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Abstract

As numerous modern NLP models demonstrate high-
performance in various tasks when trained with resource-rich
language data sets such as those of English, there has been a
shift in attention to the idea of applying such learning to low-
resource languages via zero-shot or few-shot cross-lingual
transfer. While the most prominent efforts made previously
on achieving this feat entails the use of parallel corpora for
sentence alignment training, we seek to generalize further by
assuming plausible scenarios in which such parallel data sets
are unavailable. In this work, we present a novel architecture
for training interlingual semantic representations on top of
sentence embeddings in a completely unsupervised manner,
and demonstrate its effectiveness in zero-shot cross-lingual
transfer in natural language inference task. Furthermore, we
showcase a method of leveraging this framework in a few-
shot scenario, and finally analyze the distributional and per-
mutational alignment across languages of these interlingual
semantic representations.

Introduction

One of the greatest imbalances in the field of natural lan-
guage processing (NLP) is the uneven availability of training
data between high-resource and low-resource languages. For
instance, while one can easily train a model for an English
natural language inference (NLI) task using the widely avail-
able English NLI training data (Williams, Nangia, and Bow-
man 2018; Bowman et al. 2015), it is difficult to train an ef-
fective counterpart in languages such as German or Arabic,
simply because there does not exist suitable labeled dataset
in these languages that can be used for training. As a result,
there exists substantial untapped potential for applications
of NLP models in these low-resource languages, leading to
increased efforts within the research community to explore
cross-lingual transfer techniques (Conneau et al. 2018).

The logical first step in overcoming this imbalance is
translating the training data from English to the language-
of-interest, and then training a language-specific model on
top of it (translate-train). On the other hand, one could also
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translate the test data into English at evaluation time and rely
on an already trained English-based model (translate-test).
However, both of these approaches would require a sepa-
rate neural machine translation (NMT) system, which is not
highly applicable to low-resource languages in that training
these NMT systems typically require massive amounts of
parallel corpora to begin with, although there has been ef-
forts made recently to train NMT systems in an unsupervised
manner (Artetxe et al. 2017; Yang et al. 2018).

Interlingual Semantic Representations. In the last ap-
proach discussed above (translate-test), English was used as
the lingua franca for solving NLI tasks. Now, we take this
idea of a ‘medium-language’ one step further. If we reduce
the function of a language as merely a method of encoding
semantics in the form of strings of text, we can then sur-
mise that there exist language-agnostic semantic representa-
tions (whatever its form, or syntax, may be) that can serve as
an interlingual medium. For instance, international auxiliary
languages such as Esperanto, Ido, and Interlingua have been
developed to serve this exact purpose.

While we are not interested in developing an actual lan-
guage as such, we may be interested in training interlin-
gual semantic representations (ISR) that can serve as a suit-
able medium of semantic embedding on top of which task-
specific models can be trained. In fact, as the common prac-
tice within NLP is to train models on top of embeddings
(Mikolov et al. 2013; Gong et al. 2018), there would not be
a need for ISR to be reduced all the way back to the text
level as ordinary language is usually presented to humans.
The idea here is that the ISR for the English sentence “I am
hungry” and French sentence “J’ai faim” would both map to
proximal embedding spaces that represent the general con-
cept of a first person singular subject expressing hunger.

With ISR as an effective embedding space for repre-
senting semantic information and assuming that an effec-
tive conversion — or translation — mechanism for encod-
ing sentence embeddings of any language (high- and low-
resource) into ISR exists, we can then easily leverage train-
ing data in whatever available language to develop models
for under-resourced languages. For instance, we can train a
NLI solver using the widely available English NLI training
data converted to ISR. Then, this same classifier can be used
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at evaluation time for any low-resource language likewise
converted to ISR.

Through this architecture, we are able to stray away from
relying on a certain language as being lingua franca, but
rather come up with a unified interlingual framework. Fur-
thermore, this architecture allows training to occur with
training data from more than one language (since task-
specific models are trained on top of semantic representa-
tions, not bound by the syntax of a specific language), when
not enough training data exist within a single language.

Thus far, the most prominent effort made on tackling
this problem involves producing shared embeddings via
sentence alignment training between languages, which re-
quires significant parallel corpora. However, given that low-
resource languages are lacking in parallel corpora by defini-
tion, we are naturally interested in training an ISR-producing
encoder in a fully unsupervised manner, for maximum scal-
ability. In this paper, we propose a novel method of imple-
menting unsupervised training of ISR on top of sentence
embeddings, for pan-lingual transfer of learning done via
high-resource language(s) to applications in low-resource
language(s).

Main Contribution. We summarize our main contribu-
tion as three-fold:

• We describe our unsupervised method of leveraging
easily-attainable monolingual corpora for training an ISR
encoder that can convert fixed sentence embeddings from
any language into ISR.

• We demonstrate the effectiveness of this framework in
zero-shot cross-lingual transfer, showcase a few-shot sce-
nario in which training data from a high-resource lan-
guage can be used to augment training done on a low-
resource language, and finally analyze distributional and
permutational alignment of ISR converted from multiple
languages.

• We provide the code implementations for training the ISR
encoder as well as the task-specific classifier on top of
ISR (github.com/ChannyHong/ISREncoder).

Related Works

Benchmark for Zero-Shot Transfer. Reflecting the re-
cent trend of increased interest in cross-lingual studies, the
multilingual XNLI benchmark (Conneau et al. 2018) has
been proposed as a comprehensive suite of NLI evaluations
for non-English languages, by providing high-quality trans-
lation (by certified translators) of the MNLI development
(2500 examples) and test datasets (5000 examples) into 14
different languages. The MNLI dataset itself is shown to be a
comprehensive benchmark for the full complexity of the En-
glish language (Williams, Nangia, and Bowman 2018), of-
fering examples from multiple genre domains which makes
it a substantially more difficult task than the previous Stan-
ford NLI benchmark (Bowman et al. 2015). Thus, the XNLI
benchmark in turn represents a challenging body of devel-
opment and test datasets in 15 different languages.

Cross-Lingual Sentence Alignment. One idea for tack-
ling this problem is by training an encoder that embeds sen-
tences in any language to ISR in such a way that seman-
tically equivalent sentences across languages would map to
proximal embedding spaces via sentence alignment training.

For example, a multilingual sentence encoder is trained
using large amounts of parallel corpora by aligning parallel
sentences via minimization of distance between their lan-
guages (Artetxe and Schwenk 2018). Similarly, a multi-task
dual-encoder model (Chidambaram et al. 2018) applied sim-
ilar sentence alignment as the bridging translation task of
their multi-step encoder training procedure.

While these efforts have shown substantial results, sen-
tence alignment techniques are ultimately limited by the ex-
tent to which parallel corpora is available.

Distribution Alignment. On the other hand, UG-WGAN
(Aghajanyan, Song, and Tiwary 2019) approached this prob-
lem by aligning the overall distribution shape of embedding
spaces of each language by minimizing the Wasserstein dis-
tance amongst them. While this approach does not theoreti-
cally guarantee permutational alignment of sentences within
distribution as the previous methods that leverage parallel
corpora do, it nonetheless provides an interesting direction
in which this problem can be addressed in an unsupervised
manner.

In general, other ideas and methods of distribution align-
ment can be derived from generative adversarial networks
(Goodfellow et al. 2014) such as WGAN (Arjovsky, Chin-
tala, and Bottou 2017) and domain adaptation methods such
as gradient reversal layer (Ganin and Lempitsky 2015).

Generative Adversarial Networks. In fact, the concept
of distribution alignment is analogously used within the
realm of computer vision. Notably, the idea of generative
adversarial networks (GAN) have been successfully applied
in image generation, wherein the generator is induced by
adversarial loss minimization to generate outputs within a
distribution that matches the target distribution, thus fooling
the discriminator (Goodfellow et al. 2014).

Furthermore, CycleGAN (Zhu et al. 2017) demonstrates
significant results in image-to-image translation only us-
ing unpaired sets of images as training data, by introduc-
ing reconstruction — or cycle consistency — loss to further
minimize the possibility of permutational mismatch within
matching distribution. Likewise, the applicability of adver-
sarial and reconstruction loss within NLP is shown by He et
al. (2016), whereby a NMT system is trained only using an
unpaired set of monolingual corpora by including adversar-
ial game and back-translation within training.

Finally, Choi et al. (2018) extends the dual approach taken
by Zhu et al. (2017) to n-way, by further introducing mask
vectors and classification loss, thus inducing the generator
to generate images of correct target domain out of n (not
binary) domains.

Proposed Method

We describe our proposed method of training an encoder enc
that produces interlingual semantic representations (ISR)
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Figure 1: Overview of our proposed method of training an encoder that produces ISR, which map semantically equivalent
sentences to proximal embeddings. Note that once the encoder is sufficiently trained for zero-shot transfer, task-specific models
would be trained on top of the fixed forward-translation ISR.

that can be used for cross-lingual zero-shot transfer tasks.
We outline the entire training procedure in Figure 1.

To achieve this, we train a single Generator G — consist-
ing of aforementioned enc plus a decoder dec — that gener-
ates sentences in target domains given real sentences in their
original domains. Within the same model, we jointly train a
Discriminator D that performs the following two tasks: dis-
tinguishing whether a given sentence is real or generated,
plus classifying the domain of a given sentence (both real
and generated).

Initially, enc is fed a sentence embedding with its origi-
nal domain label, producing the ISR of the sentence. Then,
dec is fed the ISR along with a randomly selected target do-
main label (which includes the original domain), producing
the generated (‘translated’) sentence embedding. Note that
a single encoder and a single decoder are used for every
language used in training. The D is fed both the original
(real) sentence and the generated sentence embeddings, dis-
tinguishes whether each sentence embedding is real or gen-
erated, and classifies its domain (language).

Our framework extends the multi-domain translation ar-
chitecture (Choi et al. 2018) within NLP by taking advan-
tage of the fact that the nature of cycle consistency serendip-
itously stages a set of parallel sentence embeddings at each
training step. Thus, we introduce our ISR consistency loss,
which minimizes the distance between ISR of both forward-
translation and backward-translation directions, thereby in-
ducing permutational alignment by performing an ISR-
variant of sentence alignment training.

For our enc to produce the ISR within this framework, we
assign the following losses to our optimizer:

Adversarial Loss. For G to generate (translate) sentence
embeddings that are indistinguishable from real sentence
embeddings, we adopt the following adversarial losses:

LadvD
= − Exls

[logDsrc(xls)]

+ Exls ,ls,lt
[log(Dsrc(G(xls , ls, lt)))]

LadvG
= −Exls ,ls,lt

[log(Dsrc(G(xls , ls, lt)))]

(1)

where G generates sentence embeddings given a real sen-
tence embedding (of a source language) and a target domain
(target language), while D tries to distinguish between real
and generated sentence embeddings (Dsrc refers to the prob-
ability distribution of D distinguishing an input sentence
embedding as being real). In essence, G tries to generate
sentence embeddings that D would distinguish as being real,
while D tries to correctly distinguish between the two.

For our implementation, we update the above adversarial
losses by adopting the widely-used Wasserstein GAN objec-
tive with gradient penalty (Gulrajani et al. 2017) to D’s loss
function:

LadvD
= − Exls

[Dsrc(xls)]

+ Exls ,ls,lt
[Dsrc(G(xls , ls, lt))]

+ λgpEx̂[(‖∇x̂Dsrc(x̂)‖2 − 1)2]

LadvG
= − Exls ,ls,lt

[Dsrc(G(xls , ls, lt))]

(2)

Domain Classification Loss. For G to generate sentence
embeddings into the correct target domain (i.e. ‘translate
sentences into correct target language’) we adopt the follow-
ing domain classification loss:
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Lr
cls = Exls ,ls

[− logDcls(ls|xls)]

Lg
cls = Exls ,ls,lt

[− logDcls(lt|G(xls , ls, lt))]
(3)

where D is trained to correctly classify the domain (i.e.
language) of real sentence embeddings, while G is trained
to generate (translate) sentence embeddings that would be
correctly classified by such D.

Reconstruction Loss. While the adversarial losses moti-
vate G to produce real-like sentence embeddings and the
classification losses likewise motivate G to produce sentence
embeddings in the target domain label, we are yet to ensure
that the semantic information is preserved during the genera-
tion (translation) process. To address this issue, we introduce
the following reconstruction (cycle consistency) loss:

Lrec = Exls ,ls,lt
[d(xls , G(G(xls , ls, lt), lt, ls))] (4)

where d(·, ·) represents the distance measure between em-
beddings. Here, G is used twice, first to generate sentence
embedding from original domain to target domain, then to
reconstruct the original sentence embedding from target do-
main back to the original domain. G is trained to minimize
the difference between the original and reconstructed sen-
tence embeddings, thereby motivating the preservation of
semantic information across the training flow.

ISR Consistency Loss. For our encoder to produce ISR
that maps semantically parallel sentence embeddings from
different domains into practical equivalence, we take advan-
tage of the fact that we are essentially generating a set of
parallel sentence embeddings during training, and that the
semantic information is preserved throughout the training
flow via the aforementioned reconstruction loss. In order for
us to capture the language-agnosticity of our ISR, we intro-
duce the following ISR consistency loss:

Lisr = Exls ,ls,lt
[d(enc(xls , ls), enc(G(xls , ls, lt), lt))]

(5)

where we are minimizing the distance between ISR of the
forward-translation and that of the backward-translation di-
rections.

Note that by ensuring that our enc maps semantically
parallel sentence embeddings from two different domains
(i.e. original and target domains) to practical equivalence,
the random combinations of domain pair-wise matching
(since target label is randomly selected during training) ef-
fectuates domain distribution matching of every language
used in training. Furthermore, the granularity of distribution
matching via difference minimization between ISR from
semantically-parallel sentence pairs ensures permutational
synchronization of ISR beyond the naive distribution match-
ing, as discussed earlier.

Full Loss Functions. We combine the adversarial, domain
classification, reconstruction, and ISR consistency losses for
both D and G to define the full loss functions as the follow-
ing:

LD = LadvD + λDcls
Lr
cls

LG = LadvG + λGcls
Lg
cls + λrecLrec + λisrLisr

(6)

where each loss is prefixed with its corresponding λ indi-
cating their relative importance during training.

Experimental Setting

For our experiments, we evaluate the effectiveness of our
framework in zero-shot transfer performances on non-
English NLI tasks, with English as the designated high-
resource language. For zero-shot evaluations, we intention-
ally chose two languages that are linguistically near (Span-
ish, German), and two that are linguistically distant (Chi-
nese, Arabic). For our few-shot scenario, we chose Chinese
based on availability of NLI training examples.

Datasets

XNLI. The primary metric we used for zero-shot trans-
fer evaluations was the XNLI benchmark. The XNLI bench-
mark provides 2500 development examples and 5000 test
examples that are translated by humans via the One Hour
Translation service and further curated by Conneau et al.
(2018). Furthermore, XNLI provides the machine-translated
versions of 392,702 MNLI training examples into each 14
languages, translated by NMT systems that saw parallel cor-
pora during their own trainings. We report our accuracies
measured from performance against the XNLI test set.

CNLI. For our few-shot scenario, we use the Chinese NLI
(CNLI) dataset1 which includes 90,000 training examples,
10,000 development examples, and 10,000 test examples, all
in Chinese. We again report our accuracies measured against
the test set.

Monolingual Corpora. For our monolingual corpora,
we used WikiExtractor2 to extract the publicly available
Wikipedia dumps for English, Spanish, German, Chinese,
and Arabic. We then performed clean-up on the sentences
as necessary. Subsequently, we randomly sampled 400,000
sentences for our use.

Zero-Shot Evaluation

We used the publicly available BERT-Base multilingual
cased model (Devlin et al. 2019) – pre-trained unsupervis-
edly on masked language modeling and next sentence pre-
diction tasks – as our meaningful representations of text.
Note that BERT only uses monolingual corpora during its
own training, which fits the unsupervised training scenario
of our main model. An attribute not explicitly intended by its
pre-training objectives, BERT has been shown to be surpris-
ingly effective in zero-shot cross-lingual transfer by itself
(Pires, Schlinger, and Garrette 2019), and we seek to build
our framework on top of it and demonstrate stronger perfor-
mance than this already solid baseline.

1http://www.cips-cl.org/static/CCL2018/call-evaluation.html
2https://github.com/attardi/wikiextractor
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Model Type en es de zh ar
Supervised (parallel corpora, separate model for each language)
NMT + BERT (Devlin et al. 2019) (Translate-Train) 63.8 61.4 60.7 60 56.9
X-CBOW (Conneau et al. 2018) 64.5 60.7 61.0 58.8 57.5
Multi-Task en-es (Chidambaram et al. 2018) 70.2 65.2 - - -
Multi-Task en-de (Chidambaram et al. 2018) 71.5 - 65.0 - -
Multi-Task en-zh (Chidambaram et al. 2018) 69.2 - - 62.8 -
Unsupervised (monolingual corpora, single model)
BERT (Devlin et al. 2019) 63.8 57.1 51.9 53.4 50.2
BERT + ISR (Ours) 65.4 60.4 58.8 58.4 55.4

Table 1: XNLI evaluations for two near (Spanish, German) and two distant (Chinese, Arabic) languages with English as the
base language. Translate-Train entails a supervised NMT system that translates training examples into respective languages,
while models by Conneau et al. (2018) and Chidambaram et al. (2018) are supervisedly pre-trained multilingual encoders with
classifier on top, trained with English training examples only. Finally, the baseline model (BERT) and our main model are
unsupervisedly pre-trained encoders frozen with task-specific classifier on top, again trained with English training examples
only.

For our fixed sentence embeddings, we used the bert-as-
service library (Xiao 2018) and specifically its default set-
tings, which produces a 768-dimensional BERT sentence
embedding (BSE) for each sentence string.

Translate-Train. We provide evaluation on the translate-
train method as previously discussed. We train separate NLI
solvers directly on top of BSE for each language, using
machine-translated Spanish, German, Chinese, and Arabic
training examples provided by Conneau et al. (2018). We
then run evaluation of the models on XNLI test examples of
each language. Note that this method utilizes parallel cor-
pora during the training of the NMT systems and there-
fore cannot be directly compared against our unsupervised
model.

Baseline (BERT). For our baseline, we train an English-
based NLI solver directly on top of BSE, using the MNLI
English training examples. We then run evaluation of the
model on the XNLI English test examples (equivalent to
the MNLI test examples) and on zero-shot transfers against
XNLI Spanish, German, Chinese, and Arabic test examples.

Main Model (ISR). For our main model, we trained our
encoder with easily attainable monolingual corpora in En-
glish, Spanish, German, Chinese, and Arabic, per training
procedures described in the previous section. After suffi-
cient training, we froze our encoder. Then, we trained a NLI
solver on top of ISR, converted from MNLI English training
examples by our trained encoder. We perform evaluations on
zero-shot transfer against XNLI Spanish, German, Chinese,
and Arabic test examples, each converted to ISR.

Few-Shot Evaluation

Mixed Language NLI Classifier. For our few-shot sce-
nario, we devise a situation in which the language-of-interest
lacks sufficient training examples on its own for training a
NLI model, and thus requires augmentation from a high-
resource language. We leverage the unique characteristic of
our framework which trains task-specific models on top of
semantic representations (unbounded by language-specific

syntax), which allow training examples from mixture of lan-
guages to be utilized. We run evaluations on the CNLI test
set using varying number of CNLI training examples for
training, specifically 10, 20, 50, 100, 200, 500, 1000, 2000,
5000, and 10000 examples.

We first train models directly on top of BSE of the Chi-
nese CNLI training examples (similar to our baseline model
from the zero-shot evaluations) then evaluate their perfor-
mances against the CNLI test set. Then, we also train mod-
els on top of ISR converted by our frozen ISR encoder (same
main model from the zero-shot evaluations), but this time
augment each variation in the number of CNLI training ex-
ample used with the full MNLI English training examples.
By comparing the two methods, we are able to analyze how
much high-resource language data augmentation improves
performance by and at how many language-of-interest train-
ing examples do improvements from such data augmenta-
tion become trivial.

Implementation Details

For every method described above, the task-specific NLI
solver consist of a single feed-forward layer followed by a
three-way classification layer feeding as input the concate-
nation of the premise and the hypotheses embeddings. We
now enumerate the specific implementation details of our
main model.

Assuming the language-like nature of our ISR, we set the
dimension of our ISR to be equal to that of BSE. When feed-
ing an input sentence and its domain label to the encoder,
we simply concatenated the domain label one-hot vector
(i.e. [1,0,0,0,0] represents ‘English’ whilst [0,0,0,1,0] rep-
resents ‘Chinese’) to the 768-dimensional BSE. Likewise,
when feeding ISR and destination domain label to the de-
coder, we again concatenated the domain label one-hot vec-
tor to the 768-dimensional ISR.

For our Generator, we used 2 upsampling layers, 4 feed-
forward layers, and 2 downsampling layers for each en-
coder and decoder (16 layers total). The Discriminator of
our model used 2 shared upsampling layers, 1 shared feed-
forward layer, 2 shared downsampling layers, and 1 classi-
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fication layer for each adversarial loss and domain classi-
fication loss (6 layers total). Our model is implemented in
Tensorflow.

In order to help us decide when to halt training of our en-
coder, we performed mid-training evaluations on Discrim-
inator’s sentence classification task and also attached an
English-based baseline NLI solver atop sentence embed-
dings generated into English (as their target domain). We
stopped training of our encoder when the generator seemed
to be reasonably functional in generating sentences of cor-
rect target domain (classification task accuracy) without los-
ing the semantics of the original sentence (English NLI solv-
ing accuracy).

We found that λGcls
of 10 worked best for training ISR

(while holding all other λ to 1). We adopt the L2 distance
as our distance measure between embeddings. Training took
about 60 hours on a single Tesla T4 GPU.

Results and Discussion

ISR for Zero-Shot Evaluation

We report the results of the zero-shot evaluations of our main
model in Table 1, alongside those of the baseline model
(BERT), and evaluations on models utilizing parallel cor-
pora including translate-train and pre-trained encoders from
related works (Chidambaram et al. 2018; Conneau et al.
2018).

Our main model demonstrates significant improvements
in zero-shot transfer in comparison to the baseline model,
showing an average of slightly over 4% increase in accuracy
from the baseline. Furthermore, our model shows compara-
ble results to the translate-train method which utilizes paral-
lel corpora, trailing by an average of around 1.5%.

It should be further noted that consistent with the results
shown by Pires, Schlinger, and Garrette (2019), our base-
line model (BERT) demonstrates already strong zero-shot
transfer performance. Finally, it is interesting to note that
the XNLI English evaluation yielded stronger results for our
main model than it did for the baseline model (by 1.6%), in-
dicating that ISR provide richer representation of semantics
on top of which NLI solver can be trained, in comparison to
the syntax-bound language-specific embeddings of the base-
line model.

ISR for Few-Shot Evaluation

We also report the results of our few-shot scenario in Figure
2, where it is shown unsurprisingly that high-resource lan-
guage data augmentation leads to significant performance
boost as shown by the gap between CNLI only and CNLI
+ MNLI. From 14.6% difference at 10 CNLI training exam-
ples used, the performance boost via data augmentation con-
verges to around 1% at 10,000 CNLI training examples used.
While more CNLI training examples used improve model
performance in general, the gap holds at around 1% until
the full 90,000 CNLI training examples (not shown in Fig-
ure 2); thus, we qualify the extent of the performance boost
from leveraging our framework to around 10,000 training
examples available in the language-of-interest.
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Figure 2: CNLI evaluations of our few-shot scenario, com-
paring the performance of a model trained on CNLI train-
ing examples only against a model augmented with high-
resource language training examples via our proposed
framework.

Ablation Studies

To evaluate the significance of the various losses defined by
our main model, we run a series of ablation studies. We ad-
ditionally trained 3 separate models ec absent in one of ISR
consistency loss (λisr = 0), classification loss (λD,Gcls

=
0), or reconstruction loss (λrec = 0); the rest of the experi-
ment setting was held exactly the same as was for the train-
ing of our main model.

We report the results of the three additional models’ zero-
shot evaluations in Table 2. While λisr = 0 and λD,Gcls

=
0 models show trailing but comparable results to the main
model, λrec = 0 model fails to produce meaningful ISR for
training of a NLI solver to take place.

Model Type en es de zh ar
BSE (Baseline) 63.8 57.1 51.9 53.4 50.2
ISR (λisr = 0) 65.2 57.9 55.0 55.8 50.4

ISR (λD,Gcls
= 0) 60.1 56.1 52.6 51.2 50.0

ISR (λrec = 0) 37.6 36.3 36.0 38.0 37.4
ISR 65.4 60.4 58.8 58.4 55.4

Table 2: XNLI zero-shot evaluations of models absent each
in ISR consistency loss, classification loss, or reconstruction
loss.

Now, in order to visually discern the role of each loss
for the ISR, we sampled 1000 parallel sentences for each
English, Spanish, German, Chinese, and Arabic from the
XNLI development set, and plotted each encoder’s ISR em-
beddings using t-SNE (Figure 3).

As expected, both the baseline (BERT) and the λD,Gcls
=

0 model mapped the sentences to the locality of each lan-
guage, while the λisr = 0 model and the main model
displayed extensive distribution matching amongst all lan-
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Figure 3: t-SNE visualization of 1000 parallel sentences from the English, Spanish, German, Chinese, and Arabic XNLI devel-
opment sets. Colors correspond to languages: English as teal, Spanish as blue, German as yellowish green, Chinese as purple,
and Arabic as red.

Figure 4: t-SNE visualization of the sentences from Figure
3, with a subset of sentences highlighted and edges drawn
between semantically parallel sentences.

guages. However, the λisr = 0 model seems to display more
pronounced localities within matching distribution, suggest-
ing poor permutational alignment between semantically par-
allel sentences.

To further illustrate this last observation, we select a sub-
set of sentences and draw edges to their semantically paral-
lel counterparts in order to visualize the permutational align-
ment of both the λisr = 0 model and the main model (Figure
4). The subset was selected based on sentences whose other-
language counterparts were closer than any other sentence
of that language. By noting the marked increase in the av-
erage distances between semantically parallel sentences, we
argue that the ISR consistency loss contributes significantly
to the permutational alignment of ISR.

Conclusion

In this work, we propose an entirely unsupervised method
of training interlingual semantic representations on top
of sentence embeddings for zero-shot cross-lingual trans-
fer. Through this architecture, we demonstrate how low-
resource languages can benefit from zero-shot or few-shot
transfer from learning done via training examples in high-

resource language(s). Furthermore, we present a series of
analyses that outline the significance of each component
of our training procedure. Although just a small step, we
hope that our work opens the door in a novel, scalable
direction in which this problem of lack of data in low-
resource language can be addressed; and in that spirit, the
code implementations we have used in this experiment and
the instructions for running them have been made public
(github.com/ChannyHong/ISREncoder).
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