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Abstract

Distributional word vectors have recently been shown to en-
code many of the human biases, most notably gender and
racial biases, and models for attenuating such biases have
consequently been proposed. However, existing models and
studies (1) operate on under-specified and mutually differ-
ing bias definitions, (2) are tailored for a particular bias (e.g.,
gender bias) and (3) have been evaluated inconsistently and
non-rigorously. In this work, we introduce a general frame-
work for debiasing word embeddings. We operationalize the
definition of a bias by discerning two types of bias specifica-
tion: explicit and implicit. We then propose three debiasing
models that operate on explicit or implicit bias specifications
and that can be composed towards more robust debiasing. Fi-
nally, we devise a full-fledged evaluation framework in which
we couple existing bias metrics with newly proposed ones. Ex-
perimental findings across three embedding methods suggest
that the proposed debiasing models are robust and widely ap-
plicable: they often completely remove the bias both implicitly
and explicitly without degradation of semantic information
encoded in any of the input distributional spaces. Moreover,
we successfully transfer debiasing models, by means of cross-
lingual embedding spaces, and remove or attenuate biases in
distributional word vector spaces of languages that lack readily
available bias specifications.

Introduction

Distributional word vectors have been recently shown to en-
code prominent human biases related to, e.g., gender or race
(Bolukbasi et al. 2016; Caliskan, Bryson, and Narayanan
2017; Manzini et al. 2019). Such biases are observed across
languages and embedding methods (Lauscher and Glavaš
2019), both in static and contextualized word embeddings
(Zhao et al. 2019). While this issue requires remedy, the find-
ing itself is hardly surprising: we project our biases, in terms
of biased word co-occurrences, into the texts we produce.
Consequently, this is propagated to embedding models, both
static (Mikolov et al. 2013; Pennington, Socher, and Manning
2014; Bojanowski et al. 2017) and contextualized (Peters et al.
2018) alike, by virtue of the distributional hypothesis (Harris
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1954).1 While biases may be useful for diachronic or soci-
ological analyses (Garg et al. 2018), they (1) raise ethical
issues, since biases are amplified by machine learning mod-
els using embeddings as input (Zhao et al. 2017), and (2)
impede tasks like coreference resolution (Zhao et al. 2018a;
Rudinger et al. 2018) and abusive language detection (Park,
Shin, and Fung 2018).

A number of methods for attenuating and eliminating
human-like biases in word vectors have been proposed re-
cently (Bolukbasi et al. 2016; Zhao et al. 2018a; 2018b;
Dev and Phillips 2019). While they address the same types
of bias – primarily the gender bias – they start from dif-
ferent bias “specifications” and either lack proper empir-
ical evaluation (Bolukbasi et al. 2016) or employ differ-
ent evaluation procedures, both hindering a direct compari-
son of the methods’ “debiasing abilities” (Zhao et al. 2019;
Dev and Phillips 2019; Manzini et al. 2019). What is more,
the most prominent debiasing models (Bolukbasi et al. 2016;
Zhao et al. 2018b) have been criticized for merely masking
the bias instead of removing it (Gonen and Goldberg 2019).
To resolve inconsistencies in the current debiasing research
and evaluation, in this work we propose a general debiasing
framework DEBIE (DEBiasing embeddings Implicitly and
Explicitly), which operationalizes bias specifications, groups
models according to the bias specification type they operate
on, and evaluates models’ abilities to remove biases both
explicitly and implicitly (Gonen and Goldberg 2019).

We first define two types of bias specifications – implicit
and explicit – and propose a method of augmenting bias
specifications with the help of embeddings specialized for
semantic similarity (Mrkšić et al. 2017; Ponti et al. 2018). We
then introduce the main contributions of this work as follows.
First, we present three novel debiasing models. (1) We adjust
the linear projection method of Dev and Phillips (2019), an
extension of the debiasing model of Bolukbasi et al. (2016), to
operate on the augmented implicit bias specifications. (2) We
then propose an alternative model that projects the embedding
space to itself using the term sets from implicit bias specifica-
tion as the projection signal. (3) Finally, we propose a simple

1Borrowing the famous example (Bolukbasi et al. 2016), man
will be found more often in the same context with programmer, and
woman with homemaker in any sufficiently large corpus.
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and effective neural debiasing model, which is, to the best of
our knowledge, the first debiasing model that operates on an
explicit bias specification. All three models perform post-hoc
debiasing: they can be applied to any pretrained distributional
word vector space.2 As another contribution, we combine ex-
isting bias metrics with newly proposed ones and assemble an
evaluation suite that tests word vectors for explicit biases, im-
plicit biases, and (preservation of) semantic quality. Finally,
by coupling the proposed debiasing models with the cross-
lingual embedding spaces (Ruder, Vulić, and Søgaard 2019;
Glavaš et al. 2019), we facilitate cross-lingual debiasing trans-
fer: we successfully debias embedding spaces in target lan-
guages without bias specifications in those languages. We
hope that our work will lead to standardization of preprocess-
ing and evaluation procedures in debiasing research and to
increased comparability of debiasing models.3

General Debiasing Framework

In what follows, we first formalize two bias specifications –
implicit and explicit. We then introduce new debiasing mod-
els: two operate on the implicit bias specification and the
third on the explicit bias specification. Finally, we show how
to debias word embeddings in a variety of target languages
via cross-lingual embeddings.

Bias Specifications

An implicit bias specification BI = (T1, T2) consists of two
sets of target terms with respect to which a bias is expected
to exist in the embedding space. For example, two sets of
science and art terms, T1 = {physics, chemistry, experiment}
and T2 = {poetry, dance, drama} constitute an implicit spec-
ification of the gender bias. Strictly speaking, BI does not
specify a bias directly – it merely specifies two categories
of concepts for which we implicitly assume that there ex-
ists some set of reference terms A (e.g., male terms man,
father and/or female terms like woman, girl) with respect
to which T1 and T2 exhibit differences. Most existing de-
biasing models (Bolukbasi et al. 2016; Zhao et al. 2018b;
Dev and Phillips 2019; Manzini et al. 2019) operate on
BI = (T1, T2), i.e., not requiring reference terms A.

An explicit bias specification BE defines, in addition to
sets T1 and T2, one or more reference attribute sets. We
consider an explicit bias specification with a single attribute
set, BE = (T1, T2, A) (as employed by our DEBIASNET
model),4 and also with two (opposing) attribute sets, BE =
(T1, T2, A1, A2), as used in WEAT tests (Caliskan, Bryson,
and Narayanan 2017).

Augmentation of Bias Specifications. The initial bias
specification (BI or BE) commonly contains only a handful

2In contrast, debiasing models like GN-GloVe (Zhao et al.
2018b) integrate debiasing constraints into objectives of embed-
ding models like GloVe (Pennington, Socher, and Manning 2014),
and thus cannot be directly ported to other embedding models.

3The code is available at https://github.com/umanlp/DEBIE.
4The attribute set A can be any set of attributes towards which

the bias is to be removed. In our experiments, we joined the WEAT
test specification attribute sets A1 and A2.

of words in each target and attribute set. These are com-
monly the most representative words of a category (e.g., man,
boy, father to represent the category male). However, in or-
der to provide a finer-grained bias specification, we propose
to augment each term set with synonyms and semantically
similar words of the initial terms. We therefore extract near-
est neighbours of initial terms from an embedding space
specialized to accentuate true semantic similarity and attenu-
ate other types of semantic association (Faruqui et al. 2015;
Vulić et al. 2018; Glavaš and Vulić 2018, inter alia). For the
augmentation process we rely on the recent state-of-the-art
similarity specialization method of Ponti et al. (2018): for
more details see the original work.

Given BI or BE and a similarity-specialized word vector
space Xsim, we augment each of the term sets in the speci-
fication by retrieving the top k most (cosine-)similar terms
from Xsim for each of the initial terms.5 Extending bias
specification sets using a similarity-specialized word vector
space – as opposed to a regular distributional space – reduces
the noisy augmentation stemming from semantic relatedness
instead of true semantic similarity.6 Table 1 illustrates the
initial bias specification and the corresponding augmentation
(showing k = 2 nearest neighbors, without the initial terms)
for one explicitly defined gender bias.

Debiasing Models

We present three debiasing models, two of which operate
on BI = (T1, T2) and one on the explicit bias specification
BE = (T1, T2, A).

Generalized Bias-Direction Debiasing (GBDD) focuses
on BI as a generalization of the linear projection model pro-
posed by Dev and Phillips (2019), itself, in turn, an extension
of the hard-debiasing model of Bolukbasi et al. (2016).

The model of Dev and Phillips (2019) requires a stricter
bias specification than our BI : it requires T1 and T2 to be or-
dered lists of equal length L, so that the so-called equivalence
pairs {(tl1, tl2)}Ll=1 can be created. For instance, T1 ={man,
father, boy} and T2 ={woman, mother, girl} give rise to the
following equivalence pairs: (man, woman), (father, mother),
and (boy, girl). For each equivalence pair (tl1, t

l
2) they com-

pute the bias direction vector bl by subtracting the vector of
term tl2 from the vector of term tl1. We find this bias speci-
fication overly restrictive: it requires an additional effort to
create true equivalence pairs from T1 and T2 and it produces
only L partial bias direction vectors. In contrast, we propose
to create one bias direction vector bij for each pair (ti1, t

j
2),

ti1 ∈ T1, tj2 ∈ T2. If T1 and T2 truly specify categories that
are opposite in some regard (e.g., gender-wise), then any
pair (ti1, t

j
2) should induce a meaningful partial bias direction

vector. This way we also obtain a much larger number of
5We discard nearest neighbors initially present in other sets of

the same bias specification: e.g., if we retrieve an augmentation
candidate woman for an initial T1 term man, woman will not be
added to T1 if it exists in T2 (or in A-s).

6We also considered using clean lexical knowledge from Word-
Net (Miller 1995) directly, but this resulted in much lower recall as
well as less accurate augmentation candidates.
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Initial T1 science, technology, physics, chemistry, Einstein, NASA, experiment, astronomy
Initial T2 poetry, art, Shakespeare, dance, literature, novel, symphony, drama
Initial A1 brother, father, uncle, grandfather, son, he, his, him
Initial A2 sister, mother, aunt, grandmother, daughter, she, hers, her

Augmentation T1 automation, radiochemistry, test, biophysics, learning, electrodynamics, biochemistry, astrophysics, astrometry
Augmentation T1 orchestra, artistry, dramaturgy, poesy, philharmonic, craft, untried, hop, poem, dancing, dissertation, treatise
Augmentation A1 beget, buddy, forefather, man, nephew, own, himself, theirs, boy, crony, cousin, grandpa, granddad
Augmentation A2 niece, girl, parent, grandma, granny, woman, theirs, sire, auntie, sibling, herself, jealously, stepmother, wife

Table 1: Initial and augmented gender bias specifications. Test T8 from WEAT (Caliskan, Bryson, and Narayanan 2017).

partial bias direction vectors (e.g., L2 if T1 and T2 are of the
same length L): this should result in a more reliable general
bias direction vector, computed as follows. We stack all of
the obtained bias direction vectors bij corresponding to pairs
(ti1, t

j
2), t

i
1 ∈ T1, tj2 ∈ T2 to form a bias direction matrix B.

We then obtain the global bias direction vector b as the top
singular vector of B, i.e., as the first row of matrix V , where
UΣV � is the singular value decomposition of B. Let x be
the �2-normalized d-dimensional vector from a biased input
vector space. Its debiased version is then computed as:

GBDD(x) = x− 〈x,b〉b (1)

where 〈·, ·〉 denotes a dot product. In other words, the closer
the vector x is to the global bias direction b, the more it
is bias-corrected (i.e., the larger portion of b is subtracted
from x). Vectors orthogonal to the bias direction b remain
unchanged (zero dot-product with the bias vector b).

Bias-Alignment Model (BAM). An alternative to comput-
ing a bias direction vector b is to use target-term pairs (ti1, t

j
2),

ti1 ∈ T1, tj2 ∈ T2 to learn a projection of the biased embed-
ding space X ∈ R

d to itself that (approximately) aligns
T1 and T2. The idea behind this model stems from the re-
search on projection-based cross-lingual word embeddings
(CLWEs), where an orthogonal mapping between monolin-
gual embedding spaces is learned from a set of word transla-
tions (Smith et al. 2017; Glavaš et al. 2019).7

Here, we use pairs (ti1, t
j
2) to learn the debiasing projection

of X with respect to itself. Let XT1 and XT2 be the matrices
obtained by stacking (biased) vectors of left and right words
of pairs (ti1, t

j
2), respectively. We then learn the orthogonal

map WX = UV �, where UΣV � is the singular value
decomposition of XT2

X�
T1

. Since WX is orthogonal, the
projection X ′ = XWX is isomorphic to the original space
X , and thus equally biased. However, the transformation
(specified by WX ) defines the angle and direction of debias-
ing. We obtain the debiased space by averaging the original
space X and the projected space X ′:

BAM(X) =
1

2
(X+XWX) . (2)

7Note that a self-consistent linear mapping W is the one offering
consistent mapping from one space to the other and back, x =
W�Wx , i.e., W�W = I , thus W is orthogonal; an orthogonal
projection W (X ′ = WX) preserves all distances in X , making
X ′ isomorphic to X .

Explicit Neural Debiasing (DEBIASNET). The final
model, dubbed DEBIASNET, is a neural model that oper-
ates on the explicit bias specification BE . It is inspired by the
work on semantic specialization of word embeddings (Vulić
et al. 2018; Glavaš and Vulić 2018): but instead of using
linguistic constraints (e.g., synonyms), we “specialize” the
vector space by leveraging debiasing constraints.

Given a biased input space X and the specification BE =
(T1, T2, A), we learn a debiasing function DBN(X; θ) that
transforms X to a debiased space X ′. We aim for the terms
from both sets T1 and T2 to be similarly close to the terms
from A in X ′. For simplicity, we execute DBN(X; θ) as a
feed-forward neural network with non-linear activations. The
training set for learning the parameters θ consists of triples
(t1 ∈ T1, t2 ∈ T2, a ∈ A). It is obtained as a full Cartesian
product T1 × T2 × A. Let t1, t2 and a be the respective
vectors of t1, t2, and a from the input biased space X , and
let t′1, t′2 and a′ be their “debiased” transformations: t′1 =
DBN(t1; θ), t′2 = DBN(t2; θ), and a′ = DBN(a; θ). For a
training instance (t1, t2, a), we then minimize the following
loss function LD:

LD = (cosd (t
′
1,a

′)− cosd (t
′
2,a

′))2 . (3)
cosd(·, ·) refers to the cosine distance. The objective pushes
the terms from the two target sets T1 and T2 to be equidistant
to the terms from the attribute set A. That is, it is designed
to specifically remove the explicit bias. By minimizing LD

as the only objective, the model would remove the bias, but
it would also destroy the useful semantic information in the
input space. We thus couple the objective LD with the reg-
ularization LR that prevents the debiased vectors to deviate
too much from their original estimates:

LR=cosd(t1, t
′
1)+ cosd(t2, t

′
2)+ cosd(a,a

′) (4)
The final loss is then J = LD + λLR, with λ as the regular-
ization weight. The learned function is then applied to the
full input space: X ′ = DBN(X; θ).

Composing Debiasing Models. The presented models can
be seamlessly composed with one another. For example,
given an explicit specification BE , we can first explicitly
debias a distributional space X using DEBIASNET. We can
then apply either GBDD or BAM on the resulting vector
space by deriving BI from BE (i.e., by considering only T1

and T2): e.g., X ′ = GBDD(DBN(X)).

Cross-Lingual Transfer of Debiasing

Cross-lingual word embeddings have been shown to be a vi-
able solution for zero-shot language transfer of NLP models
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(Ruder, Vulić, and Søgaard 2019; Glavaš et al. 2019). Con-
ceptually, given a source language L1 with its monolingual
distributional space XL1 and a target language L2 with the
space XL2, we can apply any L1 model trained on XL1 on
the instances from L2, given a matrix WCL that projects
XL2 to XL1. From the plethora of cross-lingual word em-
bedding models (Smith et al. 2017; Conneau et al. 2018;
Artetxe, Labaka, and Agirre 2018, inter alia), we opt for a
supervised projection-based model (Smith et al. 2017) that ob-
tains WCL by solving the Procrustes problem (Schönemann
1966) on the set of word translation pairs.8 We select this
approach due to its simplicity and competitive zero-shot lan-
guage transfer performance on other NLP tasks (Glavaš et
al. 2019). With the cross-lingual projection matrix WCL in
place, the debiasing of the space XL2 amounts to compos-
ing the projection with the debiasing model in L1: e.g., for
GBDD, X ′

L2 = GBDDL1(XL2WCL).

Evaluation and Experimental Setup

We now introduce the metrics for testing different aspects of
debiased embedding spaces, and then outline two datasets
used in our experiments.

Evaluation Aspects

We use three diverse tests to measure the presence of explicit
bias, and two tests that focus on the presence of implicit
bias. Finally, we test the debiased spaces for their ability to
preserve the initial semantic information.

Word Embedding Association Test (WEAT). Introduced
by Caliskan, Bryson, and Narayanan (2017), WEAT tests
the embedding space for the presence of an explicit bias
defined as BE=(T1, T2, A1, A2). It computes the differential
association between T1 and T2 based on their mean similarity
with terms from the attribute sets A1 and A2:

s(BE) =
∑

t1∈T1

s(t1, A1, A2)−
∑

t2∈T2

s(t2, A1, A2) (5)

The association s of term t ∈ Ti is computed as:

s(t,A1,A2)=
1

|A1|
∑

a1∈A1

cos(t,a1)− 1

|A2|
∑

a2∈A2

cos(t,a2) (6)

The significance of the statistic is computed by comparing
s(BE) with the scores s(B∗

E) obtained with all permutations
B∗

E = (T ∗
1 , T

∗
2 , A1, A2), where T ∗

1 and T ∗
2 are equally sized

partitions of T1∪T2. The p-value of the test is the probability
of s(B∗

E) > s(BE). The “amount” of bias, the so-called ef-
fect size, is then a normalized measure of separation between
association distributions:
μ({s(t1, A1, A2)}t1∈T1)− μ({s(t2, A1, A2)}t2∈T2)

σ ({s(t, A1, A2)}t∈T1∪T2
)

(7)

where μ is the mean and σ is the standard deviation.
8Note that we obtain the cross-lingual projection WCL in the

similar way as debiasing projection WX in BAM; but now the
aligned matrices contain vectors (each from respective language)
corresponding to word translation pairs (not pairs created from bias
target sets as in BAM).

Embedding Coherence Test (ECT). It quantifies the
amount of explicit bias BE={T1, T2, A} (Dev and Phillips
2019). Unlike WEAT, it compares vectors of target sets T1

and T2 (averaged over the constituent terms) with vectors
from a single attribute set A. ECT first computes the mean
vectors for the target sets T1 and T2: μ1 = 1

|T1|
∑

t1∈T1
t1

and μ2 = 1
|T2|

∑
t2∈T2

t2. Next, for both μ1 and μ1 it com-
putes the (cosine) similarities with vectors of all a ∈ A. The
two resultant vectors of similarity scores, s1 (for T1) and
s2 (for T2) are used to obtain the final ECT score. It is the
Spearman’s rank correlation between the rank orders of s1
and s2 – the higher the correlation, the lower the bias.

Bias Analogy Test (BAT). Based on the observation of
(Bolukbasi et al. 2016) that in a biased vector space
programmer − homemaker ≈ man − woman , Dev and
Phillips (2019) proposed an analogy-based bias test: Em-
bedding Quality Test (EQT). However, EQT depends on
WordNet to extend the bias definition with synonyms and
plurals of bias specification terms. In contrast, we propose an
alternative Bias Analogy Test (BAT) that relies only on the
specification BE = (T1, T2, A1, A2).

We first create all possible biased analogies t1−t2 ≈ a1−
a2 for (t1, t2, a1, a2) ∈ T1 × T2 ×A1 ×A2. We then create
two query vectors from each analogy: q1 = t1 − t2 + a2
and q2 = a1 − t1 + t2 for each 4-tuple (t1, t2, a1, a2). We
then rank the vectors in the vector space X according to
the Euclidean distance with each of the query vectors. In a
biased space, we expect the vector a1 to be ranked higher
for the query q1 than the vectors of terms from the opposing
attribute set A2 (e.g., for a gender-biased space we expect
woman to be ranked higher than father or boy for the query
man - programmer + homemaker). Also, a2 is expected to be
more similar to q2 than vectors of A1 terms . The BAT score
is the percentage of cases where: (1) a1 is ranked higher than
a term a′2 ∈ A2 \ {a2} for q1 and (2) a2 is ranked higher
than a term a′1 ∈ A1 \ {a1} for q2.

Implicit Bias Tests. Gonen and Goldberg (2019) recently
suggested that the two sets of target terms can still be clearly
distinguished (with KMeans clustering, or in a supervised
manner with an SVM classifier) from one another after ap-
plying debiasing procedures of (Bolukbasi et al. 2016) and
(Zhao et al. 2018b). We adopt their approach and test the de-
biased spaces for the presence of implicit bias by clustering
terms from T1 and T2 with KMeans++, and by classifying
them using an SVM with the RBF kernel: it is trained on
the vectors of terms from the augmentations of target sets.
For each debiasing model, we average the clustering and
classification scores over 20 independent runs.

Semantic Quality. Debiasing procedures change the topol-
ogy of the input vector space; we thus have to verify that debi-
asing does not occur at the expense of the encoded semantic
information. We test the debiased embedding spaces on two
standard word similarity/relatedness benchmarks: SimLex-
999 (Hill, Reichart, and Korhonen 2015) and WordSim-353
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(Finkelstein et al. 2002).

Evaluation Datasets

Our proposed framework is versatile as it enables debiasing
models to operate on any bias specified in the BI or BE for-
mat. To demonstrate this, we evaluate the debiasing models
from the previous section on two different bias specifications:
tests T1 and T8 from the WEAT dataset (Caliskan, Bryson,
and Narayanan 2017). WEAT tests are given as explicit bias
specifications BE= (T1, T2, A1, A2).

WEAT T8: Gender Bias Test. WEAT T8, shown in Ta-
ble 1, encodes a type of a gender bias in relation to affinities
towards science and art. T1 contains terms from the areas
of science and technology, whereas T2 contains art terms.
Attribute sets contain male (A1) and female (A2) terms. In
a gender-biased vector space the scientific targets are ex-
pected to be more strongly associated with male attributes,
and artistic targets with female terms.

WEAT 1: Flowers vs. Insects. WEAT T1 specifies another
bias type: the difference in sentiment humans attach to insects
as opposed to flowers. Target sets contain different flowers
(T1) and insect species (T2), and attribute sets contain uni-
versally positive (A1) and negative (A2) terms. The full bias
specification of WEAT T1 is available in the supplementary.

XWEAT. For evaluating the language transfer setup, we
use bias specifications in target languages as our test data.
We use tests T1 and T8 from XWEAT, created by Lauscher
and Glavaš (2019) by translating the English (EN) WEAT
tests to six languages: German (DE), Spanish (ES), Italian
(IT), Russian (RU), Croatian (HR), and Turkish (TR).

Preprocessing and Training Setup

Augmented Bias Specifications. We first augment the bias
specifications using a similarity-specialized embedding space
produced by Ponti et al. (2018)9 based on the EN fastText
embeddings (Bojanowski et al. 2017). For WEAT T8, we
augment the target and attribute lists with k = 4 nearest
neighbours of each term. As the initial lists of WEAT T1 are
longer than those of T8, we use k = 2 with T1. We train
all debiasing models using bias specifications containing
only the augmentation terms (i.e., without the initial bias
specification terms); we use the initial terms for testing.

Input Word Embeddings. We test the robustness of de-
biasing models on three different word embedding models
trained on Wikipedia: CBOW (Mikolov et al. 2013), GloVe
(Pennington, Socher, and Manning 2014), and fastText (FT)
(Bojanowski et al. 2017). For cross-lingual transfer, we in-
duce a multilingual space spanning seven languages (EN
+ 6 targets) by projecting FT vectors of each target to the
EN space. Following an established procedure (Glavaš et
al. 2019), we learn projections WCL using automatically
compiled translations of the 5K most frequent EN words.

9Available at: https://tinyurl.com/y273cuvk.

Training Setup. For GBDD and BAM there is a determin-
istic closed-form solution for any given bias specification.
On the other hand, the hyper-parameters of DEBIASNET are
optimized via grid search and cross-validation on the training
set. The final DEBIASNET model uses 5 hidden layers with
300 units each and the weight λ is fixed to 0.2.

Results and Analysis

We first report debiasing results on three EN distributional
spaces, for the individual models as well as for three com-
posite models: GBDD ◦ BAM = GBDD(BAM(X)), BAM
◦ GBDD, and GBDD ◦ DEBIASNET.10 We then show the
results for the cross-lingual debiasing transfer. Finally, we
analyze the topology of debiased spaces.

Main Evaluation

Biases of Distributional Spaces. The main results are sum-
marized in Table 2. All three input distributional spaces gen-
erally exhibit explicit and implicit biases, with CBOW spaces
displaying the lowest biases, both according to the WEAT
tests (e.g., the effect size is even insignificant with p < 0.05
for the gender bias test T8) and the implicit bias tests of
Gonen and Goldberg (2019). Interestingly – according to
our BAT test, and despite the original claims and examples
from Bolukbasi et al. (2016) – the encoded biases do not
reflect strongly in the analogy tests. Nonetheless, our debias-
ing methods in most test settings manage to affect the input
vector spaces by further reducing BAT scores.

Comparison of Debiasing Models. While the results vary
across the two WEAT tests and evaluation metrics, GBDD
emerges as the most robust model on average. It attenuates the
explicit bias while being the most successful in removing the
bias implicitly: the spaces debiased with GBDD completely
confuse the KM clustering and SVM classifier. It also fully
retains the useful semantic information: we do not observe
drops on SL and WS compared to the input distributional
spaces. While GBDD outperforms BAM and DEBIASNET
(DBN) on average according to ECT and BAT measures,
it is not able to fully remove the explicit gender bias (T8)
according to the WEAT test.

Despite operating on an implicit specification BI , BAM
removes the explicit biases much better than the implicit ones.
DBN seems even better than BAM in removing the explicit
biases. This is not a surprise, since DBN is trained on an
explicit bias specification. However both DBN and BAM are
unsuccessful in removing the implicit biases. Moreover, DBN
distorts the input space more than BAM, yielding substantial
drops on SL and WS.

The complementarity of debiasing effects between GBDD,
and BAM/DBN are confirmed by the performance of their
compositions. All composition models robustly remove both
explicit and implicit biases, also showing that there is no “one

10BAM and DEBIASNET display similar results and so does
their composition. For brevity, we thus omit the scores of BAM ◦
DEBIASNET. We also do not report the scores with DEBIASNET ◦
GDBB as its scores were similar to its inverse composition GDBB
◦ DEBIASNET in our preliminary tests.
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WEAT T8 (gender bias, science vs. art) WEAT T1 (sentiment, flowers vs. insects)
Explicit Implicit SemQ Explicit Implicit SemQ

Model WEAT ECT BAT KM SVM SL WS WEAT ECT BAT KM SVM SL WS
FT Distributional 1.30 73.5 41.0 100 100 38.2 73.8 1.67 46.2 56.1 95.7 100 38.2 73.0

GBDD 0.96 84.7 33.9 62.9 50.0 38.4 73.8 0.08* 96.2 41.7 56.0 53.1 38.1 72.9
BAM 0.10* 71.8 38.4 99.8 100 37.7 70.4 1.57 50.3 56.0 95.7 100 37.4 71.5
DBN 0.05* 79.1 33.6 99.8 100 34.1 65.1 0.18* 79.8 45 95.7 100 35.09 68.6
GBDD ◦ BAM 0.18* 94.4 38.7 65.1 65.3 37.7 70.2 0.42* 89.3 48.1 75.0 91.4 37.3 71.3
BAM ◦ GBDD 0.57* 90.3 34.6 60.1 50.0 36.4 72.6 0.07* 94.4 42.4 56.9 51.3 37.9 68.4
GBDD ◦ DBN 0.11* 81.5 37.4 65.8 50.3 33.9 64.6 -0.08* 95.9 41.9 54.6 52.0 34.9 68.4

CBOW Distributional 0.81* -24.0 45.6 90.6 93.4 34.7 59.4 1.13 78.1 50.2 62.6 93.9 34.7 59.4
GBDD 0.38* 50.9 43.4 59.5 50.0 34.8 59.8 -0.07* 90.7 41.1 55.7 51.9 34.7 59.4
BAM 0.14* 36.8 51.1 95.1 89.4 33.4 59.2 0.44* 82.4 50.7 60.9 94.4 34.4 59.3
DBN 0.45* 4.7 57.5 97.4 98.4 33.9 52.2 0.60 82.5 46 85.7 90.8 33.4 53.4
GBDD ◦ BAM 0.00* 69.4 50.3 52.7 68.8 33.4 59.3 -0.04* 91.3 48.7 60.7 68.1 34.5 59.2
BAM ◦ GBDD 0.09* 65.6 42.7 62.6 50.0 33.2 56.9 -0.17* 89.2 45.3 55.6 51.1 33.2 57
GBDD ◦ DBN 0.38* -3.5 57.6 61.9 50.3 34.0 52.1 -0.15* 90.5 41.3 55.4 52.6 33.4 53.3

GloVe Distributional 1.28 84.1 36.3 100 100 36.9 60.5 1.38 76.2 40.5 94.1 100 36.9 60.5
GBDD 0.95 89.7 29.1 57.4 50.6 36.9 59.6 0.44* 92.4 32.7 55.6 54.5 36.8 60.7
BAM 1.08 89.7 27.8 96 100 36.2 59.5 0.96 82.1 39.2 90.7 100 34.4 56.4
DBN 0.83* 81.5 30.8 100 100 35.9 58.6 0.55 77.6 34.8 95.3 100 36.7 59.1
GBDD ◦ BAM 0.98 94.7 25.8 63.6 79.1 36.6 59.3 0.40* 90.7 36.5 57.7 76.5 34.2 56.4
BAM ◦ GBDD 0.78* 97.1 36.9 53.9 50.0 36.3 59.2 0.65 87.3 44.1 55.5 51.2 35.5 58.6
GBDD ◦ DBN 0.51* 97.4 28.2 59.5 50.0 35.8 58.4 -0.03* 89.7 30.3 57.4 52.1 36.5 59.1

Table 2: Main results on two bias test sets, WEAT T8 and T1 for three EN distributional spaces debiased with three models –
GBDD, BAM, and DebiasNet (DBN) – and their compositions. We quantify the explicit bias (Explicit): WEAT, ECT, and BAT
evaluation measures; implicit bias (Implicit): clustering with KMeans++ (KM) and classification with SVM; and the preservation
of semantic quality (SemQ): word similarity scores on SimLex (SL) and WordSim-353 (WS). Asterisks (*) indicate insignificant
(α = 0.05) bias effects for the WEAT evaluation measure.

DE ES IT RU HR TR

Model W KM SL W KM SL W KM SL W KM SL W KM SL W KM SL
FT Distributional 0.05* 98.3 40.7 1.16 99.8 – 0.10* 99.8 29.8 0.37* 62 25.6 0.13* 98.6 32.7 1.72 99.3 –

GBDD 0.15* 55.4 40.7 0.41* 60 – -0.28* 56.1 29.8 0.73* 62.4 25.8 0.54* 59.9 32.5 1.41 64.3 –
BAM -0.97 97.4 40.7 0.11* 99.0 – -0.70* 99.6 29 -0.41* 74.4 25.1 -0.01* 93.5 32 1.49 98.8 –
DBN -0.15* 97.4 36.2 0.76* 100 – -1.05 100 25.4 0.31* 77.9 20.7 0.25* 99.9 25.3 1.54 100 –
GBDD ◦ BAM 0.35* 57.6 35.9 0.78* 52.4 – -0.64* 60.1 25.0 0.77* 61.9 20.7 0.67* 67.5 25.1 1.29 62.5 –
BAM ◦ GBDD -0.12* 56.3 40.8 0.05* 58 – -0.62* 57.9 29 0.34* 56.8 24.8 0.52* 60.8 31.7 0.99 56.9 –
GBDD ◦ DBN -0.09* 54.4 37.3 0.11* 56.6 – -0.05* 58.9 27.1 0.59* 61.6 25.4 0.68* 75.4 29.4 1.27 62.4 –

Table 3: Results for cross-lingual debiasing transfer on XWEAT T8 for six languages: DE, ES, IT, RU, HR, and TR. Input word
embeddings are fastText (FT) for all target languages.W=WEAT; KM=KMeans++; SL=SimLex.

model rules them all” solution to various debiasing aspects.
GBDD ◦ DBN most effectively removes the biases, but it
inherits the undesirable semantic distortions of DBN. On the
other hand, BAM ◦ GBDD offers solid bias removal while
for the most part retaining the semantic quality of the space.

Differences between Evaluation Measures. The three as-
pects of evaluation complement each other: they all inform
the selection of the most appropriate debiasing model w.r.t.
the desired application-specific criteria.11 However, results

11E.g., Note that for some bias specifications, one might not want
to reduce/remove the implicit bias. WEAT T1 can be seen as an
example of such bias: while we may want to make insects similarly
good/bad as flowers, we do not want to make them indistinguishable
from flowers in the vector space.

of WEAT, ECT, and BAT are not always aligned. For exam-
ple, the CBOW space is unbiased according to the WEAT
test, but extremely biased (negative correlation!) according
to ECT. In contrast, GloVe vectors are biased according to
WEAT but not according to ECT (correlation of 0.84). These
findings point to different bias aspects, accentuating the need
for multiple, mutually complementary, bias measures.

Cross-Lingual Transfer

The results in the cross-lingual debiasing transfer are shown
in Table 3. For brevity, we show only the results on XWEAT
T8 (gender bias wrt. science vs. art) and for a subset of
evaluation measures (one for each evaluation aspect): WEAT
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(a) (b) (c)

Figure 1: The topology of a vector space before and after debiasing. Terms from WEAT T8 test: T1 – science terms (blue), T2 –
art terms (orange), A1 – male terms (green), and A2 – female terms (red). 2D projection with PCA. (a) Distributional EN FT
vectors; (b) Debiased using BAM; (c) Debiased using GBDD.

(W), KMeans++ (KM), and SimLex (SL).12,13

We first confirm the results from Lauscher and Glavaš
(2019): DE, IT, RU, and HR fastText vectors do not exhibit sig-
nificant explicit gender bias (wrt. science vs. art), according
to the WEAT test. The explicit bias is, however, significant
in ES and TR distributional vectors. Implicit bias is clearly
present in all distributional spaces except RU. Debiasing mod-
els display similar properties as before: DBN reduces the
explicit bias more effectively than BAM and GBDD, but it se-
mantically distorts the vectors; and only GBDD successfully
removes the implicit bias. None of the models fully removes
the explicit bias for TR (the lowest bias effect of 0.99 for
BAM ◦ GBDD is still significant). We suspect that this is a
result of the lower-quality cross-lingual TR→EN projection,
which is in line with the bilingual lexicon induction results
from Glavaš et al. (2019).

For DE and IT, BAM and DBN invert the direction of
the bias: negative WEAT scores mean that sciences are more
correlated with female attributes and arts with male attributes.
We believe that this is the result of applying a (strong) bias
correction learned on a biased EN space on the (explicitly)
unbiased DE and IT spaces. The BAM ◦ GBDD composition
seems most robust in the cross-lingual transfer setting – it
successfully removes both the explicit (if they exist) and
implicit biases, while preserving useful semantic information
(SL). These results indicate that we can attenuate or remove
biases in distributional vectors of languages for which (1) we
do not require the initial bias specification and (2) we do not
even need similarity-specialized word embeddings used to
augment the bias specifications for the target language.

Topology of Debiased Spaces. Finally, we qualitatively
analyze the debiasing effects suggested by evaluation mea-
sures. We project the input and the debiased embeddings into
2D with PCA, and show the constellation of words from the
initial bias specification of WEAT T8 (Table 1) in Figure 1.14

12We provide the full results, with all evaluation measures, and
also on the XWEAT T1 test in the supplemental material.

13We evaluate word similarities for DE, IT, RU, and HR on their
respective SimLex datasets (Leviant and Reichart 2015; Mrkšić et
al. 2017); there is no ES and TR SimLex.

14We show only the input space and the spaces debiased with
GBDD and BAM. We provide similar illustrations for other debias-

In the distributional space, the two target sets (science vs
art) are clearly distinguishable from one another (implicit
bias), and so are the male and female attributes. The science
terms are notably closer to the male terms and art terms to
the female terms (explicit bias). The space produced by BAM
intertwines the male and female terms and makes the science
and art terms roughly equidistant to the gender terms (ex-
plicit bias removed), but the science terms are still clearly
distinguishable from art terms (implicit bias still present).
In the space produced by GBDD, both biases are removed:
science and art terms cannot be clearly separated and are
roughly equidistant to gender terms.

Conclusion

We have introduced a general framework for debiasing distri-
butional word vector spaces by 1) formalizing the differences
between implicit and explicit biases, 2) proposing new debi-
asing methods that deal with the two different bias specifi-
cations, and 3) designing a comprehensive evaluation frame-
work for testing the (often complementary) effects of debi-
asing. While the proposed framework offers a systematized
view on human biases encoded in word embeddings, the main
results indicate that our debiasing methods can effectively
attenuate biases in arbitrary input distributional spaces and
can also be transferred to a variety of target languages.
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