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Abstract

Task oriented dialog agents provide a natural language inter-
face for users to complete their goal. Dialog State Tracking
(DST), which is often a core component of these systems,
tracks the system’s understanding of the user’s goal through-
out the conversation. To enable accurate multi-domain DST,
the model needs to encode dependencies between past utter-
ances and slot semantics and understand the dialog context,
including long-range cross-domain references. We introduce
a novel architecture for this task to encode the conversation
history and slot semantics more robustly by using attention
mechanisms at multiple granularities. In particular, we use
cross-attention to model relationships between the context
and slots at different semantic levels and self-attention to re-
solve cross-domain coreferences. In addition, our proposed
architecture does not rely on knowing the domain ontologies
beforehand and can also be used in a zero-shot setting for new
domains or unseen slot values. Our model improves the joint
goal accuracy by 5% (absolute) in the full-data setting and by
up to 2% (absolute) in the zero-shot setting over the present
state-of-the-art on the MultiWoZ 2.1 dataset.

1 Introduction

Task-oriented dialog systems provide users with a natural
language interface to achieve a goal. Modern dialog systems
support complex goals that may span multiple domains. For
example, during the dialog the user may ask for a hotel reser-
vation (hotel domain) and also a taxi ride to the hotel (taxi
domain), as illustrated in the example of Figure 1. Dialog
state tracking is one of the core components of task-oriented
dialog systems. The dialog state can be thought as the sys-
tem’s belief of user’s goal given the conversation history. For
each user turn, the dialog state commonly includes the set of
slot-value pairs, for all the slots which are mentioned by the
user. An example is shown in Figure 1. Accurate DST is crit-
ical for task-oriented dialog as most dialog systems rely on
such a state to predict the optimal next system action, such
as a database query or a natural language generation (NLG)
response.

∗Work done during internship at Amazon Alexa AI
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Figure 1: Sample multi-domain dialog, spanning hotel and
taxi domains, along with its dialog state

Dialog state tracking requires understanding the seman-
tics of the agent and user dialog so far, a challenging task
since a dialog may span multiple domains and may include
user or system references to slots happening earlier in the
dialog. Data scarcity is an additional challenge, because di-
alog data collection is a costly and time consuming (Kang et
al. 2018; Lasecki, Kamar, and Bohus 2013). As a result, it
is critical to be able to train DST systems for new domains
with zero or little data.

Previous work formulates DST as a classification task
over all possible slot values for each slot, assuming all val-
ues are available in advance (e.g. through a pre-defined
ontology) (Mrkšić et al. 2016; Gao et al. 2019; Liu and
Lane 2017). However, DST systems should be able to
track the values of even free-form slots such as “hotel −
name′′, which typically contain out-of-vocabulary words.
To overcome the limitations of ontology-based approaches
candidate-set generation based approaches have been pro-
posed (Rastogi, Hakkani-Tur, and Heck 2017). TRADE (Wu
et al. 2019) extends this idea further and propose a decoder-
based approach that uses both generation and a pointing
mechanism, taking a weighted sum of a distribution over
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the vocabulary and a distribution over the words in the con-
versation history. This enables the model to produce unseen
slot values, and it achieves state-of-the art results on the
MultiWOZ public benchmark (Budzianowski et al. 2018;
Eric et al. 2019).

We extend this work by (Wu et al. 2019) and focus on
improving the encoding of dialog context and slot seman-
tics for DST to robustly capture important dependencies be-
tween slots and the conversation history as well as long-
range coreferences in the conversation history. For this pur-
pose, we propose a Multi-Attention DST (MA-DST) net-
work. It contains multiple layers of cross-attention between
the slot encodings and the conversation history to capture re-
lationships at different levels of granularity, which are then
followed by a self-attention layer to help resolve references
to earlier slot mentions in the dialog. We show that the pro-
posed MA-DST leads to an absolute improvement of over
5% in the joint goal accuracy over the current state-of-the
art for the MultiWOZ 2.1 dataset in the full-data setting.
We also show that MA-DST can be adapted to new domains
with no training data in that new domain, achieving upto a
2% absolute joint goal accuracy gains in the zero-shot set-
ting.

2 Related Work

Dialog state tracking (DST) is a core dialog systems
problem that is well studied in the literature. Earlier ap-
proaches for DST relied on Markov Decision Processes
(MDPs) (Levin, Pieraccini, and Eckert 2000) and partially
observable MDPs (POMDPs) (Williams and Young 2007;
Thomson and Young 2010) for estimating the state updates.
See (Williams, Raux, and Henderson 2016) for a review of
DST challenges and earlier related work.

Recent neural state tracking approaches achieve state-of-
the-art performance on DST (Gao, Galley, and Li 2018).
Some of this work formulates the state tracking problem
as a classification task over all possible slot-values per slot
(Mrkšić et al. 2016; Wen et al. 2017; Liu and Lane 2017).
This assumes that an ontology containing all slot values per
slot is available in advance. In practice, this is a limiting
assumption, especially for free-form slots that may contain
values not seen during training (Xu and Hu 2018). To

address this limitation, (Rastogi, Hakkani-Tur, and Heck
2017) propose a candidate generation approach based on a
bi-GRU network, that selects and scores slot values from
the conversation history. (Xu and Hu 2018) propose using
a pointer network (Vinyals, Fortunato, and Jaitly 2015) for
extracting slot values from the history. More recently, hy-
brid approaches which combine the candidate-set and slot-
value generation approaches have appeared (Goel, Paul, and
Hakkani-Tür 2019; Wu et al. 2019).

Our work is most similar to TRADE (Wu et al. 2019),
and extends it by proposing self (Cheng, Dong, and Lap-
ata 2016) and cross-attention (Bahdanau, Cho, and Bengio
2015) mechanism for capturing slot and history correlations.
Attention based archirectures like the Transformer (Vaswani
et al. 2017) and architectures that extend it, like BERT (De-
vlin et al. 2019) and RoBERTa (Liu et al. 2019), achieve the

current state-of-the-arts for many NLP tasks. We are also in-
spired by the work in reading comprehension where cross
attention is used to compute relations between a long pas-
sage and a query question (Zhu, Zeng, and Huang 2018;
Chen et al. 2017).

For benchmarking, DSTC challenges provide a popu-
lar experimentation framework and dialog data collected
through human-machine interactions. Initially, they focused
on single domain systems like bus routes (Williams et al.
2013). Wizard-of-Oz (WOZ) is also a popular framework
used to collect human-human dialogs that reflect the tar-
get human-machine behavior (Wen et al. 2017; Asri et
al. 2017). Recently, the MultiWOZ 2.0 dataset, collected
through WOZ for multiple domains, was introduced to ad-
dress the lack of a large multi-domain DST benchmark
(Budzianowski et al. 2018). (Eric et al. 2019) released an
updated version, called MultiWOZ 2.1, which contains an-
notation corrections and new benchmark results using the
current state-of-the-art approaches. Here, we use the Multi-
WOZ 2.1 dataset as our benchmark.

3 Model Architecture

3.1 Problem Statement

Let’s denote conversation history till turn t as Ct =
{U1, A1, U2, A2, ...Ut}, where Ui and Ai represents the
user’s utterance and agent’s response at the ith turn. Let S =
{s1, s2, ..., sn} denote the set of all n possible slots across
all domains. Let DSTt = {s1 : v1, s2 : v2, ..., sn : vn} de-
note the dialog state at turn t, which contains all slots si and
their corresponding values vi. Slots that are not mentioned
in the dialog history take a “none” value. DST consists of
predicting slot values for all slots si at each turn t, given the
conversation history Ct.

3.2 Model Architecture Overview

Our model encodes both the slot name si and the conver-
sation history so far Ct, and then decodes the slot value
vi, outputting words or special symbols for “none” and
“dontcare” values. Our proposed model consists of an en-
coder Encslot for the slot name, an encoder Encconv for
the conversation history, a decoder Decgen that generates
the slot value, and a three-class “slot gate” classifier SG
that predicts special symbols {none, dontcare, gen}, which
will be described in detail later on. The model weights are
shared between the slots, which makes the model more ro-
bust and scalable.

This architecture is similar to (Wu et al. 2019). We pro-
pose modifications to the encoders in order to capture more
fine grained dependencies between the slot name and the
conversation history. Also, note the domain and slot names
are concatenated into a single slot description, which we re-
fer to as slot name for simplicity, and encoded via the slot
encoder Encslot. Figure 2 illustrates the proposed architec-
ture which we refer to as Multi-Attention DST (MA-DST).

3.3 Encoders

Our proposed slot si and conversation history Ct encoders
use three stages of attention, specifically low-level cross-
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Figure 2: Model Architecture

attention on the words, higher level cross-attention on the
hidden state representations, and self-attention within the di-
alog history. Below we describe the encoders bottom-up.

Enriched Word Embedding Layer For both Ct and si,
we first project each word into a low-dimensional space.
We use a 300-dimensional GloVE embedding (Pennington,
Socher, and Manning 2014), and a 100-dimensional charac-
ter embedding, both of which gets fine-tuned. For the con-
versation history Ct, we also add a 5-dimensional POS tag
embedding and a 5-dimensional NER tag embeddings. We
also use the turn index for each word as a feature and initial-
ize it as a 5-dimensional embedding.

To capture the contextual meaning of words, we addi-
tionally use contextual ELMo embeddings (Peters et al.
2018). We compute 1024-dimensional ELMo embeddings
for both Ct and si by taking a weighted average of the dif-
ferent ELMo layers’ outputs. Instead of fine-tuning parame-
ters of all the ELMo layers, we just learn these combination
weights while training the model. All the word-level embed-
dings are concatenated to generate an enriched, contextual
word-level representation e.

e = [GloVE(w),CharEmbedding(w),ELMo(w),
POS-tag(w),NER-tag(w), position-tag(w)] (1)

Word-Level Cross-Attention Layer To highlight the
words in the conversation history Ct relevant to the slot
si, we add a word-to-word attention from conversation his-
tory to the slot. For computing the attention weights, we
used symmetric scaled multiplicative attention (Huang et al.
2017) with a ReLU non-linearity. The weights are calculated

according to equation 2 and used according to equation 3 to
obtain the attended vector for each word in the conversation.

αjk =
exp(f(WeCj )Df(Wesk))∑K
k=1 exp(f(WeCj )Df(Wesk))

(2)

âCj =

K∑

k=1

αjk ∗ esk (3)

Here, eCj and esk correspond to the word embedding of the
jth word in the conversation and kth word in the slot. The
length of the slot is denoted by K. f denotes a non-linear
activation, which here is a ReLU. To get the representation
rj for each word in the conversation history, we concatenate
the attended vector with the initial word embedding: .

rCj = [eCj , â
C
j ] (4)

For the slot representation for each word k in the slot name,
we use the word embedding rsk = esk.

Note that symmetric scaled multiplicative attention with
ReLU non-linearity is used in all attention computations of
our proposed models, as we empirically found that it gives
better performance compared to other attention variants.(e.g.
multiplicative, scaled multiplicative, additive).

First Layer RNN The computed representations rsk and
rCj for each word in the slot name and the conversation his-
tory respectively, are then passed through a Gated Recurrent
Unit (GRU) (Chung et al. 2014) in order to model the tem-
poral interactions between the words and get a contextual
representation. For each of Ct and si, we use bidirectional
GRUs and obtain the hidden contextual representation by
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averaging the hidden states of each GRU direction per time
step:

HC
1 = [hC,1

1 , hC,1
2 , ..., hC,1

J ] = GRU([rC1 , r
C
2 , ...., r

C
J ])

(5)

Hs
1 = [hs,1

1 , hs,1
2 , ..., hs,1

K ] = GRU([rs1, r
s
2, ...., r

s
K ])

(6)

Here, HC
1 and Hs

1 are the sequences of encoded represen-
tations for the conversational history and slot name respec-
tively, output by the first bidirectional GRU layer (assum-
ing K is the slot name length and J the conversation history
length in number of words).

Higher Level Cross Attention Layer We add a cross-
attention network on top of the the base RNN layer to at-
tend over higher level representations generated by the pre-
vious RNN layer, i.e. HC

1 and Hs
1 . We used two-way cross-

attention network, one from conversation history (HC
1 ) to

the slot (Hs
1 ) and the other in the opposite direction. This is

inspired by several works in reading comprehension where
cross attention is used to compute relations between a long
passage and a query question (Weissenborn, Wiese, and
Seiffe 2017; Chen et al. 2017).

The Slot to Conversation History attention sub-
network helps in highlighting the words in the conversation
which are relevant to the slot for which we want to generate
the value. Similar to the word level attention, the attention
weights are calculated by equation 7.

αjk =
exp(f(V hC,1

j )D′f(V hs,1
k ))

∑J
j=1 exp(f(V hC,1

j )D′f(V hs,1
k ))

(7)

ĥs,1
k =

J∑

j=1

αjk ∗ hC,1
j (8)

We fuse the attention vector ĥs,1
k with it’s corresponding hid-

den state hs,1
k for each word in the slot name as follows:

rs,1k =[hs,1
k , ĥs,1

k , ĥs,1
k + hs,1

k , ĥs,1
k ∗ hs,1

k ] (9)

where, ∗ is the element wise dot product operation.
Similarly, the Conversation to Slot attention sub-

network computes attention weights to highlight which
words in the slot name are most relevant to each word in
the conversation history. This enriches the word representa-
tion in the conversation history hC,1

j with an attention based
representation ĥC,1

j , resulting in a new representation rC,1
j .

All computations are similar as in the Slot to Conversation
History attention, but in the reverse direction.

Second Layer RNN The representations rs,1k and rC,1
j are

then passed through a second bidirectional GRU layer, to
obtain hs,2

k and hC,2
j . This helps in fusing these vectors to-

gether along with the temporal information.

Self Attention Layer We add a self attention network
on top of the conversation representation hC,2

j . This layer
helps resolve correlation between words across utterances

in the conversation history. We introduce this sub-network
to address cases where the user refers to slot values that
are present in previous utterances, which is a common phe-
nomenon in dialogs, especially multi-domain ones. Self at-
tention is computed as:

αji =
exp(f(WhC,2

j )Df(WhC,2
i ))

∑J
i=1 exp(f(WhC,2

j )Df(WhC,2
i ))

(10)

ĥC,2
j =

J∑

i=1

αji ∗ hC,2
i (11)

The final representation rC,2
j for each word in the conver-

sation is the merged representation of self-attended vector
ĥC,2
j and the hidden state hC,2

j , merged according to equa-
tion 9.

Third Layer RNN and Slot Summarization We use a
third layer RNN to get the final representation for the con-
versation history

hC,3
j = GRU(rC,2

j ), j = 1..J (12)

Since the slot name is much shorter in length than the con-
versation history, it can be encoded with less information.
Instead of using an additional RNN, we summarize the slot
using a linear transformation to reduce the slot representa-
tion into a single vector.

αk = wᵀ ∗ hs,2
k (13)

hs,3 =

K∑

k=1

αk ∗ hs,2
k (14)

where, wᵀ is the parameter which is learnt during training.
Finally, HC,3 = [hC,3

1 , hC,3
2 , ..., hC,3

J ] is the per word rep-
resentation for the conversation history, while hs,3 is the
summarized slot name representation, both of which will be
used at the decoding step.

3.4 Decoder and Slot Gate classifier

The decoder network is a GRU that decodes the value vi for
slot si. At each decoding step i that computes each word
in the slot value, the network computes two distributions: a
distribution over all in-vocabulary words (word generation
distribution) and one over all words in the conversation his-
tory (word history distribution). This allows the decoder to
generate unseen words that appear in the conversation his-
tory but are not present in the vocabulary of the training data.
This formulation removes the dependency of having a pre-
defined ontology that contains all the possible slot values,
which is restrictive for free-form slots. Because of the abil-
ity to generate unseen slot values, the network is well-suited
for zero-shot use cases.

We initialize the decoder by combining the last hidden
state of the conversation history representation and the sum-
marized slot representation:

hdec
0 = W [hC,3

J , hs,3] (15)
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where W is a learnable parameter. At each decoding time-
step i, the decoder generates a probability distribution over
the vocabulary:

P vocab
i = Softmax(W ∗ hdec

i ) (16)

The decoder also generates a probability distribution over
words in the conversation history Phistory by using a pointer
network (See, Liu, and Manning 2017), i.e., computing at-
tention weights for each word in the conversation history.

To generate the final vocabulary distribution, we take a
weighted sum of Phistory and Pvocab:

P final
i = pgeni ∗ P vocab

i + (1− pgeni ) ∗ Phistory
i (17)

Where pgen is the probability to generate a word as opposed
to copy from the history, and is calculated at each decoder
time step.

To avoid running the decoder for slots not present in the
conversation, we also train a Slot Gate classifier(Wu et al.
2019). This is a 3-way classifier which predicts among the
following classes {none, dontcare, gen}. Only when the
classifier predicts gen we decode the slot value. When the
classifier predicts “none′′ we assume that the slot is not
present and takes a “none′′ value in the state, and when
it predicts “dontcare”, we assume the user does not care
about the slot value (this appears commonly in dialog and
therefore “dontcare” is a special value for DST systems).

The network is trained in a multi-task manner using stan-
dard cross entropy loss. We combine the losses of the slot
generator (decoder) and the SG classifier as follows:

Losscombined = Lossgenerator + γ ∗ Lossclassifier (18)

where γ is a hyperparameter that is optimized empirically.

4 Dataset

We evaluate our approach on MultiWOZ, a multi-domain
Wizard-of-Oz dataset. MultiWOZ 2.0 is a recent dataset of
labeled human-human written conversations spanning mul-
tiple domains and topics (Budzianowski et al. 2018). As of
now, it is the largest labeled, goal-oriented, human-human
conversational dataset with around 10k dialogs, each with
an average of 13.67 turns. The data spans seven domains and
37 slot types. Due to patterns of annotation errors found in
MultiWOZ 2.0, (Eric et al. 2019) re-annotated the data and
released a MultiWOZ 2.1 version, which corrected a signif-
icant number of errors. Table 1 mentions the percentage of
slots in each domain whose values changed with the Multi-
WOZ 2.1 re-annotation.

For all our experiments, we use MultiWOZ 2.1 data,
which is shown to be cleaner and more challenging be-
cause many slots are now correctly annotated with their
corrected values or dontcare instead of none. We are us-
ing only five domains out of the available seven - namely
(restaurant, hotel, attraction, taxi, train) - since the other two
domains (bus, police) are only present in the training set. We
use the provided train/dev/test split for our experiments.

5 Evaluation

In this section we first describe the evaluation metrics and
then present the results of our experiments.

Slot Values Updated in MultiWOZ 2.1
Restaurant Taxi Hotel Train Attraction

Train 13.64 3.65 26.89 7.04 12.69
Dev 22.04 3.18 20.93 5.88 12.82
Test 19.33 3.95 24.70 10.59 16.12

Table 1: Percentage of slot values that changed in Multi-
WOZ 2.1 compared to MultiWOZ 2.0.

5.1 Metrics

Following are the metrics used to evaluate DST models:

• Average Slot Accuracy: The average slot accuracy is de-
fined as the fraction of slots for which the model predicts
the correct slot value. For an individual dialog turn Dt,
the average slot accuracy is defined as follows:

n∑

i=1

���=�̂� (19)

where yi and ŷi are ground truth and predicted slot value
for si respectively, n is the total number of slots, and
��=� is an indicator variable that is 1 if and only if x = y.

• Joint Goal Accuracy: The joint goal accuracy is defined
as the fraction of dialog turns for which the values vi for
all slots si are predicted correctly. If we have n total slots
we want to track, the joint goal accuracy for an individual
dialog turn Dt is defined as follows:

�((
∑

�
�=� ���=�̂� )=�)

(20)

5.2 Experiment Details

We train the encoders to jointly optimize the losses of the
slot gate classifier and the slot value generator decoder. The
parameters of the model are shared for all (domain, slot)
pairs, which makes this model scalable to a large number of
domain and slots. We train the model using stochastic gra-
dient descent and use the Adam Optimizer. We empirically
optimized the learning rate in the range [0.0005 − 0.001]
and used 0.0005 for the final model, while we kept betas as
(0.9, 0.999) and epsilon 1x10−08. We used a batch size of
four dialog turns and for each turn we generate all 30 slot
values. We decayed the learning rate after regular intervals
(3 epochs) by a factor of θ (0.25), which was empirically
optimized. For ELMo, we kept a dropout of 0.5 for the con-
texual embedding and used l2 regularization for the weights
of ELMo. We used a dropout of 0.2 for all the layers every-
where else. For word embeddings, we used 300-dimensional
GloVe embeddings and 100-dimensional character embed-
dings. For all the GRU and attention layers the hidden size
is kept at 400. The weight γ for the multi-task loss function
in equation 18 is kept at 1.

5.3 Results

In this section, we present the results for our model. We
measure the quality of the model on joint goal accuracy and
average slot accuracy, as described earlier. As our baseline
for comparison, we consider the TRADE model (Wu et al.
2019), which is the present state of the art for MultiWOZ.
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To have a fair comparison, we report the numbers on the
corrected MultiWOZ 2.1 dataset for both models.

In Table 2, we present the results for DST on single-
domain data. We create the train, dev, and test splits of the
data for a particular domain by filtering for dialogs which
only contain that domain. As shown in table 2, MA-DST
outperforms TRADE for all five domains, improving the
joint goal accuracy by up to 7% absolute as well as the aver-
age slot accuracy by up to 5% absolute.

Single Domain
MA-DST TRADE

Domain Joint Slot Joint Slot
Hotel 57.70 93.41 50.25 90.48
Train 76.47 94.87 74.47 94.30
Taxi 76.55 91.25 70.18 86.27
Restaurant 66.33 93.86 66.02 93.73
Attraction 72.49 89.38 68.48 86.89

Table 2: Joint goal and slot accuracy of MA-DST and
TRADE on 5 single-domain datasets from MultiWOZ 2.1

Table 3 shows results for the multi-domain setting, where
we combine all available domains during training and evalu-
ation. We compare the the accuracy of MA-DST with the
TRADE baseline and four additional ablation variants of
our model. These four variants capture the contribution of
the different sub-networks and layers in MA-DST on top of
the base encoder-decoder architecture, which is called “Our
Base Model” in Table 3. Our full proposed MA-DST model
achieves the highest performance on joint goal accuracy and
average slot accuracy, surpassing the current state-of-the-
art performance. Each of the additional layers of self and
cross-attention contribute to progressively higher accuracy
for both metrics.

Multi Domain
Model Joint Slot
Baseline (TRADE (Wu et al. 2019)) 45.6 96.62
Our Base Model 44.0 96.15
+ Slot Gate + Word-Level Cross-Attention 47.60 97.01
+ Higher-Level Cross-Attention 49.56 97.15
+ Self-Attention + Slot Summarizer 50.55 97.21
+ ELMo (MA-DST) 51.04 97.28
+ Ensemble 51.88 97.39

Table 3: Joint goal and slot accuracy of different models in
the all-domain setting of MultiWOZ 2.1

In Table 4 we present the zero shot results. For these ex-
periments, the test set contains only dialogs from the target
domain while the training set contains only dialogs from the
other four domains. As shown in Table 4, MA-DST outper-
forms TRADE’s state-of-the-art result by up to 2% on the
joint goal accuracy metric.

5.4 Error Analysis

In this section we analyze the errors being made by the
model on MultiWoz 2.1 dataset. Table 5 shows the Aver-
age Slot Accuracy and F1-Score for each domain. In terms

Zero Shot Experiment
MA-DST TRADE

Domain Joint Joint
Hotel 16.28 14.20
Train 22.76 22.39
Taxi 59.27 59.21
Restaurant 13.56 12.59
Attraction 22.46 20.06

Table 4: Joint goal accuracy of MA-DST and TRADE in the
zero shot setting for the five domains of MultiWOZ 2.1.

Figure 3: Per Slot Accuracy on test set in multi-domain set-
ting for MA-DST.

Domain Level Statistics
Domain F1-Score Slot Acc.
Hotel 0.90 97.11
Train 0.92 97.16
Taxi 0.71 97.87
Restaurant 0.94 97.41
Attraction 0.87 95.46

Table 5: F1 Score and Average Slot Accuracy Domain Wise

of F1-Score, the model performs worse for Taxi domain.
The average slot accuracy for Taxi domain is high because
a vast number of taxi domain’s slots are “none” (i.e. not
present in the dialog), which model easily identifies. Fig-
ure 3 shows the per-slot accuracy in the all-domain setting,
in descending order of performance. As seen from Figure
3, the MA-DST model tends to make the most errors for
open-ended slots such as restaurant-name, attraction-name,
hotel-name, train-leaveat. These slots are difficult to predict
for the model because, unlike categorical slots, these slots
can take on a large number of possible values and are more
likely to encounter unseen values. On the other end of spec-
trum, we have slots like restaurant-bookday, hotel-bookstay,
hotel-bookday, and train-day, for which the model is able to
achieve more than 99% in terms of average slot accuracy.
As expected, most of the top-perfoming slots are categori-
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cal, i.e. they can take only a small number of different values
from a pre-defined set.

Figure 4 analyzes the relationship between depth of con-
versation and accuracy of MA-DST. To calculate this, we
first bucket the dialog turns according to their turn index,
and calculate the joint goal accuracy and average slot accu-
racy for each bucket. As shown in Figure 4, the joint goal
accuracy and average slot accuracy for MA-DST is around
88% and 99% for turn 0, and it decreases to 8% and 92%
for turn 10. As expected, we can see that the model’s per-
formance degrades as the conversation becomes longer. This
can be explained by the fact that longer conversations tend to
be more complex and can have long-range dependencies. To
study the effect of attention layers, we compare the joint goal
accuracy of our base model, which does not have the atten-
tion layers, and MA-DST for each turn. As can be seen from
Figure 4, MA-DST performs better than our base model,
which doesn’t have the additional attention layers, for both
earlier and later turns by an average margin of 4%.

To further analyze what type of errors the model is mak-
ing, we manually analyzed the model’s output for 20 ran-
domly selected dialogs. Around 36% of the errors are be-
cause of wrong annotations, i.e., the model predicted the
slot value correctly but the target label was wrong. For e.g.
in turn 5 of PMUL3158, restaurant book time is anno-
tated as none, while user has mentioned 17:45 as the book-
ing time. These kind of annotation errors are unavoidable.
The other common error we observed was of model get-
ting confused among slots of same types. For e.g. in turn
3 of dialog PMUL4547, model populates attraction name
and hotel name with “The Junction”, as user didn’t spec-
ify in the utterance whether “The Junction” is attraction or
a hotel. Because of similar reason, we also see model con-
fusing between taxi destination and taxi departure slot
quite a number of times. The other common type of error
model makes is by generating slot value which varies from
the ground-truth by a word or character. For e.g. for dia-
log MUL2432, the model generates the value of restaurant
book time as 15.15 by directly copying it from the user ut-
terance, however, the label is 15:15 according to the ontol-
ogy. This kind of error can be solved by fuzzy match be-
tween ontology and model’s prediction, but it will introduce
dependency on the ontology. We also observed that model’s
accuracy for slot values which were “dontcare” was only
60%. We also observed that there are lots of annotation er-
rors for slots with “dontcare” in the training set, thus making
it difficult for the model to learn.

6 Conclusion
We propose a new architecture for dialog state tracking
that uses multiple levels of attention to better encode re-
lationships between the conversation history and slot se-
mantics and resolve long-range cross-domain coreferences.
Like TRADE (Wu et al. 2019), it does not rely on know-
ing a complete list of possible values for a slot beforehand
and both generate values from the vocabulary and copy val-
ues from the conversation history. It also shares the same
model weights for all (domain, slot) pairs so it can easily
be adapted to new domains and applied in a zero-shot or

Figure 4: Accuracy of MA-DST and our base model aggre-
gated by dialog turns.

few-shot setting. We achieve new state-of-the-art joint goal
accuracy on the updated MultiWOZ 2.1 dataset of 51%. In
the zero-shot setting we improve the state-of-the-art by over
2%. In the future, it is worth exploring whether the state can
be carried from the previous turn to predict the state for the
current turn (rather than starting from scratch for each turn).
Finally, it may be useful to capture dependencies or corre-
lations between slots rather than independently generating
values for each one of them.
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