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Abstract

Textual entailment is a fundamental task in natural language
processing. Most approaches for solving this problem use
only the textual content present in training data. A few ap-
proaches have shown that information from external knowl-
edge sources like knowledge graphs (KGs) can add value,
in addition to the textual content, by providing background
knowledge that may be critical for a task. However, the pro-
posed models do not fully exploit the information in the usu-
ally large and noisy KGs, and it is not clear how it can be
effectively encoded to be useful for entailment. We present
an approach that complements text-based entailment models
with information from KGs by (1) using Personalized PageR-
ank to generate contextual subgraphs with reduced noise and
(2) encoding these subgraphs using graph convolutional net-
works to capture the structural and semantic information in
KGs. We evaluate our approach on multiple textual entail-
ment datasets and show that the use of external knowledge
helps the model to be robust and improves prediction accu-
racy. This is particularly evident in the challenging Break-
ingNLI dataset, where we see an absolute improvement of
5-20% over multiple text-based entailment models.

1 Introduction

Given two natural language sentences, a premise P and
a hypothesis H, the textual entailment task – also known
as natural language inference (NLI) – consists of de-
termining whether the premise entails, contradicts, or is
neutral with respect to the given hypothesis (MacCart-
ney and Manning 2009). In practice, this means that
textual entailment is characterized as either a three-
class (ENTAILS/NEUTRAL/CONTRADICTS) or a two-class
(ENTAILS/NEUTRAL) classification problem (Bowman et al.
2015; Khot, Sabharwal, and Clark 2018).

Performance on the textual entailment task can be an in-
dicator of whether a system, and the models it uses, are able
to reason over text. This has tremendous value for model-
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ing the complexities of human-level natural language under-
standing, and in aiding systems tuned for downstream tasks
such as question answering (Harabagiu and Hickl 2006).

Figure 1: A premise and hypothesis pair along with a rele-
vant subgraph from ConceptNet. Blue concepts occur in the
premise, green in the hypothesis, and purple connect them.

Most existing textual entailment models focus only on the
text of premise and hypothesis to improve classification ac-
curacy (Parikh et al. 2016; Liu et al. 2019a). A recent and
promising line of work has turned towards extracting and
harnessing relevant semantic information from knowledge
graphs (KGs) for each textual entailment pair (Chen et al.
2018; Wang et al. 2019). These approaches map terms in
the premise and hypothesis text to concepts in a KG, such
as Wordnet (Miller 1995), ConceptNet (Speer, Chin, and
Havasi 2017), or DBpedia (Auer et al. 2007) and use these
mapped concepts for the textual entailment task. Figure 1
shows an example of such mapping, where select terms from
the premise and hypothesis are mapped to concepts from a
knowledge graph (blue and green nodes, respectively). How-
ever these models suffer from one or more of the follow-
ing drawbacks: (1) they do not possess the ability to explic-
itly capture the semantic and structural information from the
KG. For example, in Figure 1, the ability for models to en-
code information from paths between blue and green nodes
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via purple nodes provides better context facilitating the sys-
tem to more correctly judge entailment.; (2) they are not eas-
ily integrated with existing NLI models that exploit only the
text of the premise and hypothesis; and (3) they are not flex-
ible with respect to the type of KG that is used.

Contributions: We present an approach to the NLI prob-
lem that can augment any existing text-based entailment
model with external knowledge. We specifically address the
aforementioned challenges by: (1) introducing a neighbor-
based expansion strategy in combination with subgraph fil-
tering using Personalized PageRank (PPR) (Jeh and Widom
2003). This approach reduces noise and selects contextually
relevant subgraphs from larger external knowledge sources
for premise and hypothesis texts ; (2) encoding subgraphs
using Graph Convolutional Networks (GCNs) (Kipf and
Welling 2017), which are initialized with knowledge graph
embeddings to capture structural and semantic information.
This general approach to graph encoding allows us to use
any external knowledge source that can be represented as a
graph such as WordNet, ConceptNet, or DBpedia. We show
that the additional knowledge can improve textual entail-
ment performance by using four standard benchmarks: Sc-
iTail, SNLI, MultiNLI, and BreakingNLI. In particular, our
experiments on the BreakingNLI dataset, where we see an
absolute improvement of 3-20% over four text-based mod-
els, shows that our technique is robust and resilient.

2 Related Work

We categorize the related approaches for NLI into: (1) ap-
proaches that take only the premise and hypothesis text as
input, and (2) approaches that utilize external knowledge.

Neural models focusing solely on the textual informa-
tion (Wang and Jiang 2016a; Yang et al. 2019) explore
the sentence representations of premise structure and max
pooling layers. Match-LSTM (Wang and Jiang 2016a) and
Decomposable Attention (Parikh et al. 2016) learn cross-
sentence correlations using attention mechanisms, where
the former uses a asymmetric network structure to learn
premise-attended representation of the hypothesis, and the
latter a symmetric attention, to decompose the problem into
sub-problems. Latest NLI models use tranformer architec-
tures such as BERT (Devlin et al. 2019) and RoBERTa (Liu
et al. 2019b). These models perform exceedingly well on
many NLI leaderboards (Zhang et al. 2018; Liu et al. 2019a).
In this work, we show that performance of text-based entail-
ment models that use pre-trained BERT embeddings can be
augmented with external knowledge.

Utilizing external knowledge has shown improvement in
performance on many natural language processing (NLP)
tasks (Huang et al. 2019; Moon et al. 2019; Musa et al.
2019). Recently, for NLI, Li et al. (2019) have shown
that features from pre-trained language models and ex-
ternal knowledge complement each other. However, ap-
proaches that do utilize external knowledge for NLI are
very few (Wang et al. 2019; Chen et al. 2018). In partic-
ular, the best model of Wang et al. (2019) combines rudi-
mentary node information – in the form of concepts men-
tioned in premise and hypothesis text (blue and green nodes

in Figure 1) – along with the text information. However, this
approach misses the rich subgraph structure that connects
premise and hypothesis entities (purple nodes in Figure 1).
(Chen et al. 2018) have developed a model with WordNet
based co-attention that use five engineered features from
WordNet for each pair of words from premise and hypoth-
esis. This model being tightly integrated with WordNet has
the following drawbacks: (1) it is inflexible to be used with
other external knowledge sources such as ConceptNet or
DBpedia, and (2) it is non-trivial to be integrated with other
state of the art text-based entailment systems. This work
addresses the drawbacks of each of these approaches men-
tioned above with competitive performance on many NLI
datasets.

The availability of large-scale datasets (Bowman et al.
2015; Williams, Nangia, and Bowman 2018; Khot, Sabhar-
wal, and Clark 2018) has fostered the advancement of neural
NLI models in recent years. However, it is important to dis-
cuss the characteristics of these datasets to understand what
they intend to evaluate (Glockner, Shwartz, and Goldberg
2018). Particularly, datasets such as (Bowman et al. 2015;
Khot, Sabharwal, and Clark 2018; Williams, Nangia, and
Bowman 2018) contain language artifacts as significant cues
for text-based neural models. These artifacts bias the mod-
els and makes it harder to evaluate the impact of external
knowledge (Chen et al. 2018; Wang et al. 2019). In order to
evaluate approaches that are more robust and not susceptible
to such biases, Glockner, Shwartz, and Goldberg (2018) cre-
ated BreakingNLI – an adversarial test set where most of the
common text-based approaches show significant drop in per-
formance. It is important to note that this test set is generated
using a subset of relationships from online resources for En-
glish learning, making it more suitable for models exploiting
KGs with lexical focus, such as WordNet. However, Break-
ingNLI represents a first and important step in the evaluation
of models that utilize external knowledge sources.

One of the core contributions of this work is the ap-
plication of Graph Convulutional Networks for encoding
knowledge graphs. While (graph-)structured knowledge rep-
resents a significant challenge for classical machine learn-
ing models, graph convolutional networks (Kipf and Welling
2017) offer an effective framework for representation learn-
ing of graphs. In parallel, relational GCNs (R-GCNs)
(Schlichtkrull et al. 2018) have been designed to accommo-
date the highly multi-relational data characteristics of large
KGs. Inspired by these works, we explore the use of R-
GCNs for infusing information from KG into NLI models.

3 KG-Augmented Entailment Model
In this section, we describe the central contribution of the
paper – the KG-augmented Entailment System (KES). As
shown in Figure 2, KES consists of two main components.
The first component is a standard text-based model that cre-
ates a fixed-size representation of the premise and hypoth-
esis texts. The second component selects contextual sub-
graphs for the premise and the hypothesis from a given KG,
and encodes them using a GCN. The fixed size representa-
tions from the two components are used as input to a stan-
dard feedforward layer for classification. We opted for a
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combined graph and text approach because the noise and in-
completeness of KGs renders a purely graph-based approach
insufficient as a standalone solution. However, we show that
the KG-augmented model provides valuable context and ad-
ditional knowledge that may be missing in text-only repre-
sentations.

3.1 A Standard Text-based Model

Given the premise P = (p1, . . . , pn) and hypothesis H =
(h1, . . . , hm), let pi and hj be the embeddings of words
occurring in sequence in the premise and hypothesis texts.
These embeddings are input to a neural network TNLI that
outputs a fixed size representation tout ∈ R

K :

tout = TNLI(P,H) (1)

where TNLI can be any of the existing state of the art text-
based NLI models (Wang and Jiang 2016a; Talman, Yli-
Jyrä, and Tiedemann 2019; Liu et al. 2019a).

3.2 Contextual Subgraphs and their
Representation using GCNs

This component uses an external KG to obtain a subgraph
that is relevant with respect to the premise and the hypoth-
esis, and then applies GCN to encode this subgraph into a
fixed-size representation gout (Figure 3).

Subgraph Extraction: In order to retrieve a subgraph
from the KG, we first map the terms in premise and hypoth-
esis text to concepts in KG by performing a max-substring
match. For example, given the premise and hypothesis in
Figure 1, the extracted and mapped concepts are shown in
blue and green. Next, this initial set of concepts is then ex-
panded to include (one-hop) neighbor concepts, and all the
edges between them (initial set and their neighbors) from
the KG. In the example in Figure 1, we extract a subgraph
that includes the purple nodes because they are directly con-
nected to green and/or blue nodes.

Figure 2: Primary components of KES: standard text-based
model, GCN-based graph embedder, and final feedforward
classifier.

Personalized PageRank (PPR) to Filter Context: KGs
are typically very large, and concept expansion by just one
hop can introduce a significant amount of noise (Wang et
al. 2019; Lalithsena et al. 2017). For example, the concept
girl is directly connected to over 1000 other concepts in
ConceptNet. For this reason, we create a contextual sub-
graph by further filtering the one-hop subgraph.

To obtain the most relevant neighbor nodes given the
premise and hypothesis texts, we use Personalized PageR-
ank (PPR) (Page et al. 1999). PPR adds a bias to the PageR-
ank algorithm by scoring the nodes conditioned on a ini-
tial subset of nodes in the graph. The bias is introduced by
changing the uniformly distributed jump probability vector
p of PageRank to a non-uniform distribution with respect to
the initial subset of nodes (Equation 2). In our settings, this
initial subset of nodes S consists of the concepts mentioned
in the premise and hypothesis.

pi =

⎧⎨
⎩

1

|S| i ∈ S

0 i /∈ S
(2)

PPR-scores R′ are then computed as follows:

R′ = (1− α)A×R+ αp (3)

where R is a vector with scores for each node (post con-
vergence); A is a normalized adjacency matrix (transition
probability matrix); and α is the damping factor.

We normalize the PPR-scores based on the maximum
PPR-score of a node in the sub-graph. We then choose a
filtering threshold θ, and exclude all the nodes that are not in
the initial subset S and that have a PPR-score below θ; we
also exclude the edges that link to the deleted nodes. The re-
maining nodes and edges make up the contextual subgraph
for the premise-hypothesis pair under consideration.

Encoding Contextual Subgraphs: The contextual sub-
graph for premise and hypothesis is encoded using a rela-
tional graph convolutional network (R-GCN) (Schlichtkrull
et al. 2018). GCNs compute node embeddings by iteratively
aggregating the embeddings of neighbor nodes. R-GCNs ex-
tend standard GCNs (Kipf and Welling 2017) to deal with
the multi-relational data of KGs. They learn different weight
matrices for each type of relation occurring in the graph. We
use an R-GCN to compute node embeddings, and then ag-
gregate these embeddings to obtain a fixed-size representa-
tion for the contextual subgraph.

We first extend the contextual subgraph by adding a self-
loop edge for each node; this is to retain the information
of the node during convolution. Previous work (Wang et al.
2019) showed that the concepts mentioned in premise and
hypothesis played an important role to improve NLI perfor-
mance. Inspired by this, we retain information of concepts
(nodes) that occur in premise and hypothesis text by adding
a premise supernode vp and hypothesis supernode vh. The
premise supernode is connected to concepts that are men-
tioned in premise using bi-directional edges and similarly
the hypothesis supernode is connected to the concepts men-
tioned in the hypothesis.
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Figure 3: Overview of the KES approach. KES links terms in the premise and hypothesis to concepts in KG, creates contextual
subgraphs via personalized page rank filtering, encodes those subgraphs with an R-GCN, and finally combines the aggregated
node embeddings with text representations into a feedforward classifier. hp and hh in the figure denote hL

vp and hL
vh

in Equa-
tion (6) respectively.

We then apply the algorithm suggested by Nguyen and
Grishman (2018) – which uses a simple sum as the aggre-
gation function – but we include a normalization factor and
disregard bias (similar to Schlichtkrull et al. (2018)):

hl+1
u = ρ

⎛
⎝∑

r∈R

∑
v∈Nu,r

1

cu,r
W l

rh
l
v

⎞
⎠ . (4)

Here, R is the set of edge types; Nu,r is the set of neighbors
connected to node u through the edge type r; cu,r is a nor-
malization constant; W l

r are the learnable weight matrices,
one per edge type r ∈ R; and ρ is a non-linear activation
function. We use the (symmetric) normalized Laplacian as a
normalization constant (Kipf and Welling 2017).

The final node embeddings are aggregated using a
summation-based graph-level readout function (Xu et al.
2019):

sG = ρ

(∑
v∈V

WhL
v

)
. (5)

V is the set of nodes in our contextual graph, W is a learn-
able weight matrix, and ρ is an activation function. This
summation-based readout function allows the encoder to
learn representations that encode the structure of the graph.

The final representation of the contextual subgraph is ob-
tained by concatenating sG – the aggregated embeddings of
all the nodes – with the embeddings of the premise and hy-
pothesis supernodes as follows:

gout = [sG;h
L
vp
;hL

vh
] (6)

3.3 Final Classifier

The final feedforward classifier takes as input the text encod-
ing from Equation (1) and the graph encoding from Equa-
tion (6) to classify the premise and hypothesis as entail-
ment/contradiction/neutral:

Epred = FFN ([tout; gout]) (7)

4 Experiments & Results

In this section, we describe the experiments that we per-
formed to evaluate our approach; the setup, including
datasets, models, and implementations; and the results.

4.1 Datasets

We considered the most popular NLI datasets: SNLI (Bow-
man et al. 2015), SciTail (Khot, Sabharwal, and Clark 2018),
and MultiNLI (Williams, Nangia, and Bowman 2018).
While SNLI and MultiNLI are prominent datasets covering
a wide range of topics, SciTail offers an in-depth focus on
science domain questions. Since this difference is also re-
flected in linguistic variations, the two datasets allow eval-
uating very different settings. As mentioned in Section 2,
these datasets carry linguistic cues that are easily captured
by the neural text based models. Hence, to show the impact
of knowledge graphs, we primarily evaluate our approach on
the and BreakingNLI dataset (Glockner, Shwartz, and Gold-
berg 2018).

4.2 Knowledge Graphs

Prior work on NLI has shown that ConceptNet contains in-
formation more useful to this problem compared to DBpe-
dia and WordNet (Wang et al. 2019). Furthermore, Speer,
Chin, and Havasi (2017) showed that, when ConceptNet is
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combined with embeddings acquired from distributional se-
mantics, it provides applications with a richer understanding
than narrower resources like the latter KGs. We therefore fo-
cus on ConceptNet for now, leaving experiments with other
KGs as future work.

4.3 Models for Text Representations

We experimented with four different text-based models to
obtain numerical representations of premise and hypothesis
text (Equation (1)). Our selection criteria: (1) performance
on leaderboards, (2) relevance for NLP in general, and (3)
ease of implementation and availability. Our goal is to aug-
ment each of these models with external knowledge and
hence test the generalizability of KES, which also shows the
benefits of its modularity. We used the AllenNLP library1 to
implement the models described below (see also Section 2).
Decomposable Attention Model (DecompAttn). One of
the earlier and most common baseline models used for
NLI (Parikh et al. 2016; Wang et al. 2019; Glockner,
Shwartz, and Goldberg 2018; Chen et al. 2018). Hence, our
hypothesis is that KES can add more value and have a larger
delta in performance.
match-LSTM. A NLI model with good performance on not
only on multiple NLI leaderboards such as SciTail and SNLI
but also applicable to other NLP tasks such as question an-
swering (Wang and Jiang 2016b).
BERT + match-LSTM. Version of match-LSTM using
BERT embeddings instead of the GLoVe embeddings in the
former. We opted for this model to take advantage of the im-
provements BERT embeddings have generated for numer-
ous NLP tasks.
Hierarchical BiLSTM Max Pooling (HBMP). Shows su-
perior performance on multiple NLI benchmarks including
SciTail, SNLI, and MultiNLI.

4.4 Models using External Knowledge

There are two other models exploiting external knowledge
for NLI. We compare them to KES:
KIM (Chen et al. 2018) uses five different features for every
pair of terms from premise and hypothesis. The features are
extracted from WordNet and they are infused in the model
as knowledge-based co-attention mechanism.
ConSeqNet (Wang et al. 2019) takes the concepts men-
tioned in premise and hypothesis as input to a match-LSTM
model (with a GRU encoding). It is important to note that the
match-LSTM model better suits text than graph structure be-
cause it uses a seq2seq encoder to account for the inherent
sequential nature of text, which is not present in graphs.

4.5 Experimental Setup and Implementation

To evaluate the impact of KES on NLI in general and its
compatibility with various existing models, we compared all
text-based models described above (Section 4.3) to a com-
bined text+graph model. Because the BreakingNLI test set
is derived from the SNLI training set, all models trained on

1https://github.com/allenai/allennlp. AllenNLP includes the
Decompattn model.

SNLI were evaluated on both the SNLI and BreakingNLI
test sets.

Text Model Parameters. We chose hyperparameters as
reported in related works. For match-LSTM and BERT-
match-LSTM, we refer to (Wang et al. 2019). For HBMP
and DecomAttn, we used the parameters from (Talman, Yli-
Jyrä, and Tiedemann 2019) and (Parikh et al. 2016) respec-
tively.

KES Setup and Training. As initial graph embeddings,
we considered TransH (Wang et al. 2014) and Com-
plEx (Trouillon et al. 2016). For each model (i.e., text-only +
graph model combination), we experimented with both em-
bedding approaches and selected the one that performed best
on the validation sets. All GCNs were configured as follows:
two edge types (one for edges in ConceptNet and one for the
self-loops); 300 dimensions for each embedding across all
layers; one convolutional layer; one additional linear layer
(after the convolution); and ReLU for all activations. These
parameters yielded best average accuracy on the validation
sets, so that we chose them uniformly for all models for con-
sistency across our approaches.

The Personalized PageRank threshold θ for filtering the
subgraphs was also tuned as a hyperparameter. We experi-
mented with θ values of 0.2, 0.4, 0.6, and 0.8. We did not
experiment with whole one-hop graphs (θ = 0.0), as they
have been shown to increase in size very rapidly over single
hops in ConceptNet (Wang et al. 2019).

Training (of the combined models) consisted of 140
epochs with a patience of 20 epochs. Batch size and learn-
ing rate over all the experiments remained 64 and 0.0001 to
make the models comparable to each other.

4.6 Results

Table 1 gives an overview of our results. They demonstrate
that KES, and thus external knowledge, has the biggest im-
pact on the BreakingNLI test set. The accuracy of text-only
models is improved, for BERT-based match-LSTM model
by 18 percentage points, match-LSTM by 13 percentage
points, HBMP by 3 percentage points, and DecompAttn by
8 percentage points. Notably, the most dramatic impact of
KES is on the BERT-based match-LSTM model, which is
generally the strongest text-only model on the other datasets.

Despite their competitive performance on SNLI, all text-
only models perform significantly worse on the Break-
ingNLI test set when compared to the SNLI test set, which is
consistent with observations from the original BreakingNLI
paper. The DecompAttn text-only model shows the biggest
drop in performance (28 percentage points) between SNLI
and BreakingNLI. The match-LSTM text-only model shows
the smallest drop in performance between SNLI and Break-
ing NLI – still a substantial 18 percentage points. In con-
trast, KES shows only modest decreases in performance be-
tween SNLI and BreakingNLI when a GloVe- or BERT-
based match-LSTM text model is used, with accuracy de-
creasing only 5 and 8 percentage points respectively. How-
ever, there is a significant decrease in performance between
SNLI and BreakingNLI when KES uses HBMP or Decom-
pAttn as its text model (20 and 26 percentage points re-
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Models
Scitail MultiNLI SNLI BreakingNLI

Text KES Text KES Text KES Text KES

match-LSTM 82.54 82.22 (0.6) 71.32 71.67 (0.8) 83.60 83.94 (0.6) 65.11 78.72
BERT+match-LSTM 89.13 90.68 (0.2) 77.96 76.73 (0.6) 85.78 85.97 (0.6) 59.42 77.59
HBMP 81.37 83.49 (0.2) 69.27 68.42 (0.6) 84.61 83.84 (0.2) 60.31 63.60
DecompAttn 76.57 72.43 (0.8) 64.89 71.93 (0.6) 79.28 85.56 (0.6) 51.3* 59.83

Existing Models with KG Text Text+Graph Text Text+Graph Text Text+Graph Text Text+Graph

KIM (Chen et al. 2018) - NE - 76.4* - 88.6* - 83.1*
ConSeqNet (Wang et al. 2019) 84.2* 85.2* 71.32 70.9 83.60 83.34 65.11 61.12

Table 1: Entailment accuracy results of KES with different text models compared to text-only entailment models (Text). Bold
values indicate where KES improves performance. PPR θ-values are shown in parentheses.∗Reported values from related work.

spectively), suggesting a potentially complex interaction be-
tween text and external knowledge features. Overall, while
KES models perform comparably to its text-based counter-
parts for SNLI, SciTail, and MultiNLI, they perform signifi-
cantly better on BreakingNLI dataset.

These results support three important claims. First, they
demonstrate that KES is modular in that it can be combined
with existing text models with different architectures. Sec-
ond, the KES approach effectively infuses external knowl-
edge into existing entailment models to improve perfor-
mance on the challenging BreakingNLI dataset. Third, KES
is robust to dataset changes that dramatically decrease the
performance of other NLI models.

Comparison to Other KG-based Models. Table 1 also
contains the results for the graph-based models KIM and
ConSeqNet. Both show comparable performance to match-
LSTM KES, with KIM performing best on all datasets. We
discuss important differences between KES, KIM, and Con-
SeqNet below.

KIM introduces an external knowledge-based co-
attention mechanism, using five manually engineered fea-
tures from WordNet for every term pair of words in premise
and hypothesis. These features are specific to WordNet re-
lations, which means that the model can only be used with
WordNet or comparable KGs with the same set of relations.
One can argue that, because KIM depends on WordNet, it
is especially suited to BreakingNLI, as WordNet contains
exactly the type of lexical information that is targeted by
BreakingNLI. Another difference between KIM and KES is
that it is not clear how to adapt KIM’s five engineered fea-
tures to a different textual entailment system. In contrast,
KES is not tied to any particular KG, KG vocabulary, or ex-
isting entailment system. One of the practical goals of KES
is to develop an approach that is easily adaptable to different
datasets, knowledge graphs, and existing entailment models.
Although tuning only the PPR threshold as the hyper param-
eter, our knowledge augmented approaches perform almost
on par with KIM on on SNLI and MultiNLI except Break-
ingNLI dataset (-4.4 percentage).

ConSeqNet, similar to our model and unlike KIM, does
provide an architecture to plug in any text based entailment
model. However, there are two primary differences between
our work and ConSeqNet. First, we are the first to encode the
graph structure of the knowledge graph where as ConSeqNet
uses on the concepts mentioned in text encoding them us-

ing RNNs. Also, in comparison to ConSeqNet, our approach
performs better with different entailment models over all the
datasets. Particularly, on the BreakingNLI dataset, our im-
plementation of ConSeqNet shows a drop in performance in
comparison to its text-based method. This is in turn surpris-
ing and may need further investigations.

In summary, in addition to the performance goals of KIM
and ConSeqNet, KES seeks to infuse entailment models
with knowledge in a way that is modular and sensitive to
graph structure, independent of a specific KG.

Harnessing External Knowledge. Table 2 shows the av-
erage number of concepts (nodes) and relations (edges) in
contextual subgraphs generated by KES, ConSeqNet, and
KIM, excluding those that were explicitly mentioned in the
premise and hypothesis texts. Unlike ConSeqNet and KIM,
KES is able to use a great amount of external knowledge that
is related to the premise and hypothesis but not explicitly
mentioned. As observed in prior work (Wang et al. 2019),
expanding subgraphs by even one hop results in very large
graphs, making PPR filtering very important.

5 Discussion

Negative Results: In Table 1, we observe two results that
did not confirm our hypotheses: (1) the reduced text+graph
improvement on BreakingNLI for HBMP, and (2) lower
text+graph performance for DecompAttn on SciTail (> 2
percentage points). We are investigating these issues, but
one possible explanation for the reduced improvement on
HBMP is that it is one of the few text based models that has
a large final hidden layer (14K feature vector) in comparison
to the features from the GCN model (900) which is possibly
biasing the final classifier towards the text-based features.

Personalized PageRank Threshold: Our initial plan for
using PPR thresholds was to make it a preprocessing step
and fix one threshold for a dataset on a base model. However,
as shown in Table 1, using PPR thresholding as a hyperpa-
rameter for each model trained showed better performance.
Also, the PPR threshold, in particular 0.8 filters very few
concepts that aren’t mentioned in premise and hypothesis
text, whereas contextual subgraphs from 0.2 can contain the
equal number of concepts from external knowledge as men-
tioned in text (Table 2). PPR filtering is just one possible
method for reducing noise that results from neighborhood-
based expansion techniques. In our future work, we intend
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PPR
Scitail (17.74*) SNLI (11.5*) MultiNLI (17.5*)

Edges Nodes Edges Nodes Edges Nodes

0.2 42.65 10.14 80.29 19.83 76.27 16.15
0.4 26.72 7.48 25.70 8.15 33.82 6.48
0.6 15.53 4.35 14.08 4.65 23.97 3.44
0.8 11.67 3.04 9.98 3.18 20.27 2.05

ConSeqNet 0 0 (17.74*) 0 0 (11.5*) 0 0 (17.5*)
No edges or new concepts are added from ConceptNet.

KIM Features based on fixed WordNet relations. No new concepts are added.

Table 2: Average number of nodes and edges (not explicitly mentioned in text) in combined premise and hypothesis subgraphs
by PPR threshold. *Average number of concepts explicitly mentioned in each premise and hypothesis text.

to investigate a different filtering approach where only those
paths that connect premise and hypothesis are included.

Dataset characteristics. We evaluated our KES approach
on NLI datasets that are widely used in the literature.
However, there has been criticism regarding the way these
datasets are created and the resulting biases that can be
exploited by learning algorithms (Glockner, Shwartz, and
Goldberg 2018; Li et al. 2019; Gururangan et al. 2018;
Poliak et al. 2018). Even in our work, in Table 1 where we
see that the DecompAttn model is consistently improved by
KES on SNLI, MNLI, and BreakingNLI, we also see the op-
posite effect on SciTail. Some qualitative analysis of the Sci-
Tail dataset showed us that use of KG can negatively impact
the performance because of high overlap between premise
and hypothesis terms.

Text-based models trained on SNLI perform significantly
worse on the BreaklingNLI test set, consistent with the re-
sults reported above. Notably, the estimated human perfor-
mance on the BreakingNLI test set is higher than that of the
original SNLI test set, providing further evidence that mod-
els that perform well on SNLI but poorly on BreakingNLI
are poor approximations for human inference. On the other
hand, NLI models that generalize well to BreakingNLI are
more likely to be better approximations for human-like in-
ference. The complexity of the BreakingNLI test set and its
characteristics make it the most interesting evaluation set.

Complexity of Knowledge Graphs and their usage: As
mentioned above, the current state-of-the-art for Break-
ingNLI is the KIM model, which achieves an 83% accuracy,
while our best performing KES model (KES with the match-
LSTM text model) achieves an accuracy of 79%. This dif-
ference can be attributed to aspects of the KIM model that
make it particularly well suited to the BreakingNLI dataset
at the expense of model flexibility and generality. KIM relies
on WordNet, which has lexical information that aligns very
closely with the challenging aspects of the BreakingNLI.
This focus clearly benefits performance on the task. How-
ever, WordNet is relatively small (117k triples, i.e., edges)
compared to ConceptNet (3.15M triples) and has a very spe-
cific scope that is unlikely to cover the broad classes of en-
tailment that occur in natural language. For example, recog-
nizing textual entailment may depend on world knowledge
that is not lexical in nature. In such cases it would be nec-

essary to invoke a model that is not primarily focused on
lexical knowledge. This is one of the motivations behind the
KES approach: to support very large KGs (e.g., ConceptNet)
and to avoid dependencies on any single KG or domain area.
An important topic for future work will be to understand the
shortcomings of various knowledge sources, how to man-
age choosing the appropriate knowledge sources for a given
task, and to continue exploring graph filtering and selec-
tion methods to leverage large scale KGs while minimizing
noise. KIM mitigates the noise issue by using a restricted set
of relations to provide greater focus and minimize intrusion
of potentially irrelevant knowledge. Again, this is a charac-
teristic of KIM that will not necessarily generalize well to
other NLI datasets, such as SciTail, which may depend less
on hyper- and hyponym relations, and more on knowledge
about everyday physical objects and processes.

6 Conclusion

In this paper, we presented a systematic approach for infus-
ing external knowledge into the textual entailment task using
contextually relevant subgraphs extracted from a KG and en-
coded with graph convolutional networks. These graph rep-
resentations are combined with standard text-based repre-
sentations into a KG-augmented entailment system which
yields significant improvement on the challenging Break-
ingNLI dataset. Additionally, the KES approach is modular,
can be used with any knowledge graph, and is generalizable
to multiple datasets. In our future work, we plan to consider
other KGs and to investigate alternative graph representa-
tions. Furthermore, it would be interesting to see how KES
performs on the popular question answering datasets.
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