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Abstract

In neural abstractive summarization, the generated sum-
maries often face semantic irrelevance and content deviation
from the input sentences. In this work, we incorporate seman-
tic dependency graphs about predicate-argument structure of
input sentences into neural abstractive summarization for the
problem. We propose a novel semantics dependency guided
summarization model (SemSUM), which can leverage the in-
formation of original input texts and the corresponding se-
mantic dependency graphs in a complementary way to guide
summarization process. We evaluate our model on the En-
glish Gigaword, DUC 2004 and MSR abstractive sentence
summarization datasets. Experiments show that the proposed
model improves semantic relevance and reduces content devi-
ation, and also brings significant improvements on automatic
evaluation ROUGE metrics.

Introduction
Abstractive summarization aims to compress an input text
into a concise, fluent summary while retaining its main idea.
In this paper, we focus on abstractive sentence summariza-
tion, which involves retelling, pruning, and generation at
the sentence level (Jing and McKeown 1999). Sequence-
to-sequence (Seq2seq) learning has been widely used in
summarization task and produced promising results (Rush,
Chopra, and Weston 2015; Nallapati et al. 2016).

However, in many cases, the generated summaries still
face the problem of semantic irrelevance and deviation from
the input sentence, thus cannot reflect the main meaning of
the original text accurately and faithfully. For example, in
the summary generated by the seq2seq model in Table1, the
actual subject of the verb “hoping” is “his rivals”. Never-
theless, probably because the entity “federer” seems more
important in the source sentence, the summarization sys-
tem regards “federer” as the subject and forges the wrong
match “federer hoping”. Several studies have explored var-
ious ways to address the problem. Cao et al. (2018b) ex-
tracted facts from the source sentence as an auxiliary input to
correct semantic errors and false facts generated by the neu-
ral network. Song, Zhao, and Liu (2018) combined source
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Source even some of his rivals in the roland garros
locker-room are hoping that roger federer can
create a bit of tennis history by winning all four
grand slams .

Target even fellow players keen for federer grand slam
dream picture

Seq2seq federer hoping to win at roland garros
SemSUM even some rivals hope federer to make grand

slam history

Table 1: Example summaries of a sentence with and without
semantics guidance.

syntactic structures into neural sentence summarization to
help the model identify summary-worthy content and avoid
content deviation. Li et al. (2018) incorporated entailment
knowledge into abstractive summarization models under a
multi-task framework.

In this paper, we aim to guide the neural summarization
system with the semantic dependency graph of the source
sentence. Semantic dependency graphs represent predicate-
argument relations between content words in a sentence and
have various semantic representation schemes (e.g., DM,
PAS, PSD and CCD) based on different annotation systems
(Oepen et al. 2016). Among these semantic representation
schemes, DM has higher consistency and accuracy, so we
leverage it as an additional input to guide summary gener-
ation. Its nodes are words and edges are labeled to encode
semantic relations between the words. Non-content words,
such as punctuation, are left out of the analysis. Figure 1
shows the corresponding semantic dependency graph (DM)
of the source sentence in Table 1, which includes most se-
mantically relevant local (e.g., from “some” to “rivals”) and
long-distance (e.g., from “hoping” to “some”) dependencies.
With the above semantic dependency graph incorporated,
we can generate a semantically consistent summary, where
“hope” finds the true subject “some rivals”.

Transformer (Vaswani et al. 2017) has advanced the
state-of-the-art on various translation and generation tasks.
We propose a semantic dependency guided summarization
model based on the Transformer, which can incorporate the
semantic dependency graph and the input text by stacking
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Figure 1: An example sentence annotated with a semantic dependency graphs. The green color represents the dependency of
root node “hoping”. Some dependency edges are omitted for display.

encoders to guide summary generation process. The stacked
encoders consist of a sentence encoder and a graph encoder,
which can incorporate the semantic dependency graph and
the input text to generate summary in a complementary
way. First, the sentence encoder reads the input sentence
through stacked multi-head self-attention blocks to construct
a contextual-level sentence representation. Then the graph
encoder captures semantic relationships and incorporates the
semantic graph structure into the contextual-level represen-
tation. The semantic dependency graph is represented as a
set of relation triples (i.e., (head, type, tail) if there is an
edge from the sender node head to the receiver node tail
with the label type). We adopt a graph attention mecha-
nism to aggregate information of these relation triples into
the corresponding sender and receiver nodes to construct a
semantics-aware representation. Finally, a sentence decoder
is employed for producing the output summary with atten-
tion to the semantic-aware representation.

Experiments on the Gigaword dataset show that our ap-
proach significantly improves strong baselines. We also
evaluate our model on test-only DUC2004 and MSR ab-
stractive sentence summarization datasets and it yields a
large improvement.

The contributions of this work are summarized as follows:
• To the best of our knowledge, we are the first to explore

semantic dependency graph for abstractive summariza-
tion. We propose a novel semantic dependency guided
summarization model that leverages the input sentence
and semantic dependency graph to generate summary in
a complementary way. Our code is publicly available at
https://github.com/zhongxia96/SemSUM.
• Our proposed model can generate summaries with high

semantic relevance and readability and outperforms vari-
ous baseline models on three benchmark datasets.

Related Work

The research on abstractive summarization can be divided
into two categories. One class focuses on improving the
architecture of the model to enhance generalization per-
formance of summarization methods (Kikuchi et al. 2016;
Zhou et al. 2017). Another type is devoted to explicitly in-
troducing the information from other aspects to aid in the
summary generation. Nallapati et al. (2016) enriched the en-
coder with lexical features such as named entities and POS

tags. Takase et al. (2016) encoded results obtained from
an abstract meaning representation (AMR) parser using a
modified version of Tree-LSTM as additional information
of the Attention-based Summarization model. Song, Zhao,
and Liu (2018) artificially constructed features based on syn-
tactic information and introduce it into summary genera-
tion. Cao et al. (2018b) proposed to force the generation
conditioned on both the source text and the extracted fact
descriptions from it. Cao et al. (2018a) and Wang, Quan,
and Wang (2019a) used existing summaries as soft tem-
plates to guide the seq2seq model. Fernandes, Allamanis,
and Brockschmidt (2018) incorporated name entities and
coreferences with a sequence-graph model to reason about
long-distance relationships. However, to our knowledge, no
existing work has exploited semantic dependency graphs for
enhancing neural abstractive summarization.

We fill in this gap and adopt graph neural networks as the
graph encoder to leverage the knowledge with a semantic
dependency graph. Graph neural network is a series of neu-
ral architectures (Scarselli et al. 2009; Gilmer et al. 2017)
specifically devised to induce the representation of nodes in
a graph. Marcheggiani, Bastings, and Titov (2018) encoded
graph-structured data using a Graph Convolution Networks
(GCN). Velickovic et al. (2018) propose a Graph Attention
Networks (GAT) which leverages an attention mechanism to
operate on graph-structured data and computes the hidden
representations of each node in a graph by attending over
its neighbors’ hidden representations. It is a direct descen-
dant of the convolutional method and offered more modeling
power. Similar to the GAT, we use an attention mechanism
to aggregate the neighbor relationships within semantic de-
pendency graphs.

Problem Formulation

Given an input sentence X = (x1, x2, . . . , xN ), where N
is the sentence length. The corresponding summary output
is Y = (y1, y2, . . . , yM ), where M ≤ N is the summary
length. Using existing tools, we can parse (accepting some
noise) X into its semantic dependency graph G = (V,E),
where V is the set of nodes, and E is the set of edges.
Each edge represents a semantic relation, denoted as a triple
(head, type, tail) and head ∈ V, tail ∈ V, type ∈ R where
R = {ARG1, ARG2, compound, . . .} which denotes the
collection of semantic relation labels. The task can be for-
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Figure 2: The overview of our SemSUM model

mally defined as: given an input sentence X and its semantic
dependency graph G, the goal is to generate a target sum-
mary Y .

Our Model

Our model consists of a sentence encoder, a graph encoder
and a summary decoder. Firstly, the sentence encoder reads
the input sentence and builds its contextual-level represen-
tation. Then the graph encoder captures the semantic re-
lationships according to the contextual-level representation
and the semantic dependency graph to produce a semantic-
aware sentence representation. Lastly, the decoder produces
the output summary with attention to the semantic-aware
representation. In the following sections, we introduce the
sentence encoder, the graph encoder, and the summary de-
coder respectively.

Sentence Encoder

The role of the sentence encoder is to read the input sen-
tence X and construct its contextual-level representation.
This part is the same as (Vaswani et al. 2017), and we will
give a brief introduction. The sentence encoder is a stack of
L1 identical layers. Each layer has two sub-layers: the first
is a multi-head self-attention mechanism, and the second is
a fully connected feed-forward network for transformation.
At the bottom of the encoder stack, each input token xi is
converted into the vector representation exi by learned em-
beddings. Since the Transformer is a non-recurrent model,
we need to assign a “positional encoding” pi to indicate the
position of the word in the sentence, and the input represen-
tation can be obtained by simply adding these two represen-
tations: s0i = exi

+pi. For convenience, we denote the output
of l-th layer in the sentence encoder as sl and the input for
the first layer as s0

In multi-head attention sub-layers, the input consists of
queries and keys of dimension dk, and values of dimension
dv . We compute the dot products of the query with all keys,
divide each by

√
dk, and apply a softmax function to obtain

the weights on the values.

Attn(Q,K, V ) = softmax

(
QKT

√
dk

)
V

headj = Attn(QWQ
j ,KWK

j , V WV
j )

MHAtt(Q,K, V ) =

⎛
⎝ H�

j=1

headj

⎞
⎠WO

(1)

where
�

denotes the concatenation of the H attention
heads, the projections are parameter matrices WQ

j ,WK
j ∈

R
d model ×dk , WV

j ∈ R
d model ×dv ,WO ∈ R

H∗dv×dmodel . Spe-
cially, Q = K = V in multi-head self-attention.

The feed-forward network consists of two linear transfor-
mations with a ReLU activation in between.

FFN(x) = max (0, xW1 + b1)W2 + b2 (2)

To construct deep network, residual connection (He et al.
2016) and layer normalization (Ba, Kiros, and Hinton 2016)
are used to connect adjacent layers.

So the whole sentence encoder works as

s̃ = LayerNorm
(
sl−1 +MHAtt

(
sl−1, sl−1, sl−1

))
sl = LayerNorm(s̃+ FFN(s̃))

(3)

where l ∈ [1, L1], and the final contextual-level representa-
tion sL1 is fed to the graph encoder.

Graph Encoder

In order to incorporate the semantic graph as an additional
input, we use a graph encoder to aggregate neighbor rela-
tions for each node. The graph encoder includes two parts:
graph layers and layer aggregation. Graph layers is a stack of
L2 identical layers. As shown in Figure 3, each layer has two
sub-layers. The first is a graph attention mechanism, and the
second is a fully connected feed-forward network. Like the
sentence encoder, we also use a residual connection around
each sublayer, followed by layer normalization. For conve-
nience, we denote the output of l-th graph layer as gl and
the input of the first layer as g0. We set the contextual-level
vector sL1

pos(v) as the initial state g0v of v ∈ V in the graph en-
coder, where pos(v) is the position index of node v in source
sentence X .

Graph attention mechanism Similar to (Velickovic et
al. 2018), we use an attention mechanism to leverage the
knowledge within semantic dependency graphs. The graph
attention mechanism proposed in (Velickovic et al. 2018)
is designed for undirected graphs. However, the relation-
ships in semantic dependency graph is directed and have la-
bels, so we modify it to aggregate neighbor relation triples
rather than directly aggregate neighbor nodes. For simplic-
ity and clarity, we omit the layer tag l for nodes and rela-
tions in the graph attention mechanism. For each relation
(head, type, tail), we first concatenate the node represen-
tations ghead and gtail and the learnable embedding of the
edge etype, and then compress it through a linear transfor-
mation followed by a nonlinear activation function ReLU.
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In this way, we can get the representation of each relation,
which can be used in the aggregation operation of graph
attention for the corresponding nodes. Considering that a
given relation might have different influences on its sender
node and receiver node, we use different linear transforma-
tions during compressing:

uout = ReLU([ghead ‖ etype ‖ gtail]Wout + bout)

uin = ReLU([ghead ‖ etype ‖ gtail]Win + bin)
(4)

where Win,Wout ∈ R
d3∗ model ×d model , bin, bout ∈ R

d model .
uout and uin are the representations of the relation, which
will be aggregated by the sender node head and the receiver
tail respectively.

The graph attention induces a new representation ĝv of
a node v by aggregating the representation of its outgoing
neighbor relations uout (v acts as a sender), and incoming
neighbor relations uin (v acts as a receiver).

ĝv =
∑

u∈N (v)

α(u, gv)uW
V

α(u, gv) =
exp

((
uWK

)�
gvW

Q
)

∑
z∈N (v) exp

(
(zWK)

�
gvWQ

)
(5)

where Nv denotes all neighbor relation representations of v
in G, including incoming relations and outgoing relations.

Like self-attention in the sentence encoder, we also use a
multi-head operation in graph attention.

MHGAT(gv) =

⎛
⎝ H�

j=1

ĝjv

⎞
⎠WO (6)

where ĝjv is the result ĝv of graph attention in head j. Each
head j learns independent transformations WQ

j ,WK
j ∈

R
dmodel×dk ,WV

j ∈ R
dmodel×dv ,WO ∈ R

Hdv×dmodel re-
spectively.

The feed-forward network and residual connections are
employed to further integrate the results of multi-head graph
attention. So the whole graph layers work as

g̃ = LayerNorm
(
gl−1 +MHGAT

(
gl−1

))
gl = LayerNorm (g̃ + FFN(g̃))

(7)

Layer aggregation Through the multi-layer graph layers,
the semantic information passes on among the graph nodes.
A neighborhood range is expanded by performing graph at-
tention layer by layer, and each node can cover a range
of neighborhoods with a radius of L2 when the graph lay-
ers have L2 layers. In some parts of the graph, a sufficient
neighborhood helps spreading semantic information with
“long distance” dependency. However, for other nodes, a too
broad expansion may also bring too much useless informa-
tion and thus makes it insensitive to the information of adja-
cent nodes.

Feed forward

Graph-attentionGraph

...

Head 1

v

Nodes v

Head H

Figure 3: The graph layer consists of a graph attention mech-
anism and a feed-forward network. Through the graph atten-
tion, each node merges the neighbor relations. The neighbor
relations are represented as triples, and the incoming rela-
tions and the outgoing relations are obtained through dif-
ferent mappings, which are marked in red and green color
respectively in the Figure.

Following Xu et al.(2018) ’s idea, we adopt a bidirectional
LSTM (Hochreiter and Schmidhuber 1997) to aggregate the
outputs of all graph layers. LSTM-aggregation is node adap-
tive where each node can independently incorporate the in-
formation from different graph layers. In other words, nodes
learn to use wide-range or small-range feature through the
LSTM layer aggregation. We input semantic-aware repre-
sentations g1, . . . , gL2 into a bi-directional LSTM (Hochre-
iter and Schmidhuber 1997). The forward LSTM reads the
semantic-aware representations from left to right and gets a
sequence of hidden states,

(−→
h 1,
−→
h 2, . . . ,

−→
h N

)
. The back-

ward LSTM reads the semantic-aware representations re-
versely, from right to left, and results in another sequence
of hidden states,

(←−
h 1,
←−
h 2, . . . ,

←−
h N

)
. We add the last for-

ward hidden state
−→
h N and backward hidden state

←−
h 1 as the

final output o of graph encoder.

o =
←−
h 1 +

−→
h N (8)

Summary Decoder

The decoder is also a stack of L3 identical sub-layers. The
sub-layer consists of three parts: a masked multi-head self-
attention mechanism, a multi-head cross-attention mecha-
nism, and a fully connected feed-forward network.

Similar to the sentence encoder, we add positional encod-
ings to the input embeddings at the bottoms of the decoder
stack. We denote the output of the l-th layer as dl and the
input for the first layer as d0.

The self-attention sub-layer with a masking mechanism
is used to encode the information of decoded subsequences.
The masking mechanism ensures the predictions for position
t only depend on the known outputs at positions preceding
t.

d̃ = LayerNorm
(
dl−1 +MHAtt

(
dl−1, dl−1, dl−1

))
(9)
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The output of the self-attention is fed to the cross-
attention sub-layer and feed-forward network. The cross-
attention sub-layer performs multi-head attention over the
output o of the graph encoder.

c = LayerNorm
(
d̃+MHAtt

(
d̃, o, o

))

dl = LayerNorm (c+ FFN(c))
(10)

The final output dL3
t at the position t, is then passed

through a softmax layer to generate the probability pgt of
next word over the target vocabulary.

pgt = softmax
(
dL3
t Wg + bg

)
(11)

where Wg ∈ R
dmodel×dvocab , bg ∈ R

dvocab and dvocab is the
size of target vocabulary.

To tackle the problem of out-of-vocabulary (OOV) words,
we compute the copy attention εt between dL3 and the input
representations o to obtain copy distribution pct .

εt = softmax(dL3
t o� + bε)

pct =

n∑
i=1

εtz
�
i

(12)

where zi is the one-hot indicator vector for wi and bε ∈
R

dvocab . The generation probability ηt ∈ [0, 1] is calculated
from the decoder output dL3 .

ηt = σ
(
dL3
t Wη + bη

)
(13)

where Wη ∈ R
dmodel×1, bη ∈ R

1. The final distribution pt
is given by the “mixture” of the two probabilities with ηt.

pt = ηt ∗ pgt + (1− ηt) ∗ pct (14)

Objective Function

Given the input sentence, our goal is to maximize the prob-
ability of output summary. We use D to denote the training
set, θ to represent the set of parameters. The following neg-
ative logarithm likelihood function is optimized:

J(θ) = − 1

|D|
∑

(X,Y,G)∈D
log p(Y |X,G) (15)

Experiments

Datasets

We experiment with the English Gigaword dataset1
(Napoles, Gormley, and Durme 2012), the DUC2004 dataset
(Over, Dang, and Harman 2007) and the MSR-ATC Test
Set (Toutanova et al. 2016). The Gigaword dataset contains
about 3.8M sentence-summary pairs for training and 189K
pairs for development. For test, we use the standard test set
of 1951 sentence-summary pairs. The DUC2004 dataset has
500 input sentence with each sentence paired with 4 dif-
ferent human-written reference summaries. The MSR-ATC

1All the training, validation and test dataset can be downloaded
at https://github.com/harvardnlp/sent-summary.

Test Set has 785 input sentences with each sentence paired
with 3-5 summaries. Noted that the same model trained on
Gigaword training set is evaluated on Gigaword test set,
DUC2004 test set and MSR-ATC test set, respectively. We
parse the source sentences of these datasets with a off-the-
shelf semantic dependency parser (Chen et al. 2018), which
is a neural Maximum Subgraph parser and achieves very
competitive results for both English and Chinese, to get the
corresponding semantic dependency graphs.

Implementation Details

We set our model parameters based on preliminary experi-
ments on the development set. We prune the vocabulary to
50k and use the word in source sentence with maximum
weights in copy attention to replace the unknown word to
solve the OOVs problem. We set the dimension of word em-
beddings and hidden units dmodel to 512, feed-forward units
to 2048. We set 4 heads for multi-head graph-attention and 8
heads for multi-head self-attention, masked multi-head self-
attention and multi-head cross-attention. We set the num-
ber of layers of sentence encoder L1, graph encoder L2,
and summary decoder L3 to 4, 3 and 6, respectively. We set
dropout rate to 0.1 and use Adam optimizer with an initial
learning rate α = 0.0001, momentum β1 = 0.9, β2 = 0.999
and weight decay ε = 10−5. The learning rate is halved
if the valid loss on the development set increases for two
consecutive epochs. We use a mini-batch size of 300. Beam
search with beam size of 5 is used for decoding.

Metrics and Baselines

We use ROUGE (Lin 2004) to evaluate the generated sum-
mary in our experiments. Following previous work, we re-
port ROUGE F12 on Gigaword and MSR-ATC, and ROUGE
recall3 on DUC2004. Furthermore, we evaluate the mod-
els with the latest proposed MoverScore (Zhao et al. 2019)
and BertScore (Zhang et al. 2019) metrics, which correlate
with human judgment much better than ROUGE. We report
the Word Mover’s Distance (WMD) unigram on the three
datasets, which correlates with human judgement better on
summarization task and has been verified in the original pa-
per. We report the BERTScore4 F1 on the three datasets. We
compare our model with several baselines proposed in the
latest years. Besides, we also implement two baselines. The
first is Transformer (Vaswani et al. 2017), a multi-layer and
multi-head attention architecture, which is the state-of-the-
art NMT model and has been widely used in various gener-
ation tasks. We apply it for the sentence summarization task
here and use the open-source toolkit fairseq (Ott et al. 2019)
to train it on the Gigaword corpus. To verify the effectivess
of the proposed graph encoder part, we also implement an-
other baseline model (i.e., TFM&GCN), which keeps both
the sentence encoder and summary decoder unchanged, and
replace the graph encoder with the Graph Convolution Net-

2The ROUGE evaluation option: -m -n 2 -w 1.2
3The ROUGE evaluation option: -m -b 75 -n 2 -w 1.2
4We use the bert-large-uncased L18 no-idf version for the

BERTScore model
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works (GCN) (Marcheggiani, Bastings, and Titov 2018). We
tune the best parameter configurations for the baselines.

Automatic Evaluation

Model RG-1 RG-2 RG-L WMD BERT
ABS(Rush, Chopra, and Weston 2015) 29.55 11.32 26.42 - -
SEASS(Zhou et al. 2017) 36.15 17.54 33.63 - -
Re3Sum(Cao et al. 2018a) 37.04 19.03 34.46 - -
FTSum(Cao et al. 2018b) 37.27 17.65 34.24 - -
PostEnsemble(Kobayashi 2018) 37.52 18.55 34.86 - -
Sun-Attention(Niu et al. 2019) 38.27 16.45 36.08 - -
MASS(Song et al. 2019) 38.73 19.71 35.96 34.28 61.56
BiSET(Wang, Quan, and Wang 2019b) 39.11 19.78 36.87 33.79 61.24
Transformer 36.69 18.08 34.22 32.50 60.48
TFM&GCN 37.51 19.03 34.89 33.67 61.02
SemSUM 38.78 19.75 36.09 34.39 61.56

Table 2: ROUGE F1, WMD unigram and BERTScore F1
evaluation results on the Gigaword test set.

In Table 2, we report the results on the Gigaword test set.
The Transformer model performs much better than ABS and
achieves a 6.76 points improvement on the ROUGE-2 F1,
which demonstrates the superiority of the Transformer ar-
chitecture. Our model gains an improvement of 1.67 points
on ROUGE-2 F1, 1.59 points on the WMD unigram and
1.89 points on the BERTScore F1 compared with Trans-
former, which verifies the effectiveness of semantic informa-
tion for summary generation. Our model also outperforms
the TFM&GCN model by 1.27 points on ROUGE-1 F1,
0.72 points on ROUGE-2 F1, 0.72 points on the Mover-
Score unigram (WMD) and 0.54 points on the BERTScore
F1. It indicates that the proposed graph encoder in our
model is better than GCN in capturing semantic informa-
tion. Although BiSET obtains better scores on ROUGE met-
rics, our model outperforms it on both the Moverscore and
BERTScore metrics and achieves a 0.32 points improvement
on the BERTScore F1. The result of MASS is not strictly
comparable because it uses a 190M news corpus to pre-train
its language model. Our model still achieves comparable
performances on the all metrics 5.

In Table 3 and Table 4, we report the results on two test-
only datasets. Our proposed model SemSUM achieves the
best performances among all compared models. It indicates
our proposed model has a good transferability between dif-
ferent datasets. On DUC2004, our model achieves scores of
31.00, 11.11 and 26.94 on three ROUGE metrics respec-
tively, which are about 1 points higher than the scores of
Transformer. On MSR-ATC, the gap between SemSUM and
Transformer goes up to more than 4. These result verify
the effectiveness of semantic dependency information again.
In addition, our model still has a better performance than
TFM&GCN.

In general, our model achieves strong performances on
three benchmark datasets and shows its effectiveness and
stability on the summarization task.

5To calculate the MoverScore and BERTScore, we request the
BiSET outputs from the authors and get the MASS outputs via run-
ning the trained model which is uploaded by the authors to Github.

Model RG-1 RG-2 RG-L WMD BERT
ABS(Rush, Chopra, and Weston 2015) 26.55 7.06 22.05 - -
SEASS(Zhou et al. 2017) 29.21 9.56 25.51 - -
ERAML(Li et al. 2018) 29.33 10.24 25.24 - -
WACNNs(Yuan et al. 2019) 30.54 10.87 26.94 - -
Transformer 29.78 9.61 25.85 22.95 56.36
TFM&GCN 30.24 10.44 26.32 24.80 57.21
SemSUM 31.00 11.11 26.94 26.71 57.99

Table 3: ROUGE recall, WMD unigram and BERTScore F1
evaluation results on the DUC2004 test set.

Model RG-1 RG-2 RG-L WMD BERT
ABS(Rush, Chopra, and Weston 2015) 20.27 5.26 17.10 - -
SEASS(Zhou et al. 2017) 25.75 10.63 22.90 - -
Transformer 29.29 12.45 25.93 13.76 54.31
TFM&GCN 32.53 15.41 29.26 15.61 55.48
SemSUM 33.82 17.08 30.62 17.14 56.19

Table 4: ROUGE F1, WMD unigram and BERTScore F1
evaluation results on the MSR-ATC test set.

Human Evaluation

To further verify whether our model can improve seman-
tic relevance and reduce content deviation, we carry out a
human evaluation. We focus on three aspects: faithfulness,
informativeness, and fluency. The faithfulness indicator di-
rectly measures the semantic relevance and faithfulness to
the original input; the informativeness indicator can reflect
whether there is a content deviation; the fluency focuses on
the quality of the language. We sample 100 instances from
the Gigaword test set and employ 6 graduate students to rate
each summary. 3 human judgments are obtained for every
sample and the final scores are averaged across different
judges.

Results are presented in Figure 4. We can clearly see that
our model not only performs much better than Transformer
and TFM&GCN, but also achieves a comparable perfor-
mance as the ground truth summaries. In the faithfulness
indicator, SemSUM outperforms the Transformer baseline
by a large margin, which indicates the use of the semantic
dependency graph does help improving the semantic rele-
vance of the generated summary. In the informativeness in-
dicator, our model achieves a high score of 3.8, which is
higher than 3.27 of Transformer and 3.51 of GCN, and is

3.03
3.27

3.453.4
3.51

3.72
3.58

3.8
3.94

3.62
3.83 3.89

faithfulness informativeness fluency

Transformer TFM&GCN SemSUM Ground Truth

Figure 4: Human evaluation. They are rated on a Likert scale
of 1(worst) to 5(best).
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Model RG-1 RG-2 RG-L
SemSUM 48.25 26.54 45.14
only sentence encoder 47.14 24.94 44.00
only graph encoder 47.28 25.21 44.17
only graph encoder� 47.50 25.51 44.39
without layer aggregation 48.02 25.83 44.82
without separated mappings 47.82 25.57 44.59

Table 5: ROUGE F1 evaluation results on the development
set of ablation study. 	 denotes taking the adjacent relation
as an edge type.

close to 3.83 of the ground truth. It indicates that our model
can effectively reduce the content deviation phenomenon. In
the fluency indicator, our model is 0.49 better than Trans-
former on ROUGE-2 F1, indicating that our model can re-
duce the grammatical mismatch and improve the readability
of the summary. In all three aspects, our model outperforms
TF&GCN method, which shows that our model has an ad-
vantage over TF&GCN method in incorporating the seman-
tic dependency graph into summarization models.

Ablation Study

We perform ablation study on the development set to in-
vestigate the influence of different modules in our proposed
SemSUM model. Modules are tested in five ways: (1) we
remove the graph encoder to verify the effectiveness of se-
mantic relations; (2) we remove the sentence encoder part
and only encode the semantic dependency graph; (3) we re-
move the sentence encoder and add position-adjacent rela-
tions as edges in dependency graph; (4) we remove the layer
aggregation and use only the output of the last graph layer
as the final output of the graph encoder; (5) we remove the
separated mappings (Win, bin and Wout, bout) in different
directions and use only one set of parameters (W and b) .

Table 5 presents the results. The best hyperparameter
configuration is chosen for each model. We found that the
ROUGE-2 F1 score drops by 1.6 when the graph encoder is
removed. ROUGE-2 F1 score drops by 1.33 after the sen-
tence encoder is removed. Treating position-adjacent rela-
tion as an edge type improves the ROUGE-2 F1 score by
0.3, but the improvement is limited. It indicates learning
a contextual-level representation through sentence encoder
is beneficial to the encoding of input sentences. ROUGE-2
F1 score drops by 0.71 after layer aggregation is removed,
which shows that explicitly aggregating different levels of
semantic dependency propagation can improve the perfor-
mance of the model. ROUGE-2 F1 score drops by 0.97 af-
ter the separated mappings are removed. It indicates distin-
guishing the mapping in different directions is necessary to
improve the performance of the model.

Case Study

We perform case studies for better understanding the model
performances. In Table 6, we show two example outputs of
the Transformer and SemSUM. In the first case, the Trans-
former model distorts the facts of the input text. The original
expression means “call on ioc to do more for the women”,
while the baseline model completely ignores the structure of

Source german parliament called on the international
olympic committee on thursday to do more for
women in sport .

Target olympics told to help women
Transformer german parliament calls for more women in

sport
SemSUM german parliament urges ioc to do more for

women

Source democrats in georgia and alabama , borrowing
an idea usually advanced by conservative re-
publicans , are promoting bible classes in the
public schools .

Target democrats in southern states push bills on bible
study

Transformer bible classes in public schools are promoting
bible classes

SemSUM democrats promote bible classes in public
schools

Table 6: Case Study.

the sentence, only focuses on “women”, produces “call for
more women”. In contrast, SemSUM correctly summarizes
the original content “urges ioc to do more for the women”.
The reason for verb substitution should be that the “call on”
is often replaced with “urge” in the training data. In the sec-
ond case, the baseline summary is ungrammatical and not
smooth. We infer that the distance between “democrats” and
“promoting” is so far that the baseline model fails to judge
the real subject of “promote”. But our model can capture
the semantic relation between “democrats” and “promoting”
and generates a better summary.

Conclusion and Future Work

In this paper, we explore incorporating semantic dependency
graphs into abstractive summarization models. We propose
a novel model SemSUM, which can leverage the informa-
tion of original input texts and corresponding semantic de-
pendency graphs to guide summarization process, and our
model achieves strong performances on three datasets. Both
automatic evaluation and human evaluation indicate that our
proposed model improves semantic relevance, resulting in
higher-quality summaries.

In the future, we will incorporate more knowledge like
Knowledge Graph and Abstract Meaning Representation to
further improve the performance.
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