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Abstract

Composing knowledge from multiple pieces of texts is a
key challenge in multi-hop question answering. We present
a multi-hop reasoning dataset, Question Answering via
Sentence Composition (QASC), that requires retrieving facts
from a large corpus and composing them to answer a
multiple-choice question. QASC is the first dataset to offer
two desirable properties: (a) the facts to be composed are an-
notated in a large corpus, and (b) the decomposition into these
facts is not evident from the question itself. The latter makes
retrieval challenging as the system must introduce new con-
cepts or relations in order to discover potential decomposi-
tions. Further, the reasoning model must then learn to identify
valid compositions of these retrieved facts using common-
sense reasoning. To help address these challenges, we provide
annotation for supporting facts as well as their composition.
Guided by these annotations, we present a two-step approach
to mitigate the retrieval challenges. We use other multiple-
choice datasets as additional training data to strengthen the
reasoning model. Our proposed approach improves over cur-
rent state-of-the-art language models by 11% (absolute). The
reasoning and retrieval problems, however, remain unsolved
as this model still lags by 20% behind human performance.

1 Introduction

Several multi-hop question-answering (QA) datasets have
been proposed to promote research on multi-sentence
machine comprehension. On one hand, many of these
datasets (Mihaylov et al. 2018; Clark et al. 2018; Welbl,
Stenetorp, and Riedel 2018; Talmor and Berant 2018) do
not come annotated with sentences or documents that can
be combined to produce an answer. Models must thus learn
to reason without direct supervision. On the other hand,
datasets that come with such annotations involve either
single-document questions (Khashabi et al. 2018a) leading
to a strong focus on coreference resolution and entity track-
ing, or multi-document questions (Yang et al. 2018) whose
decomposition into simpler single-hop queries is often evi-
dent from the question itself.

We propose a novel dataset, Question Answering via
Sentence Composition (QASC; pronounced kask) of 9,980
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Question: Differential heating of air can be harnessed for
what?
(A) electricity production (D) reduce acidity of food
(B) erosion prevention . . .
(C) transfer of electrons . . .

Annotated facts:

fS : Differential heating of air produces wind .

fL: Wind is used for producing electricity .

Composed fact fC : Differential heating of air can be harnessed
for electricity production .

Figure 1: A sample 8-way multiple choice QASC question.
Training data includes the associated facts fS and fL shown
above, as well as their composition fC . The term wind con-
nects fS and fL, but appears neither in fC nor in the ques-
tion. Further, decomposing the question relation “harnessed
for” into fS and fL requires introducing the new relation
“produces” in fS . The question can be answered by using
broad knowledge to compose these facts together and infer
fC .

multi-hop multiple-choice questions (MCQs) where simple
syntactic cues are insufficient to determine how to decom-
pose the question into simpler queries. Fig. 1 gives an ex-
ample, where the question is answered by decomposing its
main relation “harnessed for” (in fC) into a similar rela-
tion “used for” (in fL) and a newly introduced relation “pro-
duces” (in fS), and then composing these back to infer fC .

While the question in Figure 1 can be answered by com-
posing the two facts fS and fL, that this is the case is un-
clear based solely on the question. This property of relation
decomposition not being evident from reading the question
pushes reasoning models towards focusing on learning to
compose new pieces of knowledge, a key challenge in lan-
guage understanding. Further, fL has no overlap with the
question, making it difficult to retrieve it in the first place.

Let’s contrast this with an alternative question formula-
tion: “What can something produced by differential heating
of air be used for?” Although awkwardly phrased, this vari-
ation is easy to syntactically decompose into two simpler
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Property CompWebQ DROP HotPotQA MultiRC OpenBookQA WikiHop QASC

Supporting facts are available N Y Y Y N N Y
Supporting facts are annotated N N Y Y N N Y
Decomposition is not evident N – N Y Y Y Y
Multi-document inference Y N N N Y N Y
Requires knowledge retrieval Y N Y N Y N Y

Table 1: QASC has several desirable properties not simultaneously present in any single existing multihop QA dataset. Here
“available” indicates that the dataset comes with a corpus that is guaranteed to contain supporting facts, while “annotated”
indicates that these supporting facts are additionally annotated.

queries, as well as to identify what knowledge to retrieve. In
fact, multi-hop questions in many existing datasets (Yang et
al. 2018; Talmor and Berant 2018) often follow this syntacti-
cally decomposable pattern, with questions such as: “Which
government position was held by the lead actress of X?”

All questions in QASC are human-authored, obtained
via a multi-step crowdsourcing process (Section 3). To bet-
ter enable development of both the reasoning and retrieval
models, we also provide the pair of facts that were com-
posed to create the question.1 We use these annotations
to develop a novel two-step retrieval technique that uses
question-relevant facts to guide a second retrieval step. To
make the dataset difficult for fine-tuned language models us-
ing our proposed retrieval (Section 5), we further augment
the answer choices in our dataset via a multi-adversary dis-
tractor choice selection method (Section 6) that does not
rely on computationally expensive multiple iterations of ad-
versarial filtering (Zellers et al. 2018).

Even 2-hop reasoning for questions with implicit decom-
position requires new approaches for retrieval and reason-
ing not captured by current datasets. Similar to other recent
multi-hop reasoning tasks (Yang et al. 2018; Talmor and Be-
rant 2018), we also focus on 2-hop reasoning, solving which
will go a long way towards more general N-hop solutions.

In summary, we make the following contributions: (1) a
dataset QASC of 9,980 8-way multiple-choice questions
from elementary and middle school level science, with a
focus on fact composition; (2) a pair of facts fS ,fL from
associated corpora annotated for each question, along with
a composed fact fC entailed by fS and fL, which can be
viewed as a form of multi-sentence entailment dataset; (3) a
novel two-step information retrieval approach designed for
multi-hop QA that improves the recall of gold facts (by 43
pts) and QA accuracy (by 14 pts); and (4) an efficient multi-
model adversarial answer choice selection approach.

QASC is challenging for current large pre-trained lan-
guage models (Peters et al. 2018; Devlin et al. 2019), which
exhibit a gap of 20% (absolute) to a human baseline of 93%,
even when massively fine-tuned on 100K external QA exam-
ples in addition to QASC and provided with relevant knowl-
edge using our proposed two-step retrieval.

1Questions, annotated facts, and corpora are avail-
able at https://github.com/allenai/qasc. Supplementary de-
tails are provided in a longer version of this paper at
https://arxiv.org/abs/1910.11473.

2 Comparison With Existing Datasets

Table 1 summarizes how QASC compares with several ex-
isting datasets along five key dimensions (discussed below),
which we believe are necessary for effectively developing
retrieval and reasoning models for knowledge composition.

Existing datasets for the science domain require dif-
ferent reasoning techniques for each question (Clark et
al. 2016; 2018). The dataset most similar to our work is
OpenBookQA (Mihaylov et al. 2018), which comes with
multiple-choice questions and a book of core science facts
used as the seed for question generation. Each question re-
quires combining the seed core fact with additional knowl-
edge. However, it is unclear how many additional facts are
needed, or whether these facts can even be retrieved from
any existing knowledge sources. QASC, on the other hand,
explicitly identifies two facts deemed (by crowd workers) to
be sufficient to answer a question. These facts exist in an
associated corpus and are provided for model development.

MultiRC (Khashabi et al. 2018a) uses passages to create
multi-hop questions. However, MultiRC and other single-
passage datasets (Mishra et al. 2018; Weston et al. 2015)
have a stronger emphasis on passage discourse and entity
tracking, rather than relation composition.

Multi-hop datasets from the Web domain use complex
questions that bridge multiple sentences. We discuss 4 such
datasets. (a) WikiHop (Welbl, Stenetorp, and Riedel 2018)
contains questions in the tuple form (e, r, ?) based on edges
in a knowledge graph. However, WikiHop lacks questions
with natural text or annotations on the passages that could
be used to answer these questions. (b) ComplexWebQues-
tions (Talmor and Berant 2018) was derived by converting
multi-hop paths in a knowledge-base into a text query. By
construction, the questions can be decomposed into simpler
queries corresponding to knowledge graph edges in the path.
(c) HotPotQA (Yang et al. 2018) contains a mix of multi-
hop questions authored by crowd workers using a pair of
Wikipedia pages. While these questions were authored in a
similar way, due to their domain and task setup, they also
end up being more amenable to decomposition. (d) A recent
dataset, DROP (Dua et al. 2019), requires discrete reason-
ing over text (such as counting or addition). Its focus is on
performing discrete (e.g., mathematical) operations on ex-
tracted pieces of information, unlike our proposed sentence
composition task.

Many systems answer science questions by composing
multiple facts from semi-structured and unstructured knowl-
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edge sources (Khashabi et al. 2016; Khot, Sabharwal, and
Clark 2017; Jansen et al. 2017; Khashabi et al. 2018b).
However, these often require careful manual tuning due to
the large variety of reasoning techniques needed for these
questions (Boratko et al. 2018) and the large number of
facts that often must be composed together (Jansen 2018;
Jansen et al. 2016). By limiting QASC to require exactly
2 hops (thereby avoiding semantic drift issues with longer
paths (Fried et al. 2015; Khashabi et al. 2019)) and explic-
itly annotating these hops, we hope to constrain the problem
enough so as to enable the development of supervised mod-
els for identifying and composing relevant knowledge.

2.1 Implicit Relation Decomposition

As mentioned earlier, a key challenge in QASC is that syn-
tactic cues in the question are insufficient to determine how
one should decompose the question relation, rQ, into two
sub-relations, rS and rL, corresponding to the associated
facts fS and fL. At an abstract level, 2-hop questions in
QASC generally exhibit the following form:

Q � rQ(xq, z
?
a)

r?S(xq, y
?) ∧ r?L(y

?, z?a) ⇒ rQ(xq, z
?
a)

where terms with a ‘?’ superscript represent unknowns: the
decomposed relations rS and rL as well as the bridge con-
cept y. (The answer to the question, z?a, is an obvious un-
known.) To assess whether relation rQ holds between some
concept xq in the question and some concept za in an an-
swer candidate, one must come up with the missing or im-
plicit relations and bridge concept. In our previous exam-
ple, rQ =“harnessed for”, xq =“Differential heating of air”,
y =“wind”, rS =“produces”, and rL =“used for”.

In contrast, syntactically decomposable questions in many
existing datasets often spell out both rS and rL: Q �
rS(xq, y

?) ∧ rL(y
?, z?a). The example from the intro-

duction, “Which government position was held by the
lead actress of X?”, could be stated in this notation as:
lead-actress(X, y?) ∧ held-govt-posn(y?, z?a).

This difference in how the question is presented in QASC
makes it challenging to both retrieve relevant facts and rea-
son with them via knowledge composition. This difficulty is
further compounded by the property that a single relation rQ
can often be decomposed in multiple ways into rS and rL.
We defer a discussion of this aspect to later, when describing
QASC examples in Table 3.

3 Multihop Question Collection

Figure 2 gives an overall view of the crowdsourcing process.
The process is designed such that each question in QASC
is produced by composing two facts from an existing text
corpus. Rather than creating compositional questions from
scratch or using a specific pair of facts, we provide workers
with only one seed fact fS as the starting point. They are
then given the creative freedom to find other relevant facts
from a large corpus, FL that could be composed with this
seed fact. This allows workers to find other facts compose
naturally with fS and thereby prevent complex questions
that describe the composition explicitly.

Once crowd-workers identify a relevant fact fL ∈FL that
can be composed with fS , they create a new composed fact
fC and use it to create a multiple-choice question. To ensure
that the composed facts and questions are consistent with our
instructions, we introduce automated checks to catch any in-
advertent mistakes. E.g., we require that at least one interme-
diate entity (marked in black in subsequent sections) must
be dropped to create fC . We also ensure that the intermedi-
ate entity wasn’t re-introduced in the question.

These questions are next evaluated against baseline sys-
tems to ensure hardness, i.e., at least one of the incorrect an-
swer choices had to be be preferred over the correct choice
by one of two QA systems (IR or BERT; described next),
with a bonus incentive if both systems were distracted.

3.1 Input Facts

Seed Facts, FS: We noticed that the quality of the seed
facts can have a strong correlation with the quality of the
question. So we created a small set of 928 good quality seed
facts FS from clean knowledge resources. We start with two
medium size corpora of grade school level science facts:
the WorldTree corpus (Jansen et al. 2018) and a collection
of facts from the CK-12 Foundation.2 Since the WorldTree
corpus contains only facts covering elementary science, we
used their annotation protocol to expand it to middle-school
science. We then manually selected facts from these three
sources that are amenable to creating 2-hop questions.3 The
resulting corpus FS contains a total of 928 facts: 356 facts
from WorldTree, 123 from our middle-school extension, and
449 from CK-12.

Large Text Corpus, FL: To ensure that the workers are
able to find any potentially composable fact, we used a large
web corpus of 17M cleaned up facts FL. We processed and
filtered a corpus of 73M web documents (281GB) from
Clark et al. (2016) to produce this clean corpus of 17M
sentences (1GB). The procedure to process this corpus in-
volved using spaCy4 to segment documents into sentences,
a Python implementation of Google’s langdetect5 to iden-
tify English-language sentences, ftfy6 to correct Unicode
encoding problems, and custom heuristics to exclude sen-
tences with artifacts of web scraping like HTML, CSS and
JavaScript markup, runs of numbers originating from tables,
email addresses, URLs, page navigation fragments, etc.

3.2 Baseline QA Systems

Our first baseline is the IR system (Clark et al. 2016) de-
signed for science QA with its associated corpora of web and
science text (henceforth referred as the Aristo corpora). It re-
trieves sentences for each question and answer choice from
the associated corpora, and returns the answer choice with
the highest scoring sentence (based on the retrieval score).

2https://www.ck12.org
3While this is a subjective decision, it served our main goal of

identifying a reasonable set of seed facts for this task.
4https://spacy.io/
5https://pypi.org/project/spacy-langdetect/
6https://github.com/LuminosoInsight/python-ftfy
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Figure 2: Crowd-sourcing questions using the seed corpus
FS and the full corpus FL.

Our second baseline uses the language model BERT of
Devlin et al. (2019). We follow their QA approach for the
multiple-choice situation inference task SWAG (Zellers et
al. 2018). Given question q and an answer choice ci, we
create [CLS] q [SEP] ci [SEP] as the input to the
model, with q being assigned to segment 0 and ci to seg-
ment 1.7 The model learns a linear layer to project the rep-
resentation of the [CLS] token to a score for each choice
ci. We normalize the scores across all answer choices using
softmax and train the model using the cross-entropy loss.
When context/passage is available, we append the passage
to segment 0, i.e., given a retrieved passage pi, we provide
[CLS] pi q [SEP] ci [SEP] as the input. We refer to
this model as BERT-MCQ in subsequent sections.

For the crowdsourcing step, we use the
bert-large-uncased model and fine-tuned it se-
quentially on two datasets: (1) RACE (Lai et al. 2017) with
context; (2) SCI questions (ARC-Challenge+Easy (Clark et
al. 2018) + OpenBookQA (Mihaylov et al. 2018) + Regents
12th Grade Exams8).

3.3 Question Validation

We validated these questions by having 5 crowdworkers an-
swer them. Any question answered incorrectly or considered
unanswerable by at least 2 workers was dropped, reducing
the collection to 7,660 questions. The accuracy of the IR
and BERT models used in Step 4 was 32.25% and 38.73%,
resp., on this reduced subset.9 By design, every question has
the desirable property of being annotated with two sentences
from FQASC that can be composed to answer it. The low score
of the IR model also suggests that these questions can not be
answered using a single fact from the corpus.

We next analyze the retrieval and reasoning challenges as-
sociated with these questions. Based on these analyses, we

7We assume familiarity with BERT’s notation such as [CLS],
[SEP], uncased models, and masking (Devlin et al. 2019).

8http://www.nysedregents.org/livingenvironment
9The scores are not 0% as crowdworkers were not required to

distract both systems for every question.

will propose a new baseline model for multi-hop questions
that substantially outperforms existing models on this task.
We use this improved model to adversarially select addi-
tional distractor choices to produce the final QASC dataset.

4 Challenges

Table 2 shows sample crowd-sourced questions along with
the associated facts. Consider the first question: “What can
trigger immune response?”. One way to answer it is to first
retrieve the two annotated facts (or similar facts) from the
corpus. But the first fact, like many other facts in the cor-
pus, overlaps only with the words in the answer “trans-
planted organs” and not with the question, making retrieval
challenging. Even if the right facts are retrieved, the QA
model would have to know how to compose the “found
on” relation in the first fact with the “trigger” relation in
the second fact. Unlike previous datasets (Yang et al. 2018;
Talmor and Berant 2018), the relations to be composed are
not explicitly mentioned in the question, making reasoning
also challenging. We next discuss these two issues in detail.

4.1 Retrieval Challenges

We analyze the retrieval challenges associated with finding
the two supporting facts associated with each question. Note
that, unlike OpenBookQA, we consider the more general
setting of retrieving relevant facts from a single large cor-
pus FQASC = FS ∪ FL instead of assuming the availability
of a separate small book of facts (i.e., FS).

Standard IR approaches for QA retrieve facts using ques-
tion + answer as their IR query (Clark et al. 2016; Khot, Sab-
harwal, and Clark 2017; Khashabi et al. 2018b). While this
can be effective for lookup questions, it is likely to miss im-
portant facts needed for multi-hop questions. In 96% of our
crowd-sourced questions, at least one of the two annotated
facts had an overlap of fewer than 3 tokens (ignoring stop
words) with this question + answer query, making it difficult
to retrieve such facts.10 Note that our annotated facts form
one possible pair that could be used to answer the question.
While retrieving these specific facts isn’t necessary, these
crowd-authored questions are generally expected to have a
similar overlap level to other relevant facts in our corpus.

Neural retrieval methods that use distributional represen-
tations can help mitigate the brittleness of word overlap mea-
sures, but also vastly open up the space of possibly relevant
sentences. We hope that our annotated facts will be useful
for training better neural retrieval approaches for multi-hop
reasoning in future work. In this work, we focused on a mod-
ified non-neural IR approach that exploits the intermediate
concepts not mentioned in the question ( black words in our
examples), which is explained in Section 5.1.

4.2 Reasoning Challenges

As described earlier, we collected these questions to require
compositional reasoning where the relations to be composed
are not obvious from the question. To verify this, we an-
alyzed 50 questions from our final dataset and identified

10See Table 9 in Appendix E (provided in the longer version at
https://arxiv.org/abs/1910.11473) for more details.
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Question Choices Annotated Facts
What can trigger immune
response?

(A) Transplanted organs
(B) Desire
(C) Pain
(D) Death

fS : Antigens are found on cancer cells and the cells of
transplanted organs.
fL: Anything that can trigger an immune response is called
an antigen .

What forms caverns by
seeping through rock and
dissolving limestone?

(A) carbon dioxide in groundwater
(B) oxygen in groundwater
(C) pure oxygen
(D) magma in groundwater

fS : a cavern is formed by carbonic acid in groundwater
seeping through rock and dissolving limestone.
fL: When carbon dioxide is in water, it creates
carbonic acid .

Table 2: Examples of questions generated via the crowd-sourcing process along with the facts used to create each question.

Fact 1 rS Fact 2 rL Composed Fact rQ
Antigens are found on cancer cells
and the cells of transplanted organs.

located Anything that can trigger an im-
mune response is called an antigen.

causes transplanted organs can
trigger an immune response

causes

a cavern is formed by carbonic acid
in groundwater seeping through
rock and dissolving limestone

causes Any time water and carbon dioxide
mix, carbonic acid is the result.

causes carbon dioxide in ground-
water creates caverns

causes

Table 3: These examples of sentence compositions result in the same composed relation, causes, but via two different com-
position rules: located + causes ⇒ causes and causes + causes ⇒ causes These rules are not evident from the composed fact,
requiring a model reasoning about the composed fact to learn the various possible decompositions of causes.

the key relations in fS , fL, and the question, referred to as
rS , rL, and rQ, respectively (see examples in Table 3). 7
of the 50 questions could be answered using only one fact
and 4 of them didn’t use either of the two facts. We ana-
lyzed the remaining 39 questions to categorize the associ-
ated reasoning challenges. In only 2 questions, the two re-
lations needed to answer the question were explicitly men-
tioned in the question itself. In comparison, the composition
questions in HotpotQA had both the relations mentioned in
47 out of 50 dev questions in our analysis.

Since there are a large number of lexical relations, we
focus on 16 semantic relations in our analysis such as
causes, performs, etc. These relations were defined
based on previous analyses on science datasets (Clark
et al. 2014; Jansen et al. 2016; Khashabi et al. 2016).
We found 25 unique relation composition rules (i.e.,
rS(X,Y ), rL(Y, Z) ⇒ rQ(X,Z)). On average, we found
every query relation rQ had 1.6 unique relation composi-
tions. Table 3 illustrates two different relation compositions
that lead to the same causes query relation. As a result,
models for QASC have a strong incentive to learn various
possible compositions that lead to the same semantic rela-
tion, as well as extract them from text.

5 Question Answering Model

We now discuss our proposed two-step retrieval method and
how it substantially boosts the performance of BERT-based
QA models on crowd-sourced questions. This will motivate
the need for adversarial choice generation.

5.1 Retrieval: Two-step IR

Consider the first question in Table 2. An IR approach that
uses the standard q+ a query is unlikely to find the first fact
since many irrelevant facts would also have the same over-
lapping words – “transplanted organs”. However, it is likely
to retrieve facts similar to the second fact, i.e., “Antigens

trigger immune response”. If we could recognize antigen
as an important intermediate entity that would lead to the
answer, we can then query for sentences connecting this in-
termediate entity (“antigens” ) to the answer (“transplanted
organs” ) which is then likely to find the first fact (“antigens
are found on transplanted organs” ). One potential way to
identify such an intermediate concept is to consider the new
entities introduced in the first retrieved fact that are absent
from the question, i.e., f1 \ q.

Based on this intuition, we present a simple but effective
two-step IR baseline for multi-hop QA: (1) Retrieve K (=20
for efficiency) facts F1 based on the query Q=q + a; (2) For
each f1 ∈ F1, retrieve L (=4 to promote diversity) facts F2

each of which contains at least one word from Q \ f1 and
from f1 \ Q; (3) Filter {f1, f2} pairs that do not contain
any word from q or a; (4) Select top M unique facts from
{f1, f2} pairs sorted by the sum of their individual IR score.

Each retrieval query is run against an ElasticSearch11 in-
dex built over FQASC with retrieved sentences filtered to re-
duce noise (Clark et al. 2018). We use the set-difference be-
tween the stemmed, non-stopword tokens in q + a and f1
to identify the intermediate entity. Generally, we are inter-
ested in finding facts that connect new concepts introduced
in the first fact (i.e., f1 \ Q) to concepts not yet covered in
question+answer (i.e., Q \ f1).

Training a model on our annotations or essential
terms (Khashabi et al. 2017) could help better identify these
concepts. Recently, Khot, Sabharwal, and Clark (2019) pro-
posed a span-prediction model to identify such intermediate
entities for OpenBookQA questions. Their approach, how-
ever, assumes that one of the gold facts is provided as input
to the model. Our approach, while specifically designed for
2-hop questions, can serve as a stepping stone towards de-
veloping retrieval methods for N-hop questions.

11https://www.elastic.co
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The single step retrieval approach (using only f1 but still
requiring overlap with q and a) has an overall recall of only
2.9% (i.e., both fS and fL were in the top 10 sentences for
2.9% of the questions). The two-step approach, on the other
hand, has a recall of 44.4%—a 15X improvement (also lim-
ited to top M=10 sentences). Even if we relax the recall
metric to finding fS or fL, the single step approach under-
performs by 28% compared to the two-step retrieval (42.0 vs
69.9%). We will show in the next section that this improved
recall also translates to improved QA scores. This shows the
value of our two-step approach as well as the associated an-
notations: progress on the retrieval sub-task enabled by our
fact-level annotations can lead to progress on the QA task.

5.2 Reasoning: BERT Models

We primarily use BERT-models fine-tuned on other QA
datasets and with retrieved sentences as context, similar
to prior state-of-the-art models on MCQ datasets (Sun
et al. 2018; Pan et al. 2019).12 There is a large space
of possible configurations to build such a QA model
(e.g., fine-tuning datasets, corpora) which we will explore
later in our experimental comparisons. For simplicity, the
next few sections will focus on one particular model: the
bert-large-cased model fine-tuned on the RACE +
SCI questions (with retrieved context13) and then fine-tuned
on our dataset with single-step/two-step retrieval. For con-
sistency, we use the same hyper-parameter sweep in all fine-
tuning experiments (cf. Appendix D).

5.3 Results on Crowd-Sourced Questions

To enable fine-tuning models, we split the questions them
into 5962/825/873 questions in train/dev/test folds, resp. To
limit memorization, any two questions using the same seed
fact, fS , were always put in the same fold. Since multiple
facts can cover similar topics, we further ensure that similar
facts are also in the same fold. (See Appendix B for details.)

While these crowd-sourced questions were challenging
for the baseline QA models (by design), models fine-tuned
on this dataset perform much better. The BERT baseline that
scored 38.7% on the crowd-sourced questions now scores
63.3% on the dev set after fine-tuning. Even the basic single-
step retrieval context can improve over this baseline score by
14.9% (score: 78.2%) and our proposed two-step retrieval
improves it even further by 8.2% (score: 86.4%). This shows
that the distractor choices selected by the crowdsource work-
ers were not as challenging once the model is provided with
the right context. This can be also seen in the incorrect an-
swer choices selected by them in Table 2 where they used
words such as “Pain” that are associated with words in the
question but may not have a plausible reasoning chain. To
make this dataset more challenging for these models, we
next introduce adversarial distractor choices.

12Experiments section contains numbers for other QA models.
13We use the same single-step retrieval over the large Aristo

corpus as used by other BERT-based systems on ARC and Open-
BookQA leaderboards.

Figure 3: Generating QASC questions using adversarial
choice selection.

6 Adversarial Choice Generation

To make the crowdsourced dataset challenging for fine-
tuned language models, we use model-guided adversar-
ial choice generation to expand each crowdsourced ques-
tion into an 8-way question. Importantly, the human-
authored body of the question is left intact (only the choices
are augmented), to avoid a system mechanically reverse-
engineering how a question was generated.

Previous approaches to adversarially create a hard dataset
have focused on iteratively making a dataset harder by sam-
pling harder choices and training stronger models (Zellers et
al. 2018; 2019a). While this strategy has been effective, it in-
volves multiple iterations of model training that can be pro-
hibitively expensive with large LMs. In some cases (Zellers
et al. 2018; 2019b), they need a generative model such
as GPT-2 (Radford et al. 2019) to produce the distractor
choices. We, on the other hand, have a simpler setup where
we train only a few models and do not require a model to
generate the distractor choices.

6.1 Distractor Options

To create the space of distractors, we follow Zellers et
al. (2019a) and use correct answer choices from other ques-
tions. This ensures that a model won’t be able to predict the
correct answer purely based on the answer choices (one of
the issues with OpenBookQA). To reduce the chances of a
correct answer being added to the set of distractors, we pick
them from the most dissimilar questions. We further filter
these choices down to ∼30 distractor choices per question
by removing the easy distractors based on the fine-tuned
BERT baseline model. Further implementation details are
provided in Appendix C.

This approach of generating distractors has an additional
benefit: we can recover the questions that were rejected ear-
lier for having multiple valid answers (in § 3.3). We add back
2,774 of the 3,361 rejected questions that (a) had at least one
worker select the right answer, and (b) were deemed unan-
swerable by at most two workers. We, however, ignore all
crowdsourced distractors for these questions since they were
considered potentially correct answers in the validation task.
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Dev Accuracy
Single-step retr. Two-step retr.

Original Dataset (4-way) 78.2 86.4
Random Distractors (8-way) 74.9 83.3
Adversarial Distractors (8-way) 61.7 72.9

Table 4: Results of the BERT-MCQ model on the adversarial
dataset using bert-large-cased model and pre-trained
on RACE + SCI questions.

We use the adversarial distractor selection process (to be de-
scribed shortly) to add the remaining 7 answer choices.

To ensure a clean evaluation set, we use another crowd-
sourcing task where we ask 3 annotators to identify all pos-
sible valid answers from the candidate distractors for the dev
and test sets. We filter out answer choices in the distractor
set that were considered valid by at least one turker. Ad-
ditionally, we filter out low-quality questions where more
than four distractor choices were marked valid or the cor-
rect answer was not included in the selection. This dropped
20% of the dev and test set questions and finally resulted in
train/dev/test sets of size 8134/926/920 questions with an av-
erage of 30/26.9/26.1 answer choices (including the correct
one) per question.

6.2 Multi-Adversary Choice Selection

We first explain our approach, assuming access to K models
for multiple-choice QA. Given the number of datasets and
models proposed for this task, this is not an unreasonable
assumption. In this work, we use K BERT models, but the
approach is applicable to any QA model.

Our approach aims to select a diverse set of answers that
are challenging for different models. As described above,
we first create ∼30 distractor options, D for each question.
We then sort these distractor options based on their relative
difficulty for these models, defined as the number of mod-
els fooled by this distractor:

∑
k I

[
mk(q, di) > mk(q, a)

]

where mk(q, ci) is the k-th model’s score for the question
q and choice ci. In case of ties, we then sort these dis-
tractors based on the difference between the scores of the
distractor choice and the correct answer:

∑
k

(
mk(q, di) −

mk(q, a)
)
.14

We used BERT-MCQ models that were fine-tuned on the
RACE +SCI dataset as described in the previous section. We
additionally fine-tune these models on the training questions
with random answer choices added from the the space of
distractors to make each question an 8-way multiple-choice
question. This ensures that our models have seen answer
choices from both the human-authored and algorithmically
selected space of distractors. Drawing inspiration from boot-
strapping (Breiman 1996), we create two such datasets with
randomly selected distractors from D and use the models
fine-tuned on these datasets as mk (i.e, K = 2). There is
a large space of possible models and scoring functions that

14Since we use normalized probabilities as model scores, we do
not normalize them here.

may be explored,15 but we found this simple approach to
be effective at identifying good distractors. This process of
generating the adversarial dataset is depicted in Figure 3.

6.3 Evaluating Dataset Difficulty

We select the top scoring distractors using the two BERT-
MCQ models such that each question is converted into
an 8-way MCQ (including the correct answer and human-
authored valid distractors). To verify that this results in chal-
lenging questions, we again evaluate using the BERT-MCQ
models with two different kinds of retrieval. Table 4 com-
pares the difficulty of the adversarial dataset to the origi-
nal dataset and the dataset with random distractors (used for
fine-tuning BERT-MCQ models).

The original 4-way MCQ dataset was almost solved by
the two-step retrieval approach and increasing it to 8-way
with random distractors had almost no impact on the scores.
But our adversarial choices drop the scores of the BERT
model given context from either of the retrieval approaches.

6.4 QASC Dataset

The final dataset contains 9,980 questions split into
[8134|926|920] questions in the [train|dev|test] folds. Each
question is annotated with two facts that can be used to an-
swer the question. These facts are present in a corpus of
17M sentences (also provided). The questions are similar to
the examples in Table 2 but expanded to an 8-way MCQ
and with shuffled answer choices. E.g., the second exam-
ple there was changed to “What forms caverns by seeping
through rock and dissolving limestone? (A) pure oxygen
(B) Something with a head, thorax, and abdomen (C) basic
building blocks of life (D) carbon dioxide in groundwater
(E) magma in groundwater (F) oxygen in groundwater (G)
At the peak of a mountain (H) underground systems”.

Table 6 gives a summary of QASC statistics, and Table 7
in the Appendix provides additional examples.

7 Experiments

While we used large pre-trained language models first fine-
tuned on other QA datasets (∼100K examples) to ensure that
QASC is challenging, we also evaluate BERT models with-
out any additional fine-tuning here. All models are still fine-
tuned on the QASC dataset.

To verify that our dataset is challenging also for models
that do not use BERT (or any other transformer-based archi-
tecture), we evaluate Glove (Pennington, Socher, and Man-
ning 2014) based models developed for multiple-choice sci-
ence questions in OpenBookQA. Specifically, we consider
these non-BERT baseline models:

• Odd-one-out: Answers the question based on just the
choices by identifying the most dissimilar answer.

• ESIM Q2Choice (with and without Elmo): Uses the
ESIM model (Chen et al. 2017) with Elmo embed-
dings (Peters et al. 2018) to compute how much does the
question entail each answer choice.

15For example, we evaluated the impact of increasing K, but
didn’t notice any change in the fine-tuned model’s score.
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Retr. Corpus Retrieval Addnl. fine-tuning Dev Test
Model Embedding (#docs) Approach (#examples) Acc. Acc.

Human Score 93.0
Random 12.5 12.5

O
B

Q
A

M
od

el
s ESIM Q2Choice Glove 21.1 17.2

ESIM Q2Choice Glove Elmo 17.1 15.2
Odd-one-out Glove 22.4 18.0

B
E

R
T

M
od

el
s

BERT-MCQ BERT-LC FQASC (17M) Single-step 59.8 53.2
BERT-MCQ BERT-LC FQASC + ARC (31M) Single-step 62.3 57.0
BERT-MCQ BERT-LC FQASC + ARC(31M) Two-step 66.6 58.3
BERT-MCQ BERT-LC FQASC (17M) Two-step 71.0 67.0

A
dd

nl
.

Fi
ne

-
tu

ni
ng

AristoBertV7 BERT-LC[WM] Aristo (1.7B) Single-step RACE + SCI (97K) 69.5 62.6
BERT-MCQ BERT-LC FQASC (17M) Two-step RACE + SCI (97K) 72.9 68.5
BERT-MCQ BERT-LC[WM] FQASC (17M) Two-step RACE + SCI (97K) 78.0 73.2

Table 5: QASC scores for previous state-of-the-art models on multi-hop Science MCQ(OBQA), and BERT models with dif-
ferent corpora, retrieval approaches and additional fine-tuning. While the simpler models only show a small increase relative
to random guessing, BERT can achieve upto 67% accuracy by fine-tuning on QASC and using the two-step retrieval. Us-
ing the BERT models pre-trained with whole-word masking and first fine-tuning on four relevant MCQ datasets (RACE and
SCI(3)) improves the score to 73.2%, leaving a gap of over 19.8% to the human baseline of 93%. ARC refers to the corpus
of 14M sentences from Clark et al. (2018), BERT-LC indicates ‘bert-large-cased‘ and BERT-LC[WM] indicates whole-word
masking.

Train Dev Test

Number of questions 8,134 926 920
Number of unique fS 722 103 103
Number of unique fL 6,157 753 762
Average question length (chars) 46.4 45.5 44.0

Table 6: QASC dataset statistics

As shown in Table 5, OpenBookQA models, that had
close to the state-of-the-art results on OpenBookQA, per-
form close to the random baseline on QASC. Since these
mostly rely on statistical correlations between questions and
across choices,16 this shows that this dataset doesn’t have
any easy shortcuts that can be exploited by these models.

Second, we evaluate BERT models with different cor-
pora and retrieval. We show that our two-step approach
always out-performs the single-step retrieval, even when
given a larger corpus. Interestingly, when we compare the
two single-step retrieval models, the larger corpus outper-
forms the smaller corpus, presumably because it increases
the chances of having a single fact that answers the ques-
tion. On the other hand, the smaller corpus is better for the
two-step retrieval approach, as larger and noisier corpora are
more likely to lead a 2-step search astray.

Finally, to compute the current gap to human perfor-
mance, we consider a recent state-of-the-art model on mul-
tiple leaderboards: AristoBertV7 that uses the BERT model
trained with whole-word masking,17 fine-tuned on the RACE

16Their knowledge-based models do not scale to our corpus of
17M sentences.

17https://github.com/google-research/bert

+SCI questions and retrieves knowledge from a very large
corpus. Our two-step retrieval based model outperforms this
model and improves even further with more fine-tuning. Re-
placing the pre-trained bert-large-cased model with
the whole-word masking based model further improves the
score by 4.7%, but there is still a gap of ∼20% to the human
score of 93% on this dataset.

8 Conclusion

We present QASC, the first QA dataset for multi-hop rea-
soning beyond a single paragraph where two facts needed to
answer a question are annotated for training, but questions
cannot be easily syntactically decomposed into these facts.
Instead, models must learn to retrieve and compose candi-
date pieces of knowledge. QASC is generated via a crowd-
sourcing process, and further enhanced via multi-adversary
distractor choice selection. State-of-the-art BERT models,
even with massive fine-tuning on over 100K questions from
previous relevant datasets and using our proposed two-step
retrieval, leave a large margin to human performance levels,
thus making QASC a new challenge for the community.
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