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Abstract

Machine Reading Comprehension (MRC) for question an-
swering (QA), which aims to answer a question given the
relevant context passages, is an important way to test the
ability of intelligence systems to understand human language.
Multiple-Choice QA (MCQA) is one of the most difficult tasks
in MRC because it often requires more advanced reading com-
prehension skills such as logical reasoning, summarization,
and arithmetic operations, compared to the extractive coun-
terpart where answers are usually spans of text within given
passages. Moreover, most existing MCQA datasets are small
in size, making the task even harder. We introduce MMM, a
Multi-stage Multi-task learning framework for Multi-choice
reading comprehension. Our method involves two sequential
stages: coarse-tuning stage using out-of-domain datasets and
multi-task learning stage using a larger in-domain dataset to
help model generalize better with limited data. Furthermore,
we propose a novel multi-step attention network (MAN) as the
top-level classifier for this task. We demonstrate MMM sig-
nificantly advances the state-of-the-art on four representative
MCQA datasets.

1 Introduction

Building a system that comprehends text and answers ques-
tions is a challenging but fascinating problem, which can
serve as a proxy for measuring the machine’s ability to under-
stand human language (Hermann et al. 2015). Many machine
reading comprehension (MRC) based question answering
(QA) datasets have been introduced over the past few years,
which differ from each other in various ways, including the
source and format of the context documents, whether external
knowledge is needed, the format of the answer, to name a
few. We can divide these QA tasks into two categories: 1) ex-
tractive/abstractive QA such as SQuAD (Rajpurkar, Jia, and
Liang 2018), and HotPotQA (Yang et al. 2018). 2) multiple-
choice QA (MCQA) tasks such as MultiRC (Khashabi et al.
2018) and MCTest (Ostermann et al. 2018).

In general, in contrast to extractive/abstractive QA tasks,
the answers of the MCQA datasets are in the form of open,
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Dialogue

W: Come on, Peter! It’s nearly seven.
M: I’m almost ready.
W: We’ll be late if you don’t hurry.
M: One minute, please. I’m packing my things.
W: The teachers won’t let us in if we are late.
M: Ok. I’m ready. Oh, I’ll have to get my money.
W: You don’t need money when you are having the exam, do you?
M: Of course not. Ok, let’s go... Oh, my god. I’ve forgot my watch.
W: You’ll forget your head if you’re not careful.
M: My mother says that, too.
Question 1: What’s the relationship between the speakers?
A. Brother and sister. B. Mother and son. C. Classmates.

√
Question 2: What does the woman think of the man?
A. He is very serious. B. He is too careless.

√
C. He is very lazy.

Table 1: DREAM dataset examples (
√

: the correct answer)

natural language sentences and not restricted to spans in text.
Various question types exist such as arithmetic, summariza-
tion, common sense, logical reasoning, language inference,
and sentiment analysis. Therefore, it requires more advanced
reading skills for the machine to perform well on this task.

Table 1 shows an example from one of MCQA datasets,
DREAM (Sun et al. 2019). To answer the first question in
Table 1, the system needs to comprehend the whole dialogue
and use some common sense knowledge to infer that such a
conversation are most likely to happen between classmates
rather than brother and sister. For the second question, the im-
plicit relationship between the utterance “You’ll forget your
head if you’re not careful.” in the passage and the answer op-
tion “He is too careless.” must be inferred by the model to get
the answer right. Many MCQA datasets were collected from
language or science exams, which were purposely designed
by educational experts and consequently require non-trivial
reasoning techniques (Lai et al. 2017). As a result, the perfor-
mance on these tasks may more accurately gauge language
comprehension ability of a model.

Recently large and powerful pre-trained language models
such as BERT (Devlin et al. 2019) have been achieving the
state-of-the-art (SOTA) results on various tasks, however, its
effectiveness on MCQA datasets has been limited by the data
insufficiency. For example, the MCTest dataset has two vari-
ants: MC160 and MC500, which are curated in a similar way,
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and MC160 is considered easier than MC500 (Richardson,
Burges, and Renshaw 2013). However, BERT-based1 mod-
els perform much worse on MC160 compared with MC500
(8–10% gap) since the data size of the former is about three
times smaller. To tackle this issue, we investigate how to
improve the generalization of BERT-based MCQA models
with the constraint of limited training data using four repre-
sentative MCQA datasets: DREAM, MCTest, TOEFL, and
SemEval-2018 Task 11.

We proposed MMM, a Multi-stage Multi-task learning
framework for Multi-choice question answering. Our frame-
work involves two sequential stages: coarse-tuning stage us-
ing out-of-domain datasets and multi-task learning stage
using a larger in-domain dataset. For the first stage, we
coarse-tuned our model with natural language inference
(NLI) tasks. For the second multi-task fine-tuning stage, we
leveraged the current largest MCQA dataset, RACE, as the
in-domain source dataset and simultaneously fine-tuned the
model on both source and target datasets via multi-task learn-
ing. Through extensive experiments, we demonstrate that the
two-stage sequential fine-tuning strategy is the optimal choice
for BERT-based model on MCQA datasets. Moreover, we
also propose a Multi-step Attention Network (MAN) as the
top-level classifier instead of more typical fully-connected
neural network achieving better performance. Our proposed
method improves BERT-based baseline models by at least
7% in absolute accuracy for all the MCQA datasets (except
the SemEval dataset where baseline is already at 88.1%). By
leveraging BERT and its variant, RoBERTa (Liu et al. 2019b),
our approach advances the SOTA results for all the MCQA
datasets, surpassing the previous SOTA by at least 16% in
absolute accuracy (except the SemEval dataset).

2 Methods

In MCQA, the inputs to the model are a passage, a question,
and answer options. The passage, denoted as P , consists of a
list of sentences. The question and each of the answer options,
denoted by Q and O, are both single sentences. A MCQA
model aims to choose one correct answer from answer op-
tions based on P and Q.

2.1 Model Architecture

Figure 1 illustrates the model architecture. Specifically, we
concatenate the passage, question, and one of the answer
options into a long sequence. For a question with n answer
options, we obtain n token sequences of length l. Afterwards,
each sequence will be encoded by a sentence encoder to get
the representation vector H ∈ R

d×l, which is then projected
into a single value p = C(H) (p ∈ R

1) via a top-level
classifier C. In this way, we obtain the logit vector p =
[p1, p2, ..., pn] for all options of a question, which is then
transformed into the probability vector through a softmax
layer. We choose the answer option with highest logit value
p as the answer. Cross entropy loss is used as the training
objective. We used the pre-trained bidirectional transformer

1We continue to use this terminology for representing MCQA
models largely based on BERT-like pre-trained models.

Figure 1: Model architecture. “Encoder”is a pre-trained sen-
tence encoder such as BERT. “Classifier” is a top-level clas-
sifier.

encoder, i.e., BERT and RoBERTa as the sentence encoder.
The top-level classifier will be detailed in the next subsection.

2.2 Multi-step Attention Network

For the top-level classifier upon the sentence encoder, the
simplest choice is a two-layer full-connected neural net-
work (FCNN), which consists of one hidden layer with
tanh activation and one output layer without activation.
This has been widely adopted when BERT is fine-tuned
for the down-streaming classification tasks and performs
very well (Devlin et al. 2019). Inspired from the success
of the attention network widely used in the span-based QA
task (Seo et al. 2016), we propose the multi-step attention
network (MAN) as our top-level classifier. Similar to the
dynamic or multi-hop memory network (Kumar et al. 2016;
Liu et al. 2017), MAN maintains a state and iteratively refines
its prediction via the multi-step reasoning.

The MAN classifier works as follows: A pair of question
and answer option together is considered as a whole segment,
denoted as QO. Suppose the sequence length of the passage
is p and that of the question and option pair is q. We first
construct the working memory of the passage HP ∈ R

d×p by
extracting the hidden state vectors of the tokens that belong
to P from H and concatenating them together in the original
sequence order. Similarly, we obtain the working memory
of the (question, option) pair, denoted as HQO ∈ R

d×q.
Alternatively, we can also encode the passage and (question,
option) pair individually to get their representation vectors
HP and HQO, but we found that processing them in a pair
performs better.

We then perform K-step reasoning over the memory to out-
put the final prediction. The initial state s0 in step 0 is the sum-
mary of HP via self-attention: s0 =

∑
i αiH

P
i , where αi =

exp(wT
1 HP

i )
∑

j exp(wT
1 HP

j )
. In the following steps k ∈ 1, 2, ...,K − 1,

the state is calculated by:

sk = GRU(sk−1,xk), (1)

where xk =
∑

i βiH
QO
i and βi =

exp(wT
2 [sk−1;HQO

i ])
∑

j exp(wT
2 [sk−1;HQO

j ])
.

Here [x; y] is concatenation of the vectors x and y. The final
logit value is determined using the last step state:

P = wT
3 [s

K−1;xK−1; |sK−1−xK−1|; sK−1 ·xK−1]. (2)

Basically, the MAN classifier calculates the attention scores
between the passage and a (question, option) pair step by step
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Figure 2: Multi-stage and multi-task fine-tuning strategy.

dynamically such that the attention can refine itself through
several steps of deliberation. The attention mechanism can
help filter out irrelevant information in the passage against
(question, option) pair.

2.3 Two Stage Training

We adopt a two-stage procedure to train our model with both
in-domain and out-of-domain datasets as shown in Figure 2.

Coarse-tuning Stage We first fine-tune the sentence en-
coder of our model with natural language inference (NLI)
tasks. For exploration, we have also tried to fine-tune the
sentence encoder on other types of tasks such as sentiment
analysis, paraphrasing, and span-based question answering at
this stage. However, we found that only NLI task shows ro-
bust and significant improvements for our target multi-choice
task. See Section 5 for details.

Multi-task Learning Stage After corase-tuning stage, we
simultaneously fine-tune our model on a large in-domain
source dataset and the target dataset together via multi-task
learning. We share all model parameters including the sen-
tence encoder as well as the top-level classifier for these two
datasets.

3 Experimental Setup

3.1 Datasets

We use four MCQA datasets as the target datasets: DREAM
(Sun et al. 2019), MCTest (Richardson, Burges, and Renshaw
2013), TOEFL (Ostermann et al. 2018), and SemEval-2018
Task 11 (Tseng et al. 2016), which are summarized in Ta-
ble 2. For the first coarse-tuning stage with NLI tasks, we use
MultiNLI (Williams, Nangia, and Bowman 2017) and SNLI
as the out-of-domain source datasets. For the second stage,
we use the current largest MCQA dataset, i.e., RACE (Lai
et al. 2017) as in-domain source dataset. For all datasets, we
use the official train/dev/test splits.

3.2 Speaker Normalization

Passages in DREAM dataset are dialogues between two peo-
ple or more. Every utterance in a dialogue starts with a
speaker name or identifier. For example, in utterance “m:
How would he know?”, “m” is the abbreviation of “man”

indicating that this utterance is from the man in the conversa-
tion. More than 90% utterances have the abbreviated speaker
names such as “w,” “f,” and “m.” However, the speaker names
mentioned in the questions are full names such as “woman”
and “man.” In order to make it clear to the model such that it
can associate which speaker the question is asking about, we
used a speaker normalization strategy by replacing “w” or “f”
with “woman” and “m” with “man” for the speaker names
in the utterances. We found this simple strategy is quite ef-
fective, providing us with 1% improvement. We used this
strategy for all experiments for our method with the DREAM
dataset unless explicitly mentioned otherwise.

3.3 Multi-task Learning

For the multi-task learning stage, at each training step, we
randomly selected a dataset from the two datasets (RACE
and the target dataset) and then randomly fetched a batch
of data from that dataset to train the model. This process
was repeated until the predefined maximum number of steps
or the early stopping criterion has been met. We adopted
the proportional sampling strategy, where the probability of
sampling a task is proportional to the relative size of each
dataset compared to the cumulative size of all datasets (Liu
et al. 2019a).

3.4 Training Details

We used a linear learning rate decay schedule with warm-up
proportion of 0.1. We set the dropout rate as 0.1. The maxi-
mum sequence length is set to 512. We clipped the gradient
norm to 5 for DREAM dataset and 0 for other datasets. The
learning rate and number of training epochs vary for different
datasets and encoder types, which are summarized in the
Appendix A.1.2 The model architecture and training settings
for the NLI task are the same as those in (Devlin et al. 2019).

More than 90% of passages have more than 512 words in
the TOEFL dataset, which exceed the maximum sequence
length that BERT supports, thus we cannot process the whole
passage within one forward pass. To overcome this issue, we
propose the sliding window strategy, in which we split the
long passage into several snippets of length 512 with overlaps
between subsequent snippets and each snippet from the same
passage will be assigned with the same label. In training
phase, all snippets will be used for training, and in inference
phase, we aggregate the logit vectors of all snippets from the
same passage and pick the option with highest logit value
as the prediction. In experiments, we found the overlap of
256 words is the optimal, which can improve the BERT-Base
model from accuracy of 50.0% to 53.2%. We adopted this
sliding window strategy only for the TOEFL dataset.

4 Results

We first evaluate our method on the DREAM dataset. The
results are summarized in Table 3. In the table, we first re-
port the accuracy of the SOTA models in the leaderboard.
We then report the performance of our re-implementation of

2 Detailed appendices are available at https://arxiv.org/abs/1910.
00458 and the code will be available at https://github.com/jind11/
MMM-MCQA
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DREAM MCTest SemEval-2018 Task 11 TOEFL RACE

construction method exams crowd. crowd. exams exams
passage type dialogues child’s stories narrative text narrative text written text
# of options 3 4 2 4 4
# of passages 6,444 660 2,119 198 27,933
# of questions 10,197 2,640 13,939 963 97,687
non-extractive answer� (%) 83.7 45.3 89.9 - 87.0

Table 2: Statistics of MCQA datasets. (crowd.: crowd-sourcing; �: answer options are not text snippets from reference documents.)

Model Dev Test

FTLM++ (Sun et al. 2019) 58.1 58.2
BERT-Large (Devlin et al. 2019) 66.0 66.8
XLNet (Yang et al. 2019) - 72.0
BERT-Base 63.2 63.2
BERT-Large 66.2 66.9
RoBERTa-Large 85.4 85.0
BERT-Base+MMM 72.6 (9.4) 72.2 (9.0)
BERT-Large+MMM 75.5 (9.3) 76.0 (9.1)
RoBERTa-Large+MMM 88.0 (2.6) 88.9 (3.9)
Human Performance 93.9� 95.5�
Ceiling Performance 98.7� 98.6�

Table 3: Accuracy on the DREAM dataset. Performance
marked by � is reported by (Sun et al. 2019). Numbers in
parentheses indicate the accuracy increased by MMM com-
pared to the baselines.

fine-tuned models as another set of strong baselines, among
which the RoBERTa-Large model has already surpassed the
previous SOTA. For these baselines, the top-level classifier
is a two-layer FCNN for BERT-based models and a one-
layer FCNN for the RoBERTa-Large model. Lastly, we report
model performances that use all our proposed method, MMM
(MAN classifier + speaker normalization + two stage learning
strategies). As direct comparisons, we also list the accuracy
increment between MMM and the baseline with the same
sentence encoder marked by the parentheses, from which we
can see that the performance augmentation is over 9% for
BERT-Base and BERT-Large. Although the RoBERTa-Large
baseline has already outperformed the BERT-Large baseline
by around 18%, MMM gives us another ∼4% improvement,
pushing the accuracy closer to the human performance. Over-
all, MMM has achieved a new SOTA, i.e., test accuracy of
88.9%, which exceeds the previous best by 16.9%.

We also test our method on three other MCQA datasets:
MCTest including MC160 and MC500, TOEFL, and
SemEval-2018 Task 11. The results are summarized in Ta-
ble 4. Similarly, we list the previous SOTA models with their
scores for comparison. We compared our method with the
baselines that use the same sentence encoder. Except for
the SemEval dataset, our method can improve the BERT-
Large model by at least 10%. For both MCTest and SemEval
datasets, our best scores are very close to the reported human
performance. The MC160 and MC500 datasets were curated
in almost the same way (Richardson, Burges, and Renshaw
2013) with only one difference that MC160 is around three
times smaller than MC500. We can see from Table 4 that

both the BERT and RoBERTa baselines perform much worse
on MC160 than MC500. We think the reason is that the data
size of MC160 is not enough to well fine-tune the large mod-
els with a huge amount of trainable parameters. However,
by leveraging the transfer learning techniques we proposed,
we can significantly improve the generalization capability of
BERT and RoBERTa based models on the small datasets so
that the best performance of MC160 can even surpass that of
MC500. This demonstrates the effectiveness of our method.

To better understand why MMM can be successful, we
conducted an ablation study be removing one feature at a
time on the BERT-Base model. The results are shown in Ta-
ble 5. We see that the removal of the second stage multi-task
learning part hurts our method most significantly, indicating
that the majority of improvement is coming from the knowl-
edge transferred from the in-domain dataset. However, the
first stage of coarse-tuning using NLI datasets is also very
important, which provides the model with enhanced language
inference ability. As for the top-level classifier, i.e., the MAN
module, if we replace it with a typical two-layer FCNN as in
(Devlin et al. 2019), we have 1–2% performance drop. Lastly,
for the DREAM dataset, the speaker normalization strategy
gives us another ∼1% improvement.

5 Discussion

5.1 Why does natural language inference help?

As shown in Table 5, coarse-tuning on NLI tasks can help
improve the performance of MCQA. We conjecture one of the
reasons is that, in order to pick the correct answer, we need
to rely on the language inference capability in many cases.
As an example in Table 1, the utterance highlighted in the
bold and italic font in the dialogue is the evidence sentence
from which we can obtain the correct answer to Question 2.
There is no token overlap between the evidence sentence and
the correct answer, indicating that the model cannot solve
this question by matching surface tokens only. Nevertheless,
the correct answer is an entailment to the evidence sentence
while the wrong answers are not. Therefore, the capability
of language inference enables the model to correctly predict
the answer. On the other hand, we can deem the passage
and the pair of (question, answer) as a pair of premise and
hypothesis. Then the process of choosing the right answer to
a certain question is similar to the process of choosing the
hypothesis that can best entail the premise. In this sense, the
part of MCQA task can be deemed as a NLI task. This also
agrees with the argument that NLI is a fundamental ability of
a natural language processing model and it can help support
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Dataset Previous Single-Model SOTA
Baselines +MMM Human

BERT-B BERT-L RoBERTa-L BERT-B BERT-L RoBERTa-L Scores

MC160 80.0 (Sun et al. 2018) 63.8 65.0 81.7 85.4 (21.6) 89.1 (24.1) 97.1 (15.4) 97.7�
MC500 78.7 (Sun et al. 2018) 71.3 75.2 90.5 82.7 (11.4) 86.0 (10.8) 95.3 (4.8) 96.9�
TOEFL 56.1 (Chung, Lee, and Glass 2017) 53.2 55.7 64.7 60.7 (7.5) 66.4 (10.7) 82.8 (18.1) –
SemEval 88.8 (Sun et al. 2018) 88.1 88.7 94.0 89.9 (1.8) 91.0 (2.3) 95.8 (1.8) 98.0†

Table 4: Performance in accuracy (%) on test sets of other datasets: MCTest (MC160 and MC500), TOEFL, and SemEval.
Performance marked by � is reported by (Richardson, Burges, and Renshaw 2013) and that marked by † is from (Ostermann et al.
2018). Numbers in the parentheses indicate the accuracy increased by MMM. “-B” means the base model and “-L” means the
large model.

Settings DREAM MC160 MC500

Full Model 72.6 86.7 83.5

– Second-Stage Multi-task Learning 68.5 72.5 78.0
– First-Stage Coarse-tuning on NLI 69.5 80.8 81.8
– MAN 71.2 85.4 81.5
– Speaker Normalization 71.4 — —

Table 5: Ablation study on the DREAM and MCTest-MC160
(MC160) datasets. Accuracy (%) is on the development set.

other tasks that require higher level of language processing
abilities.

5.2 Can other tasks help with MCQA?

By analyzing the MCQA datasets, we found that some ques-
tions ask about the attitude of one person towards something
and in some cases, the correct answer is simply a paraphrase
of the evidence sentence in the passage. This finding natu-
rally leads to the question: could other kinds of tasks such as
sentiment classification, paraphrasing also help with MCQA
problems?

To answer this question, we select several representative
datasets for five categories as the up-stream tasks: sentiment
analysis, paraphrase, span-based QA, NLI, and MCQA. We
conduct experiments where we first train the BERT-Base
models on each of the five categories and then further fine-
tune our models on the target dataset: DREAM and MC500
(MCTest-MC500). For the sentiment analysis category, we
used the Stanford Sentiment Treebank (SST-2) dataset from
the GLUE benchmark (Wang et al. 2018) (around 60k train
examples) and the Yelp dataset3 (around 430k train ex-
amples). For the paraphrase category, three paraphrasing
datasets are used from the GLUE benchmark: Microsoft Re-
search Paraphrase Corpus (MRPC), Semantic Textual Simi-
larity Benchmark (STS-B), and Quora Question Pairs (QQP),
which are denoted as “GLUE-Para.”. For the span-based QA,
we use the SQuAD 1.1, SQuAD 2.0, and MRQA4 which is a
joint dataset including six popular span-based QA datasets.

Table 6 summarizes the results. We see that sentiment
analysis datasets do not help much with our target MCQA
datasets. But the paraphrase datasets do bring some improve-
ments for MCQA. For span-based QA, only SQuAD 2.0
helps to improve the performance of the target dataset. In-
terestingly, although MRQA is much larger than other QA

3https://www.yelp.com/dataset/challenge
4https://mrqa.github.io/

Task Type Dataset Name DREAM MC500

- Baseline 63.2 69.5

Sentiment Analy. SST-2 62.7 69.5
Yelp 62.5 71.0

Paraphrase GLUE-Para. 64.2 72.5

Span-based QA
SQuAD 1.1 62.1 69.5
SQuAD 2.0 64.0 74.0
MRQA 61.2 68.3

NLI
MultiNLI 67.0 79.5
NLI 68.4 80.0
GLUE-NLI 68.6 79.0

Combination GLUE-Para.+NLI 68.0 79.5
Multi-choice QA RACE 70.2 81.2

Table 6: Transfer learning results for DREAM and MC500.
The BERT-Base model is first fine-tuned on each source
dataset and then further fine-tuned on the target dataset. Ac-
curacy is on the the development set. A two-layer FCNN is
used as the classifier.

datasets (at least six times larger), it makes the performance
worst. This suggests that span-based QA might not the ap-
propriate source tasks for transfer learning for MCQA. We
hypothesis this could due to the fact that most of the ques-
tions are non-extractive (e.g., 84% of questions in DREAM
are non-extractive) while all answers are extractive in the
span-based QA datasets.

For the completeness of our experiments, we also used
various NLI datasets: MultiNLI, SNLI, Question NLI (QLI),
Recognizing Textual Entailment (RTE), and Winograd NLI
(WNLI) from the GLUE benchmark. We used them in three
kinds of combinations: MultiNLI alone, MultiNLI plus SNLI
denoted as “NLI,” and combining all five datasets together,
denoted as “GLUE-NLI.” As the results shown in Table 6,
NLI and GLUE-NLI are comparable and both can improve
the target dataset by a large margin.

Lastly, among all these tasks, using the MCQA task it-
self, i.e., pretraining on RACE dataset, can help boost the
performance, most. This result agrees with the intuition that
the in-domain dataset can be the most ideal data for transfer
learning.

In conclusion, we find that for out-of-domain datasets, the
NLI datasets can be most helpful to the MCQA task, indi-
cating that the natural language inference capability should
be an important foundation of the MCQA systems. Besides,
a larger in-domain dataset, i.e., another MCQA dataset, can
also be very useful.
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Figure 3: Train loss curve with respect to optimization steps.
With prior coarse-tuning on NLI data, convergence becomes
much faster and easier.

5.3 NLI dataset helps with convergence

The first stage of coarse-tuning with NLI data not only im-
proves the accuracy but also help the model converge faster
and better. Especially for the BERT-Large and RoBERTa-
Large models that have much larger amount of trainable
parameters, convergence is very sensitive to the optimization
settings. However, with the help of NLI datasets, convergence
for large models is less of an issue, as shown in Figure 3. Un-
der the same optimized hyper-parameters, compared with
the baseline, coarse-tuning can make the training loss of the
BERT-Base model decrease much faster. More importantly,
for the BERT-Large model, without coarse-tuning, the model
does not converge at all at the first several epochs, which is
resolved by the help of NLI data.

5.4 Multi-stage or Multi-task

In a typical scenario where we have one source and one tar-
get dataset, we naturally have a question about whether we
should simultaneously train a model on them via multi-task
learning or first train on the source dataset then on the tar-
get in sequential manner. Many previous works adopted the
latter way (Sun et al. 2018; Chung, Lee, and Glass 2017;
Phang, Févry, and Bowman 2018) and (Chung, Lee, and
Glass 2017) demonstrated that the sequential fine-tuning ap-
proach outperforms the multi-task learning setting in their
experiments. However, we had contradictory observations in
our experiments. Specifically, we conducted a pair of control
experiments: one is that we first fine-tune the BERT-Base
model on the source dataset RACE and then further fine-tune
on the target dataset, and the other is that we simultaneously
train the model on RACE and the target dataset via multi-task
learning. The comparison results are shown in Table 7. We
see that compared with the sequential fine-tuning, the multi-
task learning achieved better performance. We conjecture
that in the sequential fine-tuning setting, while the model
is being fine-tuned on the target dataset, some information
or knowledge learned from the source dataset may be lost
since the model is no longer exposed to the source dataset in
this stage. In comparison, this information can be kept in the
multi-task learning setting and thus can better help improve
the target dataset.

Setting Configuration DREAM MC160 MC500

BERT-Base → RACE → Target 70.2 80.0 81.2
BERT-Base → {RACE, Target} 70.7 80.8 81.8

BERT-Base → {RACE, Target, NLI} 70.5 87.0 82.5
BERT-Base → NLI → {RACE, Target} 71.2 88.3 83.5

Table 7: Comparison between multi-task learning and sequen-
tial fine-tuning. BERT-Base model is used and the accuracy
is on the development set. Target refers to the target dataset
in transfer learning. A two-layer FCNN instead of MAN is
used as the classifier.

Figure 4: Effects of the number of reasoning steps for the
MAN classifier. 0 steps means using FCNN instead of MAN.
The BERT-Base model and DREAM dataset are used.

Now that we observed that the multi-task learning ap-
proach outperforms the sequential fine-tuning setting, we
naturally arrive at another question: what if we merged the
coarse-tuning and multi-task learning stages together? That is,
what if we simultaneously trained the NLI, source, and target
datasets altogether under the multi-task learning framework?
We also conducted a pair of control experiments for inves-
tigation. The results in Table 7, show that casting the fine-
tuning process on these three datasets into separate stages
performs better, indicating that multi-stage training is also
necessary. This verifies effectiveness of the MMM framework
with coarse-tuning on out-of-domain datasets and fine-tuning
on in-domain datesets.

5.5 Multi-steps reasoning

Previous results show that the MAN classifier shows im-
provement compared with the FCNN classifier, but we are
also interested in how the performance change while vary-
ing the number of reasoning steps K as shown in Figure 4.
K = 0 means that we do not use MAN but FCNN as the
classifier. We observe that there is a gradual improvement
as we increase K = 1 to K = 5, but after five steps, the
improvement have saturated. This verifies that an appropriate
number of steps of reasoning is important for the memory
network to reflect its benefits.

5.6 Could the source dataset benefit?

So far we have been discussing the case where we do multi-
task learning with the source dataset RACE and various much
smaller target datasets to help improve the targets. We also
want to see whether our proposed techniques can also benefit
the source dataset itself. Table 8 summarizes the results of
BERT-Base model on the RACE dataset obtained by adding
the coarse-tuning stage, adding the multi-task training to-
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Settings RACE-M RACE-H RACE

BERT-Base 73.3 64.3 66.9
+NLI 74.2 66.6 68.9
+DREAM 72.4 66.1 67.9
+MAN 71.2 66.6 67.9

Table 8: Ablation study for the RACE dataset. The accuracy
is on the development set. All parts of MMM improve this
source dataset.

Model RACE-M RACE-H RACE

Official Reports:
BERT-Base 71.7 62.3 65.0
BERT-Large 76.6 70.1 72.0
XLNet-Large 85.5 80.2 81.8
RoBERTa-Large 86.5 81.3 83.2
BERT-Base+MMM 74.8 65.2 68.0
BERT-Large+MMM 78.1 70.2 72.5
XLNet-Large+MMM 86.8 81.0 82.7
RoBERTa-Large+MMM 89.1 83.3 85.0

Table 9: Comparison of the test accuracy of the RACE dataset
between our approach MMM and the official reports that are
from the dataset leaderboard.

gether with DREAM, and adding the MAN module. From
this table, we see that all three techniques can bring in im-
provements over the baseline model for the source dataset
RACE, among which NLI coarse-tuning stage can help ele-
vate the scores most.

Since we found all parts of MMM can work well for the
source dataset, we tried to use them to improve the accuracy
on RACE. The results are shown in Table 9. We used four
kinds of pre-trained sentence encoders: BERT-Base, BERT-
Large, XLNet-Large, and RoBERTa-Large. For each encoder,
we listed the official report of scores from the leaderboard.
Compared with the baselines, MMM leads to improvements
ranging from 0.5% to 3.0% in accuracy. Our best result is
obtained by the RoBERTa-Large encoder.

5.7 Error Analysis

Major Types Sub-types Percent Accuracy

Matching Keywords 23.3 94.3
Paraphrase 30.7 84.8

Reasoning
Arithmetic 12.7 73.7
Common Sense 10.0 60.0
Others 23.3 77.8

Table 10: Error analysis on DREAM. The column of “Percent”
reports the percentage of question types among 150 samples
that are from the development set of DREAM dataset that are
wrongly predicted by the BERT-Base baseline model. The
column of “Accuracy” reports the accuracy of our best model
(RoBERTa-Large+MMM) on these samples.

In order to investigate how well our models perform
for different types of questions, we did an error analysis
on randomly-selected wrongly-predicted 150 samples from
DREAM dataset. The prediction results were obtained by

three BERT-Base baseline models, each of which was individ-
ually trained with different random seeds. We then manually
classified each sample into several question types as shown
in the third column of Table 10. The annotation criterion is
described in the Appendix A.3.2 We see that the BERT-Base
baseline model still does not do well on matching problems.
We then evaluate our best model on these samples and re-
port the accuracy of each question type in the last column
of Table 10. We find that our best model can improve upon
every question type significant way, especially for the match-
ing problems and most surprisingly, our best model can even
greatly improve its ability on solving the arithmetic problems,
achieving the accuracy of 73.7%.

However, could our model really do math? To investigate
this question, we sampled some arithmetic questions that are
correctly predicted by our model, made small alterations to
the passage or question, and then checked whether our model
can still make correct choices. We found our model is very
fragile to these minor alterations, implicating that the model
is actually not that good at arithmetic problems. We provided
one interesting example in the Appendix A.3.2

6 Related Work

There are increasing interests in machine reading comprehen-
sion (MRC) for question answering (QA). The extractive QA
tasks primarily focus on locating text spans from the given
document or corpus to answer questions (Rajpurkar, Jia, and
Liang 2018). Answers in abstractive datasets such as MS
MARCO (Nguyen et al. 2016), SearchQA (Dunn et al. 2017),
and NarrativeQA (Kočiskỳ et al. 2018) are human-generated
and based on source documents or summaries in free text for-
mat. However, since annotators tend to copy spans as answers
(Reddy, Chen, and Manning 2019), the majority of answers
are still extractive in these datasets. The multi-choice QA
datasets are collected either via crowd sourcing, or collected
from examinations designed by educational experts (Lai et
al. 2017). In this type of QA datasets, besides token match-
ing, a significant portion of questions require multi-sentence
reasoning and external knowledge (Ostermann et al. 2018).

Progress of research for MRC first relies on the break-
through of the sentence encoder, from the basic LSTM to
the pre-trained transformer based model (Devlin et al. 2019),
which has elevated the performance of all MRC models by a
large margin. In addition, the attention mechanisms between
the context and the query can lead to higher performance for
neural network based models (Seo et al. 2016). In addition,
some techniques such as answer verification (Hu et al. 2019),
multi-hop reasoning (Xiao et al. 2019), and synthetic data
augmentation can be also helpful.

Transfer learning has been widely proved to be effec-
tive across many domain in NLP. In the QA domain, the
most well-known example of transfer learning would be fine-
tuning the pre-trained language model such as BERT to the
down-streaming QA datasets such as SQuAD (Devlin et al.
2019). Besides, multi-task learning can also be deemed as a
type of transfer learning, since during the training of multiple
datasets from different domains for different tasks, knowl-
edge will be shared and transferred from each task to others,
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which has been used to build a generalized QA model (Tal-
mor and Berant 2019). However, no previous works have
investigated that the knowledge from the NLI datasets can
also be transferred to improve the MCQA task.

7 Conclusions

We propose MMM, a multi-stage multi-task transfer learn-
ing method on the multiple-choice question answering tasks.
Our two-stage training strategy and the multi-step attention
network achieved significant improvements for MCQA. We
also did detailed analysis to explore the importance of both
our training strategies as well as different kinds of in-domain
and out-of-domain datasets. We hope our work here can also
shed light on new directions for other NLP domains.
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