a 
knowledge-graph augmented word representation 
(KAWR). Specifically, the primary contribution of this 
paper is that 1) we introduce a new kind of word embed-
ding  based on the related entities in the knowledge 
graph through a novel Gated Entity-based Recurrent Unit 
or GERU, 2) based on  , we design a new attention 
function that is aware of entity relations, to provide 

 which models the relation context of the entities 
in the sequence, 3)  and  then concatenated 
with the embedding vector  from a standard lan-
guage model to provide more powerful features for classi-
fication. As will be demonstrated in the experiment sec-
tion, the KAWR can work with the existing context-aware 
word representations, and provide better results than BERT 
on five datasets by +0.46~+2.07 increase on F1 score. No-
ticeably, greater increases can be observed on small train-
ing-sets (which is often the case for domain-specific tasks) 
suggesting less dependency on the training set and better 
generalization for KAWR.  
 Although we are not the first to introduce the knowledge 
information into NLP models (Annervaz et al., 2018; Xin 
et al., 2018), this is the first time, to our best knowledge, 
that knowledge information is encoded into word represen-
tation and the text context is modeled based on the entity-
relations defined in the knowledge base.  
 The rest of the paper is organized as follows: We first 
present related work in section 1.1. We then describe the 
proposed methods and formulations in details in section 2, 
followed by experiments and results in section 3. We con-
clude our paper with discussion on future work in section 
4. 
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1.1 Related Work 
Language representation, which is the basis for many natu-
ral language processing problems, has been a hot research 
area for decades. Bags-Of-Words model was introduced in 
the last century and has dominated the text classification 
literature for a long time. The drawbacks are that the BOW 
model ignores the sequence of the words and discards con-
textual information. Language models based on n-gram are 
then proposed to model the probability distribution over 
sequences of words. However, due to the sparsity of the 
word combinations, it is difficult for n-gram to model long 
sequences. On the other hand, embeddings give language 
representation another form, where words or phrases are 
mapped into vectors in a continuous vector space with a 
much lower dimension (compared to the BOW vector 
space with one dimension per word). Various embedding 
techniques have been proposed (Mikolov et al., 2013; 
Omer et al., 2014; Rémi et al., 2014). This kind of continu-
ous and low-dimensional vector representation then greatly 
boosts neural network to capture high level linguistic char-
acteristics. For example, RNN models are used to 1) give 
the probability distribution on each word in the sentence as 
a general language model (Sundermeyer et al., 2012), 2) 
encode the entire sentence by the hidden states (Liu et al., 
2016); CNN models have also been proposed to capture 
the contextual information through convolution and pool-
ing (Conneau et al., 2017). Despite their success, word 
embeddings proposed then are context-independent, which 
means each word holds the same embedding vector across 
all the appearances in the text corpus. Therefore, the down-
streaming task should have a sophisticated network archi-
tecture that needs to be carefully designed to capture con-
textual information. To overcome this shortage, several 
contextual-aware representations based on either RNN or 
self-attention (Lin et al., 2017) were proposed in 2018. 
ELMo (Peters et al., 2018) sums up several bi-LSTM lay-
ers’ output vectors, while BERT (Devlin et al. 2018) intro-
duces Masked Language Model together with stacked 
transformers. These models significantly increase the ca-
pability of the word representations so that the task-
specific architectures can be simplified greatly to achieve 
the same or even better results. 
 However, such representation models capture essentially 
statistical language behavior, which is dependent to a large 
extent on the training corpus. So additional information 
that goes beyond datasets could be leveraged for better 
performance, especially in the case of domain-specific 
tasks where the training samples are often insufficient. 
Strubell et al. (2018) propose syntactically informed self-
attention by introducing the pre-trained syntactic model 
into self-attention encoders. They then demonstrate the 
effectiveness of the proposed model on the Semantic Role 
Labeling (SRL) task. 

 Knowledge Graph, which models world knowledge in 
the form of entities and facts, is another emerging research 
area in natural language processing, making its contribu-
tions to various applications from search engines to ques-
tion-answering systems. Typically, world knowledge is 
represented in the form of fact triplets (subject entity, rela-
tion, object entity), denoted by (h, r, t). Various KG em-
bedding techniques have been reported to encode the enti-
ties and relations into numerical representations since 
TransE (Bordes et al., 2013). While some techniques focus 
on graph structure encoding (Bordes et al., 2013; Xiao et 
al., 2015; Ji et al., 2015; Shi and Weninger, 2017), others 
are trying to learn entity/relation embeddings along with 
their semantic information (Xie et al., 2016; Zhong et al., 
2015). Soon these graph embeddings are used to benefit 
some NLP tasks. Annervaz et al. (2018) proposed a 
knowledge graph augmented neural networks where entity 
and relation vectors are retrieved by and then concatenated 
with the context vector (which encodes the entire input text 
by LSTM) for text classification. Xin et al. (2018) pro-
posed a new entity typing model by introducing knowledge 
attention which is formulated as function of the entity to be 
typed. 

2. The Proposed Model 
The basic idea of our proposed model is to encode the enti-
ty information into the word embeddings. These embed-
dings can be further used to strengthen context modelling 
by taking entity-relations into account, and provide a more 
powerful word representation that is not only context-
aware but also knowledge-aware. 

2.1 Word Embeddings Based on Entity 
We introduce here a new word embedding technique which 
is based on the entities in knowledge graph. Given an -
token sequence  and a knowledge graph  
(that contains entities, relations and fact triplets), the aim is 
to generate an output vector  for each token  based 
on the entities in .  
 Each token  in the sequence can be related to an entity 
set , where  is a related entity in the 
knowledge graph  , with  being the entity name or part 
of the entity name.  can be represented by a vector  
in a pre-trained embedding model. 
 Intuitively,  should be close to the embedding 
vector of the most probable (according to the context) enti-
ty. For example, considering the token “United” in the sen-
tence “Donald Trump is the president of the United States 
of America”, we get (through an Entity Retrieving opera-
tion) a set of entities related to “United” like “United States 
of America”, “United Nations” and “United Airlines” from 
the knowledge base. Ideally the output vector  for 
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word “United” in the above sentence should be close to the 
embedding vector of the entity “United States of America” 
due to the context “Donald Trump” and “States of Ameri-
ca”. 
 To achieve this, we design a recurrent neural network 
unit called Gated Entity-based Recurrent Unit (GERU), as 
illustrated in Figure 1. In GERU, where each token  is 
associated with an input vector , we use RNN to model 
the context of  , and generate  accordingly through 
an attention scheme over the related entities. 
 A typical attention scheme can be defined as a function 
to map a query and a set of key-value pairs to an output 

  (1) 

where the query vector is represented by  ,  vectors of 
keys and values are packed into matrices  and  respec-
tively, and  defines a distance measure function between 

 and . 

  
 In the proposed GERU, the forward context of  , de-
noted by , is formulated as a function of the previous 
hidden status   and the current input  with a reset 
gate .  (with a projection matrix ) is then regarded 
as the query vector  in the attention settings, where the 
keys  and values   are based on , which is a collection 
of the related entity embeddings  from the pre-trained 
KG embedding model. The formulations are as follows:  

   (2) 

   (3) 

   (4) 

where and are projection matrices, , , ,  
are parameters,  is the reset gate,   is the sigmoid func-
tion, and the distance measure in the attention function is 
defined as 

   (5) 

 We take  as an entity-based word representation 
for  with forward context. And  is also used to 
update the hidden state  

   (6) 

where is the update gate and defined as 

   (7) 

 The differences between GERU and a standard Gated 
Recurrent Unit (GRU) (Cho et al., 2014) are that: 1) the 
hidden status  is updated by using  in GRU, but we use 

 to update  in GERU in order to strengthen the 
signals directly from the related entities; 2) the output of 
GRU is usually given by projections on the hidden status 

, but the output of GERU ( ) is given by an atten-
tion over the related entities with regard to  as the query 
vector.  
 Similarly, we can get  based on the backward 
context through a backward GERU: 

  (8) 

  (9) 

  (10) 

  (11) 

 . (12) 

 Our proposed word embedding is then given by  

  (13) 

 The input vector , together with the matrices 
,  

 are model parameters to be learnt. We can also pre-
train these parameters by feeding  into a down-
streaming classification network. 

2.2 Attention Based on Entity Relationship 
Given the entity-based word embeddings described in 2.1, 
we introduce a new attention function to model the relation 
context of a word in the sentence. Given the sentence 

, the relation context of the word  refers to 
the relations (from the knowledge wise) between  and 
other words in the sentence. The basic idea is that when we 
are considering the context of a word , we need to pay 
special attention to those words that may have a relation 
with  in the knowledge graph. 
 For a typical KG embedding model, the entities and rela-
tions are encoded into vectors as  and  respectively, and 
the following equation holds when the fact triplet 

 exists in KG 

 
Figure 1 Gated Entity-based Recurrent Unit.  
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  (14) 

where  ,  and  are the embedding vectors of the sub-
ject entity , the object entity , and the relation  re-
spectively. 

 Considering  as the query entity and  as packed enti-
ties in the sequence, we then define a new attention func-
tion  over the entities in the sentence based on 
their relations with the query entity: 

  (15) 

where  provides a relation measure (instead of 
the distance measure in the typical attention function) be-
tween query vector  and key matrix  as follows 

  (16) 

  (17) 

  (18) 

where  is the -th entity vector in  with the dimension 
 and  is an  matrix which holds  vectors of 

the pre-defined relations, given   the embedding size of 
both entities and relations in KG.  is regarded as the rela-
tion vector between  and , and  is an  vector, 
measuring the similarities between  and the predefined  
relations.  is an  projection vector, where the -th 
element suggests how much attention we need to pay to  
if the -th pre-defined relation holds between   and . If 
we treat  as the unnormalized probability distribution 
over the  relations,  can then be considered as 
the expected attention we need to pay to  with regard to 

. 
 Let’s consider the sequence  with a fact 
triplet , where the subject entity  is repre-
sented by  , and the object entity is 
represented by . Since the word embed-
dings  for  given by GERU are close to the 
entity embedding , and  for  are close to , 
Equation (14) probably holds for  and : 

  (19) 

for  and . 
 Then  can be applied upon words through 

. In this way, we provide one more embedding vec-
tor  for token   to model the relation context in 
the sequence  as Equation (20) 

 (20) 

where is the output of GERU,  is the packed 
 for all the tokens,  is the packed  

which is the output from a typical language model,  is 
a projection matrix. 

 In the above formulations,  is a collection of all the 
relation vectors provided by a pre-trained KG embeddings, 

 and  are task-dependent parameters to be learnt. 

2.3 KG-Augmented Word Representation 
Given the -token sequence , we can get the 
embedding representation  for  from the lan-
guage aspect, through typical language models such as 
Self-Attentions (Lin et al., 2017) or Recurrent Neural Net-
works (Peters et al., 2018).  
 As described in previous sections,  and  
(the importance of which are evaluated through an ablation 
study in the experiment section) are proposed to encode the 
related knowledge information. We then concatenate the 
above 3 embedding vectors to get a new representation 
vector  (as Equation (21)), which we call KG-
Augmented Word Representation or KAWR as illustrated 
in Figure 2.  

  (21) 

 
 KAWR can work with different kinds of language mod-
els. If is generated by a simple context-
independent language model such as word vectors 
(Mikolov et al., 2013), we simply set , 
where is the input embedding vector that can be pre-
trained on large text corpus. If is based on con-
text-aware representation, such as ELMo or BERT, we can 
put relation attention not only over the input sequence , 
but also over the output sequences of the middle layers, to 
provide multiple attention heads, which are then concate-
nated together as . 

2.4 Model Training 
As mentioned in sections 2.1 and 2.2, the entity representa-
tion  can be pre-trained. And the language represen-
tation can either be pre-trained (in case we use 

 
Figure 2 Model Architecture of KAWR.  
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BERT or simple word vectors), or be trained along with 
the down streaming task (in case we use ELMo). The pa-
rameters and  in knowledge representation 

 are task-dependent, and need to be trained along 
with the down streaming task. 
 To pre-train the parameters in , we propose a 
multi-task learning process, where 3 tagging tasks (i.e. 
Named Entity Recognition, Chunking, POS-tagging) are 
trained by sharing the parameters in . The network 
structure is illustrated in Figure 3. The classifier for each 
task is a one-layer fully-connected network with softmax 
over the classes. The classification layers of the tasks are 
completely independent to each other without any connec-
tions. 
 The training process follows the protocol proposed in 
(Søgaard and Goldberg, 2016). Each time, we randomly 
choose a task, followed by a mini-batch of training sam-
ples. Then we predict the task label, compute loss with 
respect to the true label, and update the model parameters 
accordingly. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3. Experiments and Results 
In our experiments, we build KAWR based on the pre-
trained BERT and a KG embedding model, and compare 
KAWR with the original BERT on 5 datasets covering 
various domains.  

3.1 Pre-trained Knowledge Graph Embeddings 
Wikidata, hosted by Wikimeda Foundation, is a free and 
open knowledge database that can be edited collaboratively 
and used by anyone under a public domain license. With 
growing data donations such as migrating of  Freebase by 
Google, Wikidata now covers tens of millions of entities 
with descriptions and statements in various domains, and is 
becoming an important source to wiki-pages, such as Wik-
ipedia, Wikivoyage and Wikiquotes. On the other hand, 
despite the graph embedding techniques mentioned in sec-
tion 1.1, training embedding models on such a big graph 

remains challenging work. To solve this problem, Face-
book recently proposed a distributed system which is 
called PyTorch-BigGraph(PBG), for learning embeddings 
of extremely big graphs (Lerer et al., 2019). They also pro-
vide a pre-trained model (which is trained on Wikidata by 
using PBG) for download.  
 The model contains 78 million entities, 4131 types of 
relations, and 364,672,248 fact triplets extracted from the 
statement. To reduce the computational complexity of our 
experiments, we filter those entities and relations which are 
irrelevant to our training data, and keep the remaining 2.4 
million entities with 2.3 thousand relations and 9,563,453 
fact triplets during our experiments. Since the filtered enti-
ties are irrelevant and thus will never be retrieved, this fil-
tering pre-process does not affect the results. 

3.2 Experimental Setup 
Given the input token sequence , and the cor-
responding output sequence of BERT  

, we build our KAWR as the 
Equation(21) where 

  (22) 

 We then feed  and  into down-streaming 
classification layers on the target tasks for fine-tuning. 
 All experiments were carried on PowerEdge C4130 with 
Tesla P40 GPU with 20 GB of memory. The models are 
trained using AdamWeightDecayOptimizer which is based 
on stochastic gradient descent, and the hyper parameters 
are listed in Table 1. The training process are implemented 
using TensorFlow. And all the numbers reported in the 
following section are averaged over 5 random restarts. 

3.3 Results and Analysis 
We compare KAWR and BERT with two different classi-
fication layers. One is a simple classification layer (an FC 
layer) on each token, where the predictions are made not 
conditioned on the surrounding predictions (i.e., no LSTM 
or CRF layers). And another is a Bi-LSTM-CRF network 
(which is reported as the state-of-the-art technique on the 
tagging tasks (Huang et al, 2015)).  
 We report F1 scores with precisions and recalls of all the 
4 models (BERT-FC, KAWR-FC, BERT-Bi-LSTM-CRF, 

 
Figure 3 Multi-Task Learning Network for pre-training.  

Hyper-Parameter Value 
Batch-size 16 

Learning rate 2e-5 
KG-embedding Dimension 200 

Word embedding Dimension 768 
GERU hidden status Dimension 200 

Table 1 Hyper-parameters we used in our experiments.  
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KAWR-Bi-LSTM-CRF) on 5 different data sets covering 
various domains, such as newswire (CoNLL2003), mo-
lecular biology (Genia), biomedical (NCBI), financial 
(SEC) and the noisy user-generated text (WNUT16). The 
specifications of the data sets are listed in Table 2. And the 
results are presented in Table 3. 
 KAWR outperforms the original BERT on all of the 
experiments, by +0.46~+2.07 with the FC classifier, and by 
+0.21~+2.86 with the Bi-LSTM-CRF classifier. Interest-
ingly, KAWR-FC can even give comparable results with 
BERT-Bi-LSTM-CRF in most cases. We also notice that 
in the case of SEC and WNUT16 where training sizes are 
small, KAWR wins by a larger margin, +1.97 and +2.07 
respectively, which suggests KAWR relies less on the 
training sizes and holds better generalization than BERT 
due to the introduction of knowledge information. For ex-
ample, the improvements on SEC are mainly reported on 
“LOC (F1 66.67 vs 63.41) and “ORG”(F1 47.17 vs 42.59) 
thanks to the entities defined in knowledge graph.  

 We did a T-test on F1 scores of 10 random restarts for 
BERT-FC and KAWR-FC on CoNLL2003, and got p-
value 0.023 which suggests the significance. Learning 
curves of different models are illustrated in Figure 4, where 
we can see KAWR performs consistently better than BERT 

(especially in the early stage when the training set is 
small). 
 A number of good cases of KAWR that fail in BERT are 
listed in Table 4, where we can see that by introducing the 
entities and relations, KAWR can make the right predic-
tions in those cases where linguistic context is insufficient. 
In the first case (from soccer news in dataset CoNLL2003), 
the baseline model recognizes the word "ARSENAL" as a 
PER entity (probably due to the linguistic context 
“SAVE”) and our model gives the right prediction as an 
ORG entity (probably due to the knowledge triplet: (“Vier-
ia”, “Arsenal”, “member of sports team”)).  
 In case 2 (from the user-generated twitter text 
WNUT16) where the text is too short to provide enough 
linguistic contextual information, BERT cannot recognize 
the entity "Marvin Gaye" while KAWR successfully pre-
dicts the entity as Person because  for the words 
“Marvin” and “Gaye" carry the entity information from 
KG. 

 In case 3 (from domain specific text Genia), the baseline 
model predicts the "MnSOD" as O because it has never 
seen the word in the training corpus, while KAWR makes 
the right prediction as B-protein thanks to the entity infor-
mation from KG.  

Dataset No. of 
classes 

Training 
size 

Testing 
size 

CoNLL2003 4 14041 3453 
Genia 5 18546 3856 
NCBI 4 6102 1014 
SEC 4 1169 306 
WNUT16 10 1900 254 

Table 2 Dataset Specifications.   
Figure 4 Learning curve on CoNLL2003.  

Task  BERT-FC KAWR-FC BERT+BiLSTM+CRF KAWR+BiLSTM+CRF 

CoNLL2003 
F1 90.89 91.78 (+0.89) 91.56 91.80 (+0.24) 

Prec. 90.08 91.10 90.99 91.40 
Recall 91.71 92.47 92.13 92.20 

Genia 
F1 72.22 72.68 (+0.46) 72.48 72.69 (+0.21) 

Prec. 67.82 68.40 68.13 68.64 
Recall 77.22 77.52 77.42 77.25 

NCBI 
F1 78.40 79.43 (+1.01) 78.78 80.55 (+1.77) 

Prec. 75.56 77.13 77.21 78.21 
Recall 81.46 81.88 80.42 83.02 

SEC 
F1 79.03 81.1 (+2.07) 80.22 83.08 (+2.86) 

Prec. 76.73 77.27 76.95 80.95 
Recall 81.47 85.33 83.78 85.33 

WNUT16 
F1 56.94 58.91 (+1.97) 59.65 61.78 (+0.74) 

Prec. 55.56 58.70 57.43 65.57 
Recall 58.39 59.12 62.04 58.39 

Table 3 Overall performance on different data sets.  
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 In the last case (from SEC dataset), KAWR recognizes 
“Ashford” as “ORG” correctly because it is an organi-

zation-entity in KG while BERT gives a wrong prediction 
“PER”. 

We did ablation study on SEC to evaluate the im-
portance of the proposed entity and relation embeddings in 
KAWR. The results are shown in Table 5. The Entity-
embedding (with GERU) contributes stronger than rela-
tion-embeddings do. And the effectiveness of GERU has 
also been demonstrated. The second model 

(BERT+EntityEmbedding without GERU) simply averages 
the related entity embeddings and gets less F1 scores com-
pared with GERU version. 
 To further investigate the capabilities of generalization 
(which is important for domain-specific tasks where train-
ing data are often insufficient) for both representations, we 
evaluate their performances on a subset of testing dataset 
that contains only the entities which are unseen in the train 
data. The results are reported in Table 6. 
 Not surprisingly, KAWR shows even more significant 
improvement over BERT on the sub test sets than on the 
full test sets for most cases. The reason is that the represen-
tation from the entity side  carries the information 
of a set of related entities, which can be used to give a hint 
on a new entity that shares the same word. 
 We also compare KAWR with BERT on different lan-
guages, such as German from CoNLL2003, Spanish and 
Dutch from CoNLL2002. The experiments show consistent 
results (Table 7) with that on English, where KAWR gives 
higher F1 scores. 

4. Conclusion and Future Work 
In this paper we proposed a new word representation 
KAWR for named entity recognition. KAWR is an aug-
mented version of existing language representations by 

No Cases Task Model Predictions 

1 
SOCCER - VIEIRA(B-PER) SAVES ARSE-
NAL(B-ORG) WITH LAST-MINUTE 
EQUALISER 

CoNLL2003 
BERT VIEIRA (B-PER)  

ARSENAL (B-PER) 

KAWR VIEIRA (B-PER)  
ARSENAL (B-ORG) 

2 #BlackHoliday Marvin(B-person) Gaye(I-
person) Day WNUT16 

BERT Marvin (B-other) 
Gaye (I-other) 

KAWR Marvin (B-person) 
Gaye (I-person) 

3 ethanol increased HepG2 cell MnSOD(B-
protein) activity... Genia BERT MnSOD (O) 

KAWR MnSOD (B-protein) 

4 …contributions made by the investor and Ash-
ford (ORG)… SEC 

BERT Ashford (PER) 
KAWR Ashford (ORG) 

Table 4 Typical Case Comparison on NER tasks.  

Models F1 score 
BERT 80.22 
BERT+EntityEmbedding (without GERU) 80.59 
BERT+EntityEmbedding (with GERU) 82.58 
BERT+RelationEmbedding 81.09 
KAWR 83.08 

Table 5 Ablation Study on SEC 

Task  BERT-FC KAWR-FC 

CoNLL2003 
F1 90.13 90.78 (+0.65) 

Prec. 90.09 90.99 
Recall 90.16 90.56 

Genia 
F1 70.63 71.12 (+0.49) 

Prec. 67.40 68.04 
Recall 74.19 74.48 

NCBI 
F1 70.95 72.71 (+1.76) 

Prec. 69.01 71.53 
Recall 73.00 73.93 

SEC 
F1 49.49 58.88 (+9.39) 

Prec. 47.57 56.86 
Recall 51.58 61.05 

WNUT16 
F1 52.97 55.66 (+2.69) 

Prec. 55.24 60.20 
Recall 50.88 51.75 

Table 6 Performances on new entities.  

Task  BERT-FC KAWR-FC 

German 
(CoNLL2003) 

F1 87.33 87.45(+0.12) 
Prec. 87.09 87.63 

Recall 87.57 87.28 

Spanish 
(CoNLL2002) 

F1 87.56 87.81(+0.25) 
Prec. 87.25 87.50 

Recall 87.87 88.12 

Dutch 
(CoNLL2002) 

F1 90.11 91.23(+1.12) 
Prec. 90.32 91.31 

Recall 89.90 91.14 

Table 7 Performances on different languages.  
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encoding entity information (from an external knowledge 
base) through a new gated recurrent unit GERU and by 
modeling the relation context between entities through a 
new attention function . Our experiments 
show that KAWR outperforms BERT on 5 different data 
sets from different domains, especially in the cases where 
the training sets are small. 
 Since the knowledge information carried by KAWR 
may also facilitate other NLP tasks like text classifying, 
machine translation and question answering, we think that 
KAWR could be a general word representation. Therefore, 
we will explore the potentials of KAWR on other NLP 
tasks as future work. 
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