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Abstract

Some downstream NLP tasks exploit discourse dependency
trees converted from RST trees. To obtain better discourse de-
pendency trees, we need to improve the accuracy of RST trees
at the upper parts of the structures. Thus, we propose a novel
neural top-down RST parsing method. Then, we exploit three
levels of granularity in a document, paragraphs, sentences and
Elementary Discourse Units (EDUs), to parse a document ac-
curately and efficiently. The parsing is done in a top-down
manner for each granularity level, by recursively splitting a
larger text span into two smaller ones while predicting nu-
clearity and relation labels for the divided spans. The results
on the RST-DT corpus show that our method achieved the
state-of-the-art results, 87.0 unlabeled span score, 74.6 nu-
clearity labeled span score, and the comparable result with
the state-of-the-art, 60.0 relation labeled span score. Further-
more, discourse dependency trees converted from our RST
trees also achieved the state-of-the-art results, 64.9 unlabeled
attachment score and 48.5 labeled attachment score.

Introduction

A discourse structure of a document can be represented as
a tree, like a syntactic structure of a sentence being repre-
sented as a tree. Rhetorical structure theory (RST) (Mann
and Thompson 1987) is well-known and has been widely
studied for representing a document as a tree. An RST tree is
a type of constituent tree, whose terminal nodes (leaves) are
elementary discourse units (EDUs), clause-like units, and
whose non-terminal nodes represent the nuclearity status,
nucleus or satellite, for the span that consists of a sequence
of EDUs or a single EDU. The span dominated by a nucleus
is more essential than the one dominated by a satellite. That
is, the satellite has a role of supporting the nucleus. Further-
more, rhetorical relations are defined between two adjacent
spans. A mono-nuclear relation, such as ”Elaboration” or
”Condition”, is assigned between a nucleus and its satellite,
and a multi-nuclear relation, such as ”Same-unit” or ”Topic-
change”, is assigned between two nuclei.

RST trees have important roles in natural language pro-
cessing (NLP) tasks, such as summarization (Marcu 1998;
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Figure 1: The procedure of determining the parent of e4. N,
S and e indicate nucleus, satellite and EDU, respectively.

Hirao et al. 2013), question-answering (Jansen, Surdeanu,
and Clark 2014), sentiment analysis (Bhatia, Ji, and Eisen-
stein 2015), and text categorization (Ji and Smith 2017).
Most of them rely on discourse dependency trees, that ex-
plicitly express parent-child relationships between EDUs,
converted from RST trees. When determining the parent of
an EDU, the following procedure is usually applied: (1) Find
the nearest satellite from the ancestors of the EDU. (2) From
the sibling nucleus of the nearest satellite, follow only nuclei
downward in the tree and find the leftmost descendant EDU.
(3) Then assign the EDU as its parent. Fig. 1 shows an exam-
ple. Here, consider a case where a parser built an RST tree
with swapped N/S labels for the children of the root node.
Since the number of incorrect labeling is only two, the nu-
clearity labeled span score is .85(=11/13). However, parent-
child relationships between EDUs are drastically changed
by the swap. The unlabeled attachment score (UAS) of the
discourse dependency tree is .43(=3/7). On the other hand,
in a case of swapping N/S labels for the parents of e4 and
e5, the nuclearity labeled span score is still .85(=11/13) but
we obtain better UAS, .71(=5/7). Thus, inaccuracies in the
upper parts of an RST tree cause a critical problem for the
dependency conversion. That is, we need to develop an RST
parser that can build RST trees with accurate upper parts to
obtain good discourse dependency trees for improving the
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performance of the downstream NLP tasks1.
Since RST trees are a kind of constituent tree, any algo-

rithms proposed for syntactic parsing can also be applied for
RST parsing. However, because the number of EDUs in a
document is much larger than that of words in a sentence,
CKY-based parsing algorithms that incur heavy computa-
tional costs are not preferable for RST parsing even though
these can obtain optimal trees. Therefore, most RST parsers
use transition-based algorithms with linear time complex-
ity. In fact, the best results on the standard benchmark
dataset, RST discourse treebank (RST-DT) (Carlson, Marcu,
and Okurowski 2001), are obtained using a transition-based
method (Wang, Li, and Wang 2017). However, as Hong and
Huang (2018) described, transition-based parsers tend to be
easily affected by local errors during parsing, due to the
small search space. In transition-based parsers, with either
left-to-right or right-to-left search direction, local errors near
leaf nodes may propagate to the parsing results at the upper
parts, even though the nodes at the upper parts are more im-
portant than those near leaf nodes for deciding global tree
structures.

To parse a document without suffering from such error
propagation, we propose a top-down RST parser, which is
inspired by the span-based neural syntactic parser (Stern,
Andreas, and Klein 2017). Then, we exploit three levels of
granularity in a document to parse a document efficiently
and accurately. We build RST trees at each granularity level
by recursively splitting a larger text span into smaller ones
while predicting their nuclearity status and the relation. The
parser builds an RST tree whose leaves are paragraphs for
a document, RST trees whose leaves are sentences for each
paragraph, and RST trees whose leaves are EDUs for each
sentence. We then obtain an RST tree for the whole docu-
ment by merging the trees together, namely, replacing leaves
of upper-level RST trees with lower-level RST trees that
were already constructed.

The experimental results obtained on RST-DT demon-
strated that our method improved the upper parts of the RST
tree structures, as we expected. The improvements derive the
state-of-the-art unlabeled span score and nuclearity labeled
span score, F1 of 87.0 and F1 of 74.6, and the comparable
relation labeled span score, F1 of 60.0, with the state-of-the-
art. Moreover, discourse dependency trees converted from
our RST trees also achieved the state-of-the-art unlabeled at-
tachment score (UAS) and labeled attachment score (LAS),
64.9 and 48.5, respectively.

Related Work

Early studies on RST parsing employed traditional statistical
models with handcrafted features. DuVerle and Prendinger
(2009) proposed a bottom-up greedy parser that recursively
merges adjacent spans based on SVMs. Feng and Hirst
(2012) employed two levels of granularity in a document,
i.e., intra- and inter- multi-sentence parsing models. Joty et

1Of course, we can directly build discourse dependency trees
by applying syntactic dependency parsing technologies. However,
it is known that the performance is not so good (Hayashi, Hirao,
and Nagata 2016).

al. (2013) introduced the CKY algorithm to obtain optimal
trees with two levels of granularity in a document. Since
the CKY algorithm requires O(n3) time complexity, Feng
and Hirst (2014) proposed a bottom-up greedy parser with
CRFs as a local classifier. The method achieved the for-
mer best results (Morey, Muller, and Asher 2017). Recently,
Wang et al. (2017) proposed a shift-reduce parser based on
SVMs and achieved the current best results. The method first
builds naked RST trees, trees holding only nuclearity status,
then assigns rhetorical relation labels between two adjacent
spans.

Inspired by the success of neural networks in NLP tasks,
several neural network-based RST parsers have been pro-
posed. Ji and Eisenstein (2014) proposed a shift-reduce
parser that uses a feedforward neural network. Li et al.
(2014) proposed a CKY-based parser that uses recurrent
neural networks to learn the representation of EDUs. Li et al.
(2016) proposed another CKY-based parser that utilizes hi-
erarchical BiLSTMs to learn the representation of text spans,
and tensor-based transformation functions to compose ad-
jacent text spans. These methods are sophisticated but the
performances are not so good (Morey, Muller, and Asher
2017). Liu and Lapata (2017) proposed a transition-based
neural parser as an extension of Fang and Hirst’s (2014).
The parser uses LSTMs to learn the representation of text
spans. However, the performances are outperformed by the
state-of-the-art statistical methods.

Recently, a top-down RST parsing method based on
pointer networks (Vinyals, Fortunato, and Jaitly 2015)
which are variants of attention-based encoder-decoder has
been proposed for the sentence level (Lin et al. 2019). Their
method is similar to ours in that both utilize the top-down
parsing but the focus of parsing is quite different from ours.
Their focus is only on sentence-level RST parsing while our
focus is on the whole document-level RST parsing. Since
their method is specific to parsing a sentence, it would be dif-
ficult to extend it so as to parse a whole document. To parse
a document in a top-down manner, a parser needs to split
longer spans consisting of about 50 EDUs, the average num-
ber of EDUs in a document in RST-DT. However, it is well
known that the performance of the attention-based encoder-
decoder seriously degrades when applied to long sequences
(Koehn and Knowles 2017).

Neural Top-down RST Parsing
In general, RST trees are converted into right-branching bi-
nary trees by applying the right-heavy binarization proce-
dure (Morey, Muller, and Asher 2017), as in constituent
parsing. Note that the transformation is the de-facto standard
binarization utilized by recent state-of-the-art document-
level RST parsing researches, while there may be a few ex-
ceptions. Thus, we use top-down parsing (Stern, Andreas,
and Klein 2017) that recursively splits a text span into
smaller two ones for each granularity level with neural mod-
els.

Three Levels of Granularity in Document

Conventional RST parsers build RST trees whose leaves are
EDUs for each sentence in a document and build an RST
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(a) Original Tree (c) RST tree with three-levels
of granularity

(b) RST tree with two-levels
of granularity

Figure 2: Original RST tree and RST trees with different number of granularity levels. p, s, and e denote paragraph, sentence,
and EDU, respectively.

tree whose leaves are sentences for a document. They then
obtain an RST tree by replacing sentences as leaves with the
already constructed parse trees for the sentences. Thus, these
methods disregard paragraphs that are likely to be about the
same topic as another level of granularity in a document.

In this paper, we build an RST tree with the following
procedure:

1. Build a document tree whose leaves correspond to para-
graphs for a document.

2. Build paragraph trees whose leaves correspond to sen-
tences for each paragraph.

3. Build sentence trees whose leaves correspond to EDUs
for each sentence.

4. Replace all leaves of the document tree with the para-
graph trees and all leaves of the paragraph trees with the
sentence trees.

We give an example of RST trees with different number
of granularity levels. Fig. 2 (a) shows an original RST tree, a
document directly represented as an RST tree whose leaves
are EDUs. Fig. 2 (b) shows an RST tree with two levels of
granularity, a document represented as an RST tree whose
leaves are sentences and a sentence represented as an RST
tree whose leaves are EDUs. This representation has been
widely utilized in conventional RST parsing models. Fig.
2 (c) shows an RST tree with three levels of granularity,
a document represented as an RST tree whose leaves are
paragraphs, a paragraph represented as an RST tree whose
leaves are sentences, and a sentence represented as an RST
tree whose leaves are EDUs. This is our representation for
an RST tree of a document.

Since the number of leaves in paragraph and sentence
trees is smaller than that in the original RST tree, and we do
not need to build subtrees that cross paragraph or sentence

boundaries, we can reduce the search space of the parsing
with the multiple levels of granularity. Assuming the num-
ber of possible span splits as the size of the search space, our
investigation shows that considering two-levels and three-
levels of granularity makes the search space 7.6% and 0.8%
respectively for RST-DT, compared with the case with a sin-
gle granularity level. Due to some gold RST trees in RST-DT
cross paragraph or sentence boundaries, the upper bound of
unlabeled span score of a parser with two levels of granular-
ity is .963 and that with three levels of granularity is .955 on
the test data of RST-DT.

Representations for Text Spans

To parse a document in a top-down manner, we need to rep-
resent an atomic unit, either a paragraph, a sentence or an
EDU, as a feature vector. Thus, we utilize BiLSTMs and
the selective gate mechanism (Zhou et al. 2017), which are
widely used in text summarization tasks to obtain the vector
representaion. By using a forward-LSTM function

−−−−→
LSTM

and backward-LSTM function
←−−−−
LSTM, where the forward

and backward hidden states of j-th word in the atomic unit
is represented as follows:

−→
h j =

−−−−→
LSTMword(

−→
h j−1, embj),

←−
h j =

←−−−−
LSTMword(

−→
h j+1, embj),

hj = [
−→
hj ;
←−
hj ],

(1)

where embj is the embedding of j-th word. To obtain the
representation for embj , we use a concatenation of three
layers in ELMo (Peters et al. 2018) and a GloVe vector (Pen-
nington, Socher, and Manning 2014) for j-th word, by fol-
lowing successful studies for EDU segmentation (Wang, Li,
and Yang 2018) and semantic role labeling (Strubell et al.
2018; Ouchi, Shindo, and Matsumoto 2018).
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Figure 3: Overview of representation for the atomic unit.

We then introduce selective gates to control the impor-
tance of each word in the unit. The selective gates receive
hidden state hj and context vector s = [hn; h1] and compute
new hidden state h′

j as follows:

sGatej = σ(Wshj + Uss + bs),

h′
j = hj � sGatej ,

(2)

where Ws,Us are weight matrices and bs is a bias vector.
σ is the sigmoid activation function, and � is elementwise
multiplication. Finally, we calculate ut that is the vector rep-
resentation of either a paragraph, sentence or an EDU, as
follows:

ut =
1

n

∑

j∈{1,··· ,n}
h′
j . (3)

Then, we represent a text span, which consists of either a
paragraph, sentence, EDU or its sequence, based on BiL-
STMs and the representation of the textual unit as follows:

fi =
−−−−→
LSTMunit(fi−1, ui),

bi =
←−−−−
LSTMunit(bi+1, ui),

(4)

where f and b are hidden states of the forward and back-
ward LSTMs, respectively. Fig. 3 shows the overview of our
representation for the atomic unit.

Finally, we denote a span from the i-th unit to j-th unit
as ui:j . The vector representation of ui:j is defined as a con-
catenation of two vectors as follows:

ui:j = [fj − fi−1; bi−1 − bj ]. (5)

To investigate which is effective between explicitly divid-
ing the process into multiple levels in a document or implic-
itly representing them as features, we embed the encoding of
the information obtained from the granularity levels, in cases
where they are not explicitly utilized in the process division.
For example, we embed the encoding of paragraph bound-
ary information into the feature vectors when we divide the
process into only one or two levels. That is, we concatenate
the boundary information for a sentence and a paragraph to
ui:j . We use the following four types of boundary informa-
tion: whether the span is the start of a sentence, the start of a

paragraph, crosses a sentence boundary, and crosses a para-
graph boundary. We express 16 (= 24) possibilities, based
on the above 4 types of information, with an embedding of
10 dimensions.

Parsing Model

Recently, top-down parsing has been successfully applied to
syntactic parsing (Stern, Andreas, and Klein 2017; Shen et
al. 2018). These methods build a constituent tree by recur-
sively splitting a text span that consists of words. Since an
RST tree can be regarded as a constituent tree, we follow the
top-down parsing approach.

Splitting Span To split a span ui:j that consists of either
a paragraph, sentence or EDU at each position k, we define
a deep biaffine scoring function (Dozat and Manning 2016)
ssplit(i, j, k) as follows:

ssplit(i, j, k) = h�
i:kWuhk+1:j + v�

� hi:k + v�
r hk+1:j , (6)

where Wu is a weight matrix, v� and vr are weight vectors
corresponding to the left and right spans, respectively. The
hi:k and hk+1:j are defined as follows:

hi:k = MLPleft(ui:k), (7)
hk+1:j = MLPright(uk+1:j), (8)

where MLP∗ is the multi-layer perceptron. We use a single
feedforward network and the ReLU function as the activa-
tion function and learn parameters for the left and right span
vectors.

We split a span with position k that maximizes Eq. (6):

k̂ = argmax
k∈{i,...,j−1}

[ssplit(i, j, k)]. (9)

Labeling Spans To determine the nuclearity and rhetor-
ical relation labels of two adjacent spans that are chil-
dren of ui:j , we define the following same scoring function
slabel(i, j, k, �) for splitting position k for both nuclearity
and relation labels:

slabel(i, j, k, �) = W�MLP([ui:k; uk+1:j ; u1:i; uj:n]), (10)

where W� is the projection layer for the nuclearity or rhetor-
ical relation labels. u1:i; uj:n are left and right spans that
appear outside the current focus.

We select the label for the spans that maximizes Eq. (10):

�̂ = argmax
�∈L

[slabel(i, j, k, �)], (11)

where L denotes a set of valid nuclearity label combina-
tions, {N-S,S-N,N-N}, in predicting the nuclearity, and a set
of rhetorical relation labels, {Elaboration, Condition,. . .},2
in predicting the rhetorical relation. Note that we separately
learn the weight parameters W� and MLP for nuclearity la-
beling and rhetorical relation labeling.

2The number of rhetorical relations is 18.
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Algorithm 1 Top-down parsing

1: SPLITSPAN(up
1:n)

2: for m = 1 to n do
3: bm ← start(up

m), em ← end(up
m)

4: SPLITSPAN(us
bm:em

)
5: for t = bm to em do
6: bt ← start(us

t ), et ← end(us
t )

7: SPLITSPAN(ue
bt:et

)
8: procedure SPLITSPAN(SPAN)
9: i← start(SPAN),j ← end(SPAN)

10: if j − i >0 then

11: k̂ ← argmax
k∈{i,...,j−1}

[ssplit(i, j, k)]

12: �̂← argmax
�∈L

[slabel(i, j, k̂, �)]

13: Left child(SPAN)← ui:k̂
14: Right child(SPAN)← uk̂+1:j

15: Left label(ui:k̂)← �̂left
16: Right label(uk̂+1:j)← �̂right
17: SPLITSPAN(ui:k̂)
18: SPLITSPAN(uk̂+1:j)

Learning To optimize the parameters of our method, we
employ margin-based learning. When the correct splitting
position k∗ and label �∗ are given for a span ui:j , losses for
splitting, nuclearity and rhetorical-relation labeling are de-
fined as follows:

max(0, 1 + ssplit(i, j, k
∗)− ssplit(i, j, k̂)), (12)

max(0, 1 + slabel(i, j, k̂, �
∗)− slabel(i, j, k̂, �̂)). (13)

We can obtain optimal parameters by minimizing the sum
of the losses in each splitting point, using the optimization
algorithm based on the gradient method.

Parsing Algorithm Algorithm 1 shows a top-down pars-
ing algorithm. A superscript for u indicates what it con-
sists of, either a paragraph, sentence or EDU. up

1:n denotes
a text span consisting of n paragraphs, us

bm:em
denotes a

text span consisting of sentences in the m-th paragraph, and
ue
bt:et

denotes a text span consisting of EDUs in the t-th sen-
tence. Functions start() and end() return the start and end
indexes of the unit in the input span, respectively. For exam-
ple, start(up

i ) returns the index of the first sentence in the i-th
paragraph and end(up

i ) returns the index of the last sentence.
Left child(SPAN) and Right child(SPAN) denote the left and
right children of the span, respectively, and Left label() and
Right label() denote the labels of the child spans, respec-
tively.

First, the algorithm builds a document tree whose leaves
are paragraphs (line 1). Second, it builds paragraph trees
whose leaves are sentences for each paragraph (lines 2-4).
Third, it builds sentence trees whose leaves are EDUs for
each sentence (lines 5-7).

Finally, we obtain an RST tree for the whole document
by connecting all the trees, i.e., we replace leaves of the

document tree with the paragraph trees and then replace the
leaves of the paragraph trees with the sentence trees.

Fig. 4 shows an example of building a subtree of the RST
tree corresponding to span e3:5. To compute the splitting
score (Eq.(6)) for each candidate point, k = 3, 4, we obtain
span representations u3:3, u4:5 and u3:4, u5:5 by exploiting
BiLSTMs. Then, we split the span with k which maximizes
the split score. In this example, we split the span e3:5 into
left span(e3:3) and right span(e4:5). After the splitting, we
assign nuclearity and relation labels for the spans by com-
puting labeling scores (Eq. (10)). In the example, nucleus is
assigned to e3:3, satellite is assigned to e4:5, and ”Elabora-
tion” is assigned as the relation label between the two spans.

Experiments

Settings

Dataset We evaluated our method by using the stan-
dard benchmark dataset RST-DT (Carlson, Marcu, and
Okurowski 2001). RST-DT was officially divided into 347
documents as the training dataset and 38 documents as the
test dataset, which indicates that there is no development
dataset available. Thus, we used 40 documents in the train-
ing dataset as the development data by following the study
by Heilman and Sagae (2015). We conducted all experi-
ments on gold EDU segmentation by following the previous
studies.

Model parameters The dimension size of the hidden lay-
ers was set to 250, dropout layers were incorporated with
the ratio 0.4 at the training step, and the maximum training
epoch was set to 50 for each model. All weight parameters
were updated using Adam (Kingma and Ba 2014) with an
initial learning rate being 0.001. The learning rate was de-
cayed for each epoch with the ratio of 0.99. The gradient-
clipping threshold was set to 5.0 and the weight-decay was
set to 1e−4. In testing, trained parameters with the highest
fully-labeled span score on the development data were used
for each model.

Evaluation Measures To evaluate the performance of our
parser, we used micro-averaged F1 scores of unlabeled
spans, those of nuclearity labeled spans, those of rhetorical
relation labeled spans based on RST-Parseval (Marcu 2000).
Moreover, to evaluate discourse dependency trees converted
from RST trees, we used unlabeled attachment score (UAS)
and labeled attachment score (LAS).

Compared Methods To demonstrate that our parser
is practical, we compared it with the following high-
performance parsers described in a survey paper (Morey,
Muller, and Asher 2017), and two state-of-the-art parsers :
HILDA (duVerle and Prendinger 2009) is a reimplemen-
tation (Hayashi, Hirao, and Nagata 2016) of the classical
bottom-up greedy parser with SVMs. The parser does not
exploit different levels of granularity in a document.
FH14gCRF (Feng and Hirst 2014) is the previously best
traditional statistical model, a bottom-up greedy parser with
linear-chain CRF models that exploits two levels of granu-
larity in a document.
JE14DPLP (Ji and Eisenstein 2014) is a shift-reduce parser
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Figure 4: The process of building an RST tree.

with SVM that is trained by features obtained from represen-
tation learning. The parser does not exploit different levels
of granularity in a document.
LLC16 (Li, Li, and Chang 2016) is a neural network-based
CKY parser based on hierarchical BiLSTMs. The first layer
is used to encode EDUs as sequences of words, and the sec-
ond layer is used to encode a document as a sequence of
EDUs. It also does not exploit different levels of granularity
in a document.
WLW17 (Wang, Li, and Wang 2017) is the currently best
method based on the traditional statistical model with SVM.
They predict relation labels in three levels of granularity, but
the structure was predicted all at once from EDUs.
YZF18 (Yu, Zhang, and Fu 2018) is a transition-based neu-
ral parser that uses vectors from a pretrained dependency
parser as features. This parser does not exploit different lev-
els of granularity. However, it achieved the state-of-the-art
on relation labeled span F1 scores.

To demonstrate the effectiveness of considering different
levels of granularity in a document, we evaluated our top-
down parser with the following settings:
D2E for directly building an RST tree whose leaves are
EDUs for a document. The information of sentence bound-
aries and paragraph boundaries is embedded as features.
D2S2E for exploiting two levels of granularity in a docu-
ment. The information of paragraph boundaries is embedded
as features. D2P2S2E for exploiting three levels of granular-
ity in a document.

Results and Discussion

Table 1 shows the results in terms of micro-averaged unla-
beled span, nuclearity labeled span and relation labeled span
F1 scores. The scores corresponding to HILDA, FH14gCRF,
JE14DPLP and LLC16 were obtained from a survey paper

Model Span Nuc Rel

D2E 86.1 73.1 58.9
D2S2E 86.4 73.4 59.4
D2P2S2E 87.0 74.6 60.0

WLW17 86.0 72.4 59.6
YZF18 85.5 73.1 60.2
YZF18* 85.9 72.5 59.4
HILDA 82.6 66.6 54.6
FH14gCRF 84.3 69.4 56.9
JE14 DPLP 82.0 68.2 57.8
LLC16 82.2 66.5 51.4

Human 88.3 77.3 65.4

Table 1: Micro averaged F1 scores based on RST-Parseval.
Span denotes unlabeled span F1 scores, Nuc denotes nucle-
arity labeled span F1 scores, and Rel denotes relation labeled
span F1 scores.

(Morey, Muller, and Asher 2017) and those corresponding
to YZF18 were obtained from their publication. The scores
of YZF18* and WLW17 were obtained from the results by
running their codes. The scores of WLW17 agreed with
those reported in their publication. However, the scores of
YZF18* were slightly different from YZF18. The scores of
all of our models were obtained from 5 model ensemble with
different random seeds.

From the results, as the number of granularity levels for
dividing a document increased, the performance was im-
proved. D2P2S2E that exploits three levels of granularity
in a document obtained the best results. These results im-
ply that pre-defined granularity levels of a document, such
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Figure 5: The relation between nuclearity span score and the
length of a span

as sentences and paragraphs, are important features in RST
parsing, and our division by three levels of granularity in a
document is more suitable for RST parsing than previous
division by two levels of granularity.

Then, our methods outperformed both neural and statisti-
cal previous methods in most cases. In particular, D2P2S2E
achieved remarkable scores: the best Span (87.0), Nuc (74.6)
and the second best Rel (60.0).

To clearly show the differences between our method
D2P2S2E and previous methods, WLW17 and YZF18*, we
performed significance tests, using paired bootstrap resam-
pling (Koehn 2004) with Bonferroni correction at signifi-
cance level=0.05. The results showed that there were sig-
nificant differences between our method and the previous
methods for Span and Nuc, while there were no significant
differences for Rel. That is, our method completely outper-
formed WLW17 and YZF18* in Span and Nuc and obtained
comparable performance in Rel.

To reveal the effectiveness of our top-down parsing in de-
tails, we investigated the relation between nuclearity labeled
span score and the length of a text span, and compared it
with those for WLW17 and YZF18*. Fig. 5 shows the re-
sults. Our method outperformed both WLW17 and TZF18*
in most span lengths. In particular, as the spans became
longer, the performance difference between our method and
both WLW17 and YZF18* became larger. Thus, as we ex-
pected, our parser tends to build more accurate structures at
the upper parts of RST trees than WLW17 and YZF18*. The
tendency improves the Span and Nuc scores.

Since the improvements of upper parts of RST tree struc-
tures should derive better discourse dependency trees, we
then evaluated discourse dependency trees converted from
RST trees built by our methods, WLW17, YZF18* and
HILDA, and those obtained from a simple MST parser. RST
trees were converted into discourse dependency trees by ap-
plying transformation rules proposed by (Hirao et al. 2013),
and the discourse dependency trees were evaluated by unla-
beled attachment score (UAS) and labeled attachment score
(LAS), that are widely utilized in syntactic dependency pars-
ing researches.

Table 2 shows the results. Scores corresponding to

Model UAS LAS

D2E 63.9 45.1
D2S2E 64.0 46.3
D2P2S2E 64.9 48.5

WLW17 61.5 47.8
YZF18* 61.9 48.4
HILDA 57.1 46.2
MST 55.0 43.1

Table 2: Evaluation results for discourse dependency trees.

HILDA and MST were obtained from the paper (Hayashi,
Hirao, and Nagata 2016). As we mentioned before, the per-
formances of the MST parser that directly predicts discourse
dependency trees were worse than those obtained from RST
parsers. Our methods outperformed the previous methods on
UAS, and D2P2S2E achieved the state-of-the-art results on
both UAS and LAS, as we expected. Compared to the re-
sults in Table 1, the differences between D2P2S2E and the
previous methods are more remarkable. To test whether the
differences between D2P2S2E and the previous methods are
significant, we performed significance tests using the same
method as before. The results showed that there were signif-
icant differences between D2P2S2E and WLW17, YZF18*
on UAS while there were no significant differences on LAS.
Thus, the results demonstrate the effectiveness of the im-
provements of upper parts of RST tree structures. However,
the results also show that we still have room for further im-
provement in relation labeling of our method.

Conclusion

To obtain better discourse dependency trees, we proposed a
neural top-down RST parsing method exploit three levels of
granularity in a document. By employing top-down parsing,
we can improve the accuracy of RST trees at the upper parts
of the structures that are required to obtain good discourse
dependency trees. To the best of our knowledge, this was the
first study on top-down document-level RST parsing that ex-
plored the multiple levels of granularity in a document. Ex-
perimental results on the RST-DT corpus showed that our
method achieved the state-of-the-art unlabeled span and nu-
clearity labeled span scores, and obtained comparable rela-
tion labeled span score with the state-of-the-art. Discourse
dependency trees converted from the RST trees obtained the
state-of-the-art UAS and LAS scores. These results demon-
strated the effectiveness of top-down parsing and introduc-
ing multiple levels of granularity in a document.
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