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Abstract

Recently, there has been an increasing interest in identifying
named entities with nested structures. Existing models only
make independent typing decisions on the entire entity span
while ignoring strong modification relations between sub-
entity types. In this paper, we present a novel Recursively
Binary Modification model for nested named entity recog-
nition. Our model utilizes the modification relations among
sub-entities types to infer the head component on top of a
Bayesian framework and uses entity head as a strong evi-
dence to determine the type of the entity span. The process is
recursive, allowing lower-level entities to help better model
those on the outer-level. To the best of our knowledge, our
work is the first effort that uses modification relation in nested
NER task. Extensive experiments on four benchmark datasets
demonstrate that our model outperforms state-of-the-art mod-
els in nested NER tasks, and delivers competitive results with
state-of-the-art models in flat NER task, without relying on
any extra annotations or NLP tools.

Introduction

Named entity recognition (or more generally entity men-
tion recognition1) aims at identifying text spans with re-
gards to specific entity types such as person, organization,
etc. Named entity recognition (NER) is a fundamental com-
ponent of information extraction systems and an essential
step towards many downstream NLP applications (Li et al.
2018). Significant progress has been made on NER task in
the NLP community, the vast majority of which model NER
task as a sequence labeling problem and employ probabilis-
tic models (e.g., CRF (Finkel, Grenager, and Manning 2005;
McDonald, Crammer, and Pereira 2005; Liu et al. 2018) or
Semi-CRF (Sarawagi and Cohen 2005)) on top of hand-
crafted (Finkel, Grenager, and Manning 2005) or neural-
based features (Lample et al. 2016).

Recently, there has been an increasing interest in identi-
fying named entities with nested structures (i.e., nested en-
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1The text spans of entity mention could be named, nominal and
pronominal (Florian et al. 2004).

tities), where an entity is embedded within other entities, as
illustrated in Fig. 1.

E1 ... their conference hosted by [The University of
[Texas]LOC]ORG ...

E2 Activation of the [[[[IL-2]PROTEIN receptor]PROTEIN (IL-2R)
alpha chain]PROTEIN gene]DNA, and cell proliferation.

Figure 1: Two excerpts containing nested entities.

In Fig. 1, entity The University of Texas of
type ORG contains another entity Texas of type LOC. Ex-
cerpt 2 shows a DNA entity IL-2 receptor (IL-2R)
alpha chain gene is embedded with three PROTEIN
entities. Being a common linguistic phenomenon, and con-
taining finer-grained semantic information (Katiyar and
Cardie 2018), taking nested entities into consideration has
been proven successful in facilitating the performance im-
provement of many downstream NLP applications such as
relation extraction (Miwa and Bansal 2016; Liu et al. 2017),
entity linking (Gupta, Singh, and Roth 2017; Miao, Qin, and
Wang 2017), event extraction (Riedel and McCallum 2011;
Li, Ji, and Huang 2013) and co-reference resolution (Chang,
Samdani, and Roth 2013). However, traditional sequence la-
beling models used in flat-NER only generate one token-
level label per word, which inherently do not allow nested
structure, making them incapable to handle nested entities.

Existing research efforts to identify nested entities can be
broadly classified into two categories: (1) transformation-
based models, and (2) span-based model. Inspired by the
great success of sequence labeling in detecting flat entity,
transformation-based models try to transform the nested
structures into flat linear structures, which can be readily
solved by the sequence labeling framework. There are vari-
ous transform operations, such as hyper-graph (Lu and Roth
2015; Muis and Lu 2017; Katiyar and Cardie 2018), con-
stituency parser (Finkel and Manning 2009), shift-reduce
operations (Wang et al. 2018), and stacking multiple flat-
NER layers (Ju, Miwa, and Ananiadou 2018). However, they
all need complex transformations and extra decoding steps,
which will inevitably entail biases and errors, making the
pipeline error-prone and recognition results inaccurate.
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Observing the drawback of transformation-based models,
a recent work (Sohrab and Miwa 2018) proposes a simple
but surprisingly effective span-based model. Instead of em-
ploying transformation to generate token-level labels, the
span-based model directly generates entity type of each pos-
sible entity span on top of deep neural network generated
representations. To be specific, each span is represented as
the average sum of its tokens’ representations, on which the
model independently classifies each span into different en-
tity types or non-entity. In this way, all nested entities are
directly and independently typed without using any extra
transformation step.

Despite the span-based model has achieved state-of-the-
art performance in nested NER tasks up to now, its weak-
nesses are also obvious. Firstly, for span representation, the
model simply treats all words equally, while actually, the
contributions of each word could be completely different. In
linguistics, the entity head is crucial to an entity’s semantic
type, e.g., in excerpt 1, University plays a crucial role
in determining the entity type ORG of entity mention The
University of Texas. Simply averaging all words
without distinction would dilute the significance of those im-
portant words by auxiliary words, such as The and of, and
hence, yields misleading results. Secondly, the independent
assumption will cause severe spurious entity structures prob-
lem (Ju, Miwa, and Ananiadou 2018) as they enumerate all
spans while failing to model the dependencies among nested
entities.

In order to address above issues, we propose a novel re-
cursively binary modification model for nested named entity
recognition. In order to weight different components within
an entity to help better entity recognition, our model makes
the first effort to consider modification relations among en-
tity types to infer the head component on top of a Bayesian
framework and uses entity head as strong evidence to deter-
mine entity type. The process is recursive, allowing mod-
eling lower-level entities to help better entity recognition
of outer-level, hence our model could well overcome the
spurious entity structures problem. Besides, our model does
not rely on any extra annotation or external knowledge re-
sources, thus it avoids heavy training and could be easily
adapted to dynamic, multilingual or domain-specific data.
We evaluated our model on four benchmark datasets belong-
ing to two different domains. Our model achieved 79.8% and
73.6% F1 scores on GENIA and ACE2005 dataset respec-
tively.

Model

The architecture of our model is summarized in Fig. 2. From
bottom to top, our model forms a three-layer layout. The
first two layers are an embedding layer and a shared bi-
directional LSTM (BiLSTM) layer. On top of the hidden
state of the BiLSTM layer, we propose a recursively binary
modification (RBM) model to identify the type of each pos-
sible entity region. We will elaborate on each layer in the
following subsections.

R Tk

LSTM LSTM LSTM LSTM LSTM

h1 h2 h3 h4 h5

k

t

BiLSTM Layer

Embedding Layer Char-level

BiLSTM

Word-level

embedding

RBM Generative Layer

Input Sequence IL-2 receptor (IL-2R) genealpha

t: entity type
: entity head indicator

Tk: sub-region types

k: split position
R: candidate region

Figure 2: Architecture of the proposed model.

Embedding Layer

In the embedding layer, we concatenate a word’s word-
level embedding and its character-level embedding as its
representation. Following the same setting with Lample et
al. (2016), Ju et al. (2018) and Katiyar and Cardie (2018),
word-level embeddings are initialized with pre-trained em-
beddings. Words in the training set but outside the pretrained
embeddings are randomly initialized. Words in the testing
set that are unseen in the model are mapped to a special
unknow embedding; in this way, their character-level rep-
resentations are highlighted.

Following the successes of Ma and Hovy (2016) and Lam-
ple et al. (2016) that utilized character embeddings in the
NER task, we also employ character-level embeddings by
concatenating forward and backward outputs of a character-
level BiLSTM (char-LSTM). In our preliminary experiment,
we found that the performance of char-LSTM is very close
to char-CNN, similar to results in (Reimers and Gurevych
2017). Thus, in order to make a fair and side-by-side com-
parison to highlight the effectiveness of the proposed RBM
layer, we follow the same char-LSTM settings in the em-
bedding layer with compared methods (Ju, Miwa, and Ana-
niadou 2018; Wang et al. 2018; Sohrab and Miwa 2018).

BiLSTM layer

Given a word sequence S = w1, w2, .., w|S|, where wi is the
i-th word in the sequence, the embedding layer transforms S
into a sequence of distributed representations DS . Then DS

is fed into a BiLSTM layer that computes the hidden states in

forward
→
h= {

→
h1,

→
h2, ...,

→
h|S|} and backward

←
h= {

←
h1,

←
h2

,
←
h|S|} directions. We concatenate the forward and backward

as the final hidden state of the i-th word, i.e., hi = [
→
hi;
←
hi].

We use a notation R = [i, j] (s.t. 1 ≤ i ≤ j ≤ |S|) to
represent the candidate entity span region from i-th word
to j-th word in a sentence S, inclusively. Based on the
BiLSTM layer, the representation of region R is hR =
{hi,hi+1, ...,hj}.
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Recursively Binary Modification (RBM) Model

To weight the importances of words, instead of simply av-
eraging the representations of tokens, a naive solution is to
compute a weighted aggregation using the attention mech-
anism (Bahdanau, Cho, and Bengio 2014). Formally, for
a given candidate entity region R and an entity type list
L = {t1, t2, ..., t|L|}, the naive solution constructs a ma-
trix representation vR = [v1

R,v
2
R, ...,v

|L|
R ](vR ∈ R

d×|L|),
in which each vector vt

R ∈ R
d×1 is the weighted arithmetic

mean over hR related to a specific entity type t, which is
defined as: vt

R =
∑

k∈R attt(hk) · hk, where the attention
score attt(hk) is a softmax-normalized scalar denoting the
relevance of type t and hk, which can be computed by vari-
ous alignment functions (Bahdanau, Cho, and Bengio 2014),
such as dot-product, feed-forward network, etc. Based on
vR, the final entity type is the one with the highest classifi-
cation score.

Unfortunately, the naive method is only able to han-
dle nested entities sharing the same entity type; it may
fail on nested entities with different types, since entity
heads may correspond to different types. For example, a
DNA entity IL-2 receptor gene is embedded within
a PROTEIN entity IL-2 receptor. Both receptor and
gene could be heads and separately present high relevance
related to PROTEIN and DNA. The naive method will be un-
able to distinguish which one is the true head. Such a phe-
nomenon is very common in nested entities: more than 45%
of nested entities in GENIA corpus and 43% in ACE2005
corpus are embedded within another entity of a different
type.

To tackle this problem, we propose a Recursively Binary
Modification model (RBM) based on the observation that
there are usually implicit modification relations among en-
tity types, e.g., a PROTEIN entity could modify a DNA or
RNA entity, but not the other way around. Thus, instead of
relying on “relevance” between word and type to weight the
head, RBM model utilizes the modification relation among
entity types to infer the head component on top of a Bayesian
framework (top layer in Fig. 2). Note that our model can be
recursive, allowing modeling head of lower-level entities to
help better recognizing outer-level entities.

Given a candidate entity region R = [i, j], RBM model
predicts the output type t̂ that obtains the maximum proba-
bility given by:

t̂ = argmax
t∈L

p(t|R) = argmax
t∈L

∑
k∈[i,j−1]

p(t, k|R), (1)

where k is the split position that splits R into two sub-
regions2 cl = [i, k] and cr = [k + 1, j], one acts as the
head and the other acts as the modifier.

Based on Eq. 1, we introduce a latent variable μ denot-
ing the head among {c1, c2}, p(t, k|R) could be probabilis-

2Please note that nested entities rarely contain crossing struc-
tures (Lu and Roth 2015), e.g., it is rare for two overlapping entities
w1w2 and w2w3 together embeds in the same entity w1w2w3.

tically factorized as:

p(t, k|R) = p(t|k,R) · p(k|R)

= p(k|R)

[∑
μ

p(t|μ, k,R) · p(μ|k,R)]

]
,

(2)

where p(t|μ, k,R) is the probability of R being an entity
with label t given the head component cμ:

p(t|μ, k,R) = p(t|cμ). (3)

Particularly, if i = j, then R is a single token region, we
have:

p(t, k|R) = p(t|R) =
exp(vt · hi)∑
t̃∈L exp(vt̃ · hi)

, (4)

where vt is the vector representation of type t.
In Eq. 2, p(μ, k, |R) denotes the probability of generating

head variable μ and split position k given R, which can be
factorized as:

p(μ|k,R) =
∑

TR∈TR

p(μ|TR) · p(TR|k,R), (5)

where TR represents all possible type pairs of the two sub-
regions of R, and TR =< tcl , tcr > (TR ∈ TR) is a specific
type pair of components cl and cr. p(μ|TR) is the probabil-
ity of the μ-th component being the head component of R
conditioned on the component’s type pair:

p(μ|TR) = At¬μ,tμ , (6)

where A ∈ [0, 1]|L|×|L| is a matrix of modification probabil-
ities, in which Ati,tj denotes the probability of a component
of type ti modifying a component of type tj . p(TR|k,R) is
the probability of generating type pair TR, and can be com-
puted by:

p(TR|k,R) =
∏

q∈{l,r} p(t
cq |cq). (7)

From the Eqs. 2 and 5, latent variables μ and TR are
marginalized using the total probability rule.

For the split position k, considering that if k is right on
the boundary of an identified entities or on the boundary of
an existing entity in the training corpus, it would be strong
evidence that we should split the entity on k. Thus, p(k|R)
is defined as:

scorek = IE(S[i, k]) + IE(S[k + 1, j]) + 1,

where IE(·) is an indicator function defined on existing en-
tities set E, i.e., IE(S[i, k]) = 1 if and only if S[i, k] ∈ E.
Based on the score of each k, we define p(k|R) as the
softmax-normalized probabilities:

p(k|R) =
exp(scorek)∑

l∈[i,j−1] exp(scorel)
. (8)

Let’s take a DNA entity IL-2 receptor gene as an
example to illustrate the recursive process of our model.
Generally, to make label decision on IL-2 receptor
gene, the computational process in the RBM will recur-
sively break down into sub-problems by firstly identifying
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IL-2 receptor is a PROTEIN sub-entity (by further go-
ing down to sub-sub-problems, e.g., IL-2 + receptor) and
gene is a DNA sub-entity. Since a DNA sub-entity could
be modified by a PROTEIN sub-entity in a high probability,
thus the label of IL-2 receptor gene depends on the
label of its head part gene. In this manner, the label decision
making of the outer-level entity could benefit from modeling
lower-level sub-entities.

It is convenient to represent RBM model in matrix no-
tations. Let Ck = [Ck

l ,C
k
r ] (Ck ∈ [0, 1]|L|×2) be the

predictive probabilities of sub-regions, in which Ck
l ∈

[0, 1]|L|×1 and Ck
r ∈ [0, 1]|L|×1 denote the matrices of

p(t|cl) and p(t|cr) values, respectively. Let Uk = [p(μ =
l|k,R); p(μ = r|k,R)]T (Uk ∈ [0, 1]2×1) is the concatena-
tion of the two values of Eq. 5, Uk can be computed by:

Uk =
[
CkT

l ACk
r ;C

kT
l ATCk

r

]T
. (9)

Let C denote the matrix of p(t|R) values in Eq. 1, and τk

is a scalar denoting p(k|R) value. Based on Eq. 9, we have:

C =
∑

k
τkCkUk. (10)

Computational Tractability In the RBM model, the ma-
trix C (or p(t|k,R)) is computed by the recursion formula
T (n) =

∑n−1
k=1(T (k) + T (n − k)). For an n-length region,

the time complexity T (n) is O(2n), which is computation-
ally intractable.

To make the computation feasible, we propose a dynamic
programming strategy to avoid recomputation of overlap-
ping sub-problems. We set up a matrix M ∈ [0, 1]n×n×|L|,
in which a cell Mi,j ∈ [0, 1]|L|×1 stores a |L|-dimensional
vector denoting the predictive probabilities p(t|R(i, j)). The
recursion formula could be reformed as:

Mi,j =
∑

k
[MT

i,kAMk+1,j ;M
T
i,kA

TMk+1,j ]
T

×[Mi,k;Mk+1,j ]
Tτk.

(11)

Since matrix multiplication can be readily sped-up by
GPUs, we hence assume the cost of each matrix multiplica-
tion is O(ω). Using dynamic programming, for an n-length
region, we only need to fill an n × n upper triangular ma-
trix, and each computation costs O(ωn), thus the complex-
ity would be O(ωn3). Further, we could impose a maxi-
mum length constraint (Sohrab and Miwa 2018) on can-
didate spans, i.e., only generate regions less than or equal
to the length constraint. Thus the computational complexity
would be O(ωn), which is linear to sentence length.

Parameterization and Training The parameters of RBM
model are the matrix of modification probabilities A, the
vector representation vt, the parameters related to hidden
states h of the BiLSTM, and word-level and character-level
embeddings. We use θ to denote all the parameters collec-
tively. θ is trained to maximize Eq. 12 of observed entity
mentions and their types in an annotated corpus.

θ∗ = argmax
θ

p(t|R;θ). (12)

Another issue in training is the class imbalance problem
if we take all candidate entity spans into training, as over-
whelming majority of them is non-entity. We employ an
undersampling strategy: for a positive entity, we randomly
sample m non-entities with the same span length, m also
refer to the undersampling rate.

Training Objective

We used the standard cross-entropy loss as our loss function:

φ = L(y, t̂), (13)

where L(l, p) denotes cross-entropy function between l and
p. t̂ is the predicted type distribution, and y is the golden
label.

Experimental Evaluation

In this section, we evaluated our model on both nested NER
tasks and flat NER tasks, and demonstrate its superiority
over state-of-the-art models.

Table 1: Statistics on the four datasets

Datasets GENIA ACE2005 JNLPBA CoNLL03
Sentences 18546 12548 18546 (3856) 22137

Split 81:9:10 8:1:1 9:1:- 4:1:1
Outermost entities 51424 23464 - -
Nested entities (%) 21.56 37.45 0 0

Compound entities (%) 45.41 43.49 0 0
Ave. entity length 2.90 2.28 2.18 -
Overall entities 56870 30996 51301 (8662) 34920

Evaluation Datasets

We used the following four datasets, their detailed statistics
summarized in Table 1.

• GENIA3 contains annotated entity mentions of 36
fine-grained entity types among 2,000 MEDLINE ab-
stracts. We follow the same settings as Finkel and Man-
ning (2009) and Lu and Roth (2015) by keeping only five
types for evaluation, i.e., DNA, RNA, PROTEIN, CELL-
LINE, and CELL-TYPE. All sub-types of these five entity
types are collapsed into their super-types.

• ACE20054 is a multilingual training corpus. We use its
English section, which contains 7 entity types – Person
(PER), Organization (ORG), Location (LOC), Geograph-
ical Entities (GPE), Vehicle (VEH), Weapon (WEA), and
Facility (FAC)) among news articles. We follow the set-
tings of Ju et al. (2018) by keeping files from bc, bn, cts,
nw and wl and randomly split them into training, devel-
opment and testing sets with the ratio 8:1:1.

• JNLPBA5 contains 36 fine-grained entity types in the do-
main of molecular biology. Following previous research
efforts (Finkel and Manning 2009; Ju, Miwa, and Ana-
niadou 2018), we only keep five major entity types, and
randomly split 10% sentences from training data as our

3http://www.geniaproject.org/
4https://catalog.ldc.upenn.edu/LDC2006T06
5http://www.nactem.ac.uk/tsujii/GENIA/ERtask/report.html
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development set. We use this dataset since it is widely
adopted by nested NER models (Ju, Miwa, and Anani-
adou 2018; Sohrab and Miwa 2018) to evaluate their abil-
ity in detecting flat entities. We follow these works for a
fair comparison.

• CoNLL03 (Tjong Kim Sang and De Meulder 2003) con-
sists of newswire text from the Reuters RCV1 corpus
tagged with four different entity types: Person (PER), Lo-
cation (LOC), Organization (ORG), and Miscellaneous
(MISC).

Training Details

We used pretrained embeddings on MEDLINE ab-
stracts (Chiu et al. 2016) for GENIA and JNLPBA, and
Glove6 for ACE2005. Unknown words was initialized us-
ing an uniform distribution U(−0.25, 0.25). All the embed-
dings were dynamically updated during training. We set ini-
tial modification probabilities in matrix A to 1

|L| . The initial
cell states and hidden states of BiLSTM were set to zero.
The type representations vt were initialized using a uniform
distribution U(0, 1).

The default hyper-parameter settings were: the dimension
of word-level and character-level embedding was 200 and
25, respectively. The dimension of hidden state of BiLSTM
was 200, and the undersampling rate m was set to 25. For
optimization, we used Adam (Kinga and Adam 2015) with
initial learning rate 0.001, weight-decay (L2) 1e−5, and the
gradient clipping to 5; all other hyper-parameters were their
default values.

Evaluation Metric

We adopted the same evaluation metric as previous
works (Lu and Roth 2015; Sohrab and Miwa 2018): an en-
tity mention is considered correct if both the mention span
and the mention type are exactly correct.

Following the previous research efforts, we reported pre-
cision (P), recall (R), and micro F1 score (F1) of our best
performing models on nested NER and flat NER evaluation
tasks.

Nested NER Task

Compared Models For nested NER task, we compared
our model RBM with seven existing models, including
three state-of-the-art feature-based models (Finkel and Man-
ning 2009; Lu and Roth 2015; Muis and Lu 2017), and
four state-of-the-art deep neural models: three of them
are transformation-based models (Katiyar and Cardie 2018;
Wang et al. 2018; Ju, Miwa, and Ananiadou 2018), and one
span-based model (Sohrab and Miwa 2018).

Results and Analysis Table 2 shows the results of our
RBM model compared with state-of-the-art models. We can
see that: Firstly, compared with state-of-the-art deep neural
models, RBM model outperforms the best existing model by
2.7 percentage points (pts) on GENIA. This demonstrates
our recursive binary modification model could effectively

6https://nlp.stanford.edu/projects/glove/

improve the accuracy in identifying the span and type of en-
tity mention compared with the average sum representation
of existing models, and account for its better performance.
We also see that our model is slightly worse than Wang and
Lu (2018) in ACE2005, but the main reason is that the score
of Wang and Lu (2018)’s model is achieved using its unre-
stricted model that without a length constraint which would
incur an O(n3) computational cost, while our model only
has a linear complexity O(n). For its restricted version (with
O(n2) complexity), the performance is below ours (72.8%
v.s. 73.6%). Thus, we believe that the overall performance of
our model is still better than Wang and Lu (2018)’s model.

Secondly, compared with state-of-the-art feature-based
models, our model outperforms the best feature-based
model (Muis and Lu 2017) by 9 pts and 10.5 pts on GE-
NIA and ACE2005, respectively. This again demonstrates
that deep neural models have huge advantages over tradi-
tional feature-based models.

Thirdly, among the two datasets, our model gains more
improvement on GENIA than ACE2005. The main reason
is that, modification relations are commonly stronger in the
biomedical domain (GENIA ) than in news articles domain
(ACE2005 ). For example, entities in biomedical domain of-
ten present strong modification patterns such as a PROTEIN
or RNA entity could modify a DNA entity, whereas for PER-
SON or LOCATION entities of the news domain, such rela-
tions are commonly weaker.

Another observation is that, our model perform with bet-
ter precision on ACE2005 dataset but with better recall on
GENIA. We believe that it is mainly caused by different pa-
rameter settings. Obviously, there is a precision/recall trade-
off w.r.t undersampling rate m (as shown in Fig. 4). If we
set m = 15, the results on ACE2005 would be 75.3%(P)
71.6%(R) and 73.4%(F1), perform better in all aspects P
(+1.1%), R (+1.2%) and F1 (+0.4%) than best baseline.

Table 3 shows the performances of our model on different
entity levels compared with the best existing model Sohrab
and Miwa (2018). Our model outperforms the best existing
model in both flat, nested, single-token, and multi-token en-
tities. This demonstrates our model could well handle differ-
ent entity levels.

Table 4 shows categorical performances of the RBM
model on GENIA dataset, also compared with the best ex-
isting model Sohrab and Miwa (2018). Besides the best per-
forming category PROTEIN, which has the largest number
of training instances, our model performs equally well on
all categories. Compared with Sohrab and Miwa’s model,
our model beats it in all categories except slightly worse
in CELL-TYPE. Another observation is, our model performs
significantly better in the categories which commonly has
strong modification relations among inner-entities, such as
DNA and CELL-LINE, which demonstrates our RBM model
could well model the modification relation and help with
better entity recognition.

Taken GENIA dataset as the example, we show modifi-
cation probabilities (parameter A) learned by RBM and vi-
sualize its strength as a heatmap in Fig. 3. We can see that
the probabilities of any entity type modifying a non-entity
are quite small, since non-entities could rarely be the head.
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Table 2: Comparisons of our model with state-of-the-art models on nested NER tasks, the best results are marked in bold font.
Sohrab and Miwa did not report results on ACE2005, so the scores marked with ∗ are estimated using our self-implemented
version.

Model GENIA ACE2005
P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Finkel and Manning (2009) 75.4 65.9 70.3 - - -
Lu and Roth (2015) 72.5 65.2 68.7 70.0 56.9 62.8
Muis and Lu (2017) 75.4 66.8 70.8 69.1 58.1 63.1
Katiyar and Cardie (2018) 76.7 71.1 73.8 70.6 70.4 70.5
Wang et al. (2018) - - 73.9 - - 73.0
Ju et al. (2018) 78.5 71.3 74.7 74.2 70.3 72.2
Wang and Lu (2018) 77.0 73.3 75.1 76.8 72.3 74.5
Sohrab and Miwa (2018) 93.2 64.0 77.1 82.0∗ 63.7∗ 71.7∗

RBM 82.5 77.4 79.8 79.7 68.4 73.6

Table 3: Performance comparison of the RBM model and
the model by Sohrab and Miwa v.s. different entity-level on
GENIA dataset.

Entity-level RBM Sohrab & Miwa
P (%) R (%) F1 (%) F1 (%)

Single-token 84.2 79.6 81.8 69.9
Multi-token 80.9 75.3 78.0 77.9
Flat 81.5 77.8 79.6 79.3
Nested 98.0 72.2 83.1 72.7
All entities 82.5 77.4 79.8 77.1

Table 4: Categorical performance comparison of the RBM
model and the model by Sohrab and Miwa on GENIA
dataset.

Categories RBM Sohrab & Miwa
P (%) R (%) F1 (%) F1 (%)

DNA 78.4 71.8 75.0 71.8
CELL-LINE 75.8 69.9 72.7 67.9
CELL-TYPE 81.7 72.4 76.8 78.1
PROTEIN 84.8 80.8 82.7 80.8
RNA 70.7 79.5 74.8 72.4
Overall 82.5 77.4 79.8 77.1

Some common patterns are correctly learned, such as a PRO-
TEIN or RNA entity could modify a DNA entity, but not the
other way round. The probabilities also reveal the fact that,
some strong types likes CELL-LINE and DNA rarely mod-
ify other types, but they are of high probabilities modifying
themselves. From Fig. 3, we can conclude that the modifi-
cation probabilities leaned by our model are meaningful and
in accord with common sense.

Ablation Study To evaluate the contribution of modifica-
tion, pretrained embeddings and character level embeddings
components to final results, we conducted an ablation study
by ablating a specific component from the full model once
per test. The results are shown in Table 5.

We can see that ablation on modification probabilities in-
curs roughly 2 pts reduction in terms of F1 score, which
demonstrates modification component is necessary to im-
prove the performance. Also, ablations on character-level
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Figure 3: The modification probabilities A learned on GE-
NIA dataset, in which a cell Ai,j donates the probability of
an entity of type i that modifies an entity of type j.

embeddings and pretrained embeddings lead to big perfor-
mance gaps on both datasets. From above we can conclude
that these components contribute significantly to the effec-
tiveness of our model.

Sensitivity Analysis of the Undersampling Rate The un-
dersampling rate m is an important hyper-parameter in han-
dling the class-imbalance problem. In order to test its efforts
on precision, recall, and the F1 score, and thereby offer an
empirical way to tune its setting, we conducted a sensitivity
analysis on GENIA and ACE2005 datasets. The results are
shown in Fig. 4.

From Fig. 4, we can see that despite GENIA and
ACE2005 are from different domains, the tendencies are
similar. To be specific, a small undersampling rate rewards
high recall but low precision, whereas a larger undersam-
pling rate rewards high precision but low recall. With the
increasing of the undersampling rate, F1 scores quickly rise
to a flat peak region and then have a slight drop down. In
terms of F1, the most appropriate undersampling rate set-
ting is supposed to be among 25 - 60. Further, considering
the extra computational cost brought by a larger m, a smaller
rate (m = 25) is preferable.

Flat NER Task

We also tested our model RBM on the flat NER task to
demonstrate our model could not only outperform existing
models in nested NER tasks but also perform well in iden-
tifying flat entities. We tested our model on the JNLPBA
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Table 5: Ablation study results compared with the full RBM model.

Model GENIA ACE2005
P (%) R (%) F1 (%) P (%) R (%) F1 (%)

RBM 82.5 77.4 79.8 79.7 68.4 73.6
- modification probabilities 83.1 72.9 77.7 77.2 68.9 72.8
- pretrained embeddings 78.2 71.0 74.4 79.3 65.1 71.5
- character-level embeddings 74.7 59.3 66.1 73.6 60.8 66.6

���

���

���

���

���

���

�	�

�
��

�� �
� ��� ��� ��� ��� ��� ��� ���

�
��
��
��
�	
�

��


������������	
����

��������
������
�


(a) GENIA.
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(b) ACE2005.

Figure 4: Precision, recall, and F1 score v.s. various under-
sampling rate tested on Dev set.

dataset, which is a commonly used evaluation dataset con-
taining only flat entities of the biomedical domain. More-
over, we also tested on general domain CoNLL03 dataset.
We compared with six state-of-the-art models for reference.
The results are listed in Table 6.

Table 6: Results of the flat NER task.

Model JNLPBA CoNLL03
F1 (%) F1 (%)

Gridach (2017) 75.87 -
Ju et al. (2018) 75.55 -
Sohrab and Miwa (2018) 78.4 -
Wang and Lu (2018) - 90.20
Lample et al. (2016) - 90.94
Ma and Hovy (2016) - 91.21
Yang et al. (2017) - 91.26

RBM 77.6 91.17

From Table 6, we can see that, on JNLPBA dataset, our
model beats Gridach (2017) and Ju et al. (2018) by nearly
2 pts. Albeit our model performs slightly worse than the
best existing model Sohrab and Miwa (2018) in terms of
F1 score, but the difference is only 0.8 pt. On general do-
main CoNLL03 dataset, our model obtains an F1 score of
91.17%, which is competitive with state-of-the-art flat NER
models, the difference with the best model is only 0.09 pt,
which is fully acceptable.

We wish to point out that identifying flat entities is not the
primary purpose of our model, the performance on the flat
NER task is more than expected.

Related Works

Nested NER task has gained an increasing research interest
in recent years. Existing nested NER models can be broadly

classified into transformation-based models and span-based
model according to the methodologies they adopted.

The transformation-based models are directly derived
from the sequence labeling framework used in the flat NER
task. Conventional sequence labeling framework only gen-
erates one output label per word, thus it is incapable to han-
dle nested structure. Therefore, transformation-based mod-
els try to transform the nested NER problem into a standard
sequence labeling problem using various transformations. A
common transformation is hyper-graph (Lu and Roth 2015;
Muis and Lu 2017; Katiyar and Cardie 2018). A hyper-graph
can be viewed as multiple parallel linear chain CRFs, which
allows generating multiple labels on each word, and adapts
to nested structures. Another transformation is dynamically
stacking multiple flat NER layers (Ju, Miwa, and Ananiadou
2018). Each layer is used to identify entities on a specific
nest level, and the stacking stops if no entities can be pre-
dicted. Wang et al. (2018) proposed a shift-reduce based
model to transform the nested NER task into an action se-
quence labeling problem, and the final nested entities can be
fetched by a decoding process. Finkel and Manning (2009)
represented nested entities as nodes in a constituency pars-
ing tree, and the types are decided by a CRF-based approach.
The transformation-based models can be directly built upon
existing state-of-the-art flat NER models to detect nested en-
tities. However, the complex transformations and extra de-
coding steps will inevitably entail biases and errors in nested
NER task.

Sohrab and Miwa (2018) adopted a different methodology
and proposed a span-based model. Instead of tagging each
word by sequence labeling, the model directly generated en-
tity types on each candidate span based on features gener-
ated by deep neural networks. This model achieves state-of-
the-art results in both nested and flat NER tasks. However,
they treat all tokens equally, which will entail noisy infor-
mation. Besides, its independent assumption makes it ignor-
ing dependencies between nested entities. By contrast, our
model utilizes a recursive binary modification framework to
weight different components and captures the dependencies
to help better nested entity recognition.

Conclusion

In this paper, we explore how to recursively utilize mod-
ification relations among entity types to better recognize
nested entities. Our model utilizes the modification rela-
tions among sub-entities types to infer the head component
on top of a Bayesian framework and uses entity head as
strong evidence to determine the type of the entity span. Our
model achieved 79.8% and 73.6% F1 scores on GENIA and
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ACE2005 dataset respectively, without relying on any extra
annotations or NLP tools.

For future work, we will investigate the use of external
information (e.g., dependency relation) for further perfor-
mance improvement.
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