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Abstract

Entity resolution (ER) aims to identify entity records that re-
fer to the same real-world entity, which is a critical problem
in data cleaning and integration. Most of the existing models
are attribute-centric, that is, matching entity pairs by com-
paring similarities of pre-aligned attributes, which require the
schemas of records to be identical and are too coarse-grained
to capture subtle key information within a single attribute. In
this paper, we propose a novel graph-based ER model Gra-
phER. Our model is token-centric: the final matching results
are generated by directly aggregating token-level compari-
son features, in which both the semantic and structural in-
formation has been softly embedded into token embeddings
by training an Entity Record Graph Convolutional Network
(ER-GCN). To the best of our knowledge, our work is the first
effort to do token-centric entity resolution with the help of
GCN in entity resolution task. Extensive experiments on two
real-world datasets demonstrate that our model stably outper-
forms state-of-the-art models.

Introduction

Entity resolution (ER) (a.k.a., entity matching, record link-
age, and duplicate record detection) aims at identifying en-
tity records that refer to the same real-world entity from dif-
ferent data sources. Table 1 shows an example of ER task. In
Table 1, there are three records r1, r2 and r3 that are derived
from Amazon and Google dataset, respectively. An ER sys-
tem needs to find r1 and r2 refer to a same real-world entity,
while r3 does not.

Entity resolution is a fundamental problem in data clean-
ing and data integration (Dong and Srivastava 2013).
There are numerous applications of entity resolution such
as knowledge graph construction (Chen et al. 2015),
e-commerce (Gokhale et al. 2014), and data ware-
houses (Bhattacharya and Getoor 2007). The importance of
entity resolution has led to a substantial amount of research
over the past few decades. Currently machine learning (ML)
based solution has become the de-facto standard for ER task.

Given two entity records, typical ML-based ER ap-
proaches first compare pre-aligned attributes on top of hand-
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Table 1: An example of ER task.

Google
Record TITLE MANUFACTURER PRICE

r1 microsoft powerpoint 2004 mac apple - 228.95
Amazon

Record DESCRIPTION MANUFACTURER PRICE
r2 powerpoint 2004 mac by microsoft microsoft 229.99
r3 powerpoint 2004 upgrade mac microsoft 109.99

crafted (Konda et al. 2016) or deep neural (Ebraheem et al.
2018; Mudgal et al. 2018) features, then learn a classifier
(e.g., logistic regression, multilayer perceptron, etc.) to ag-
gregate comparison results of all attributes to make final ER
decisions. Recently, deep learning (DL) models have been
used to learn attribute representations, including RNN and
LSTM in conjunction with attention mechanism (Ebraheem
et al. 2018; Mudgal et al. 2018). These deep learning models
can capture semantic and syntactic information to better rep-
resent semantic similarity, especially for textual attributes.

Despite DL-based ER solutions have been proven suc-
cessful in improving the general performance of ER
task (Mudgal et al. 2018), their attribute-centric paradigm
share some common drawbacks, which hinder them from
further performance improvement, as listed below:

i) Attribute representation causes semantic sparsity and
information dilution problem. The attribute representation
can only capture token-attribute relations while ignoring
record-attribute and more general token-record relations
which carry semantics that among different attributes, i.e.,
tokens in a same record but within different attributes could
also share a strong semantic correlation (e.g., “microsoft”
and “powerpoint” in r3 of Table 1). Another problem is in-
formation dilution. Since the granularity of an attribute is
coarse-grained, especially for descriptive textual attributes,
it is hard for few key tokens (e.g., “upgrade” in entity r3 of
Table 1) to show enough significance in the whole sentence.

ii) Hard attribute alignment causes inflexible comparison.
The prerequisite for attribute comparison is that the schemas
of all records are identical, which is usually achieved by
an extra hard schema-mapping step (e.g., mapping TI-
TLE↔DESCRIPTION, MANUFACTURE↔MANUFACTURE,
and PRICE↔PRICE for the two tables in Table 1), error-
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prone and inflexible in handling schema heterogeneity and
noisy data. For example, in entity r1 of Table 1, the value
of MANUFACTURER is missing (although implied in TITLE
attribute), thus, comparing on this attribute will lead to mis-
leading results.

iii) Incapable of handling heterogeneous attribute types.
The attributes of records are often heterogenous, i.e., they
have different data types. For example, in Table 1, TITLE
and MANUFACTURER are textual while PRICE is numeri-
cal. Obviously, different data types should be treated differ-
ently during representation learning, e.g., a good model is
supposed to capture co-occurrence relation for textual words
and relative differences for numerical values. Unfortunately,
existing DL-based ER models often adopt vanilla RNN or
LSTM to encode attributes, which are unable to adaptively
distinguish different data types. Some research efforts have
sought a compromised strategy, adopting different compar-
ison function for different data type (Kong et al. 2016;
Jurek and Deepak 2018), which is cumbersome and incom-
patible to up-to-date deep learning fashion.

Observing above drawbacks of existing models, we pro-
pose a novel ER model GraphER, in the hope to simultane-
ously address the above three problems via a concise, uni-
fied, and end-to-end deep learning framework. Our model
offers a fundamentally different perspective for ER task: rep-
resent and compare entity records in a token-centric man-
ner, and the final ER decisions are made by directly ag-
gregating token-level comparison features. To be specific,
we model record-attribute, attribute-token, and token-token
relations of all records into a single Entity Record Graph
(ER-Graph) where the token-token edge is type-sensitive
that enable us to effectively handle heterogeneous attribute
types (address problem iii). On top of ER-Graph, we employ
Graph Convolutional Networks (GCNs) (Kipf and Welling
2017), a special form of Laplacian smoothing, to capture
high-order schematic and structural information and embed
them into token representations. In this way, any nodes (in-
cluding records, attributes, and tokens) can get updated as
long as they share common paths in ER-Graph with current
matching pairs, thus the semantic sparsity could be greatly
reduced (address problem i). For records comparison, we
propose a novel cross-encoding and token-gating compari-
son method, which is helpful to prevent to information dilu-
tion problem. Moreover, since token-centric paradigm inher-
ently avoids hard attribute alignment, our model is of high
flexibility in handling schema heterogeneity and noisy data
(address problem ii).

To the best of our knowledge, this is the first effort
to address structured ER problem in such a token-centric
manner. The evaluation on Amazon-Google and BeerAdvo-
RateBeer datasets demonstrates our model significantly out-
performs state-of-the-art ER models.

Method

Model Overview

The architecture of our model is summarized in Figure 1.
From bottom to top, our model is a four-layer layout. Given
a matching pair 〈P,Q〉, the first layer generates embed-
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Figure 1: Architecture of the proposed model.

ding that implicitly contains structural information. Then,
the comparison layer is employed to compare the match-
ing pair token by token. Finally, the aggregation layer ag-
gregates comparison features into a fixed-length matching
vector and feed it into the prediction layer for an ER deci-
sion.

ER-GCN Layer. This layer aims to represent each token
into a d-dimensional vector in which both the semantic and
structural information (including attribute types and record-
attribute-token hierarchy) are “softly” kept for future com-
parison and aggregation.

Comparison Layer. This layer compares the two match-
ing records and outputs two sequences of comparison vec-
tors. It mainly contains three steps: firstly, we perform a
cross-encoding step to capture the token-level semantic in-
clusion relation between the two entities; secondly, we use
a token-gating mechanism to adaptively weight the impor-
tance of tokens to lower the significance of unimportant
words (e.g., auxiliary words); finally, a comparison function
is employed to yield the final comparison vectors.

Aggregation Layer. In this layer, we employ a one-layer
Convolutional Neural Network (CNN) to find the important
matching features and aggregate them into a fixed-length
matching vector to feed as the input of the prediction layer.

Prediction Layer. This layer is to evaluate the probability
distribution p(y|P,Q) based on the matching features gener-
ated by the aggregation layer. We employ a two-layer High-
wayNet (Srivastava, Greff, and Schmidhuber 2015) followed

8173



by a softmax function. For ER task, the final prediction
contains two values, and each indicates the probability of
match/non-match.

We will elaborate on the first three layers in the following
subsections.

Figure 2: An excerpt from Amazon-Google dataset’s ER-
Graph. Green parallelogram nodes denote entity records,
and red circular nodes denote attributes, while others are to-
ken nodes.

Entity Record Graph Convolutional Networks
(ER-GCN)

Entity Record Graph (ER-Graph). We build an entity
record graph to model schematic and structural information
that can be easily adapted to graph convolution. An ER-
Graph G can be formally denoted as G = (V,E), where V is
the node set and E is the edge set. The number of nodes (i.e.,
|V |) is the number of all entity records plus unique attribute
and unique tokens. As shown in Figure 2, there are con-
nections between record and attributes as well as attributes
and tokens as long as there exist inclusion relations between
them. At the token-level, tokens co-occurring in the same
sliding window (textual) or with similar numerical values
are also connected.

Formally, the weight of edge between node i and node j
is defined as

Ai,j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

IDFi,j i is record, j is attribute
TF-IDFi,j i is attribute, j is token
TSW(i, j) i, j are tokens
1 i = j

0 otherwise

(1)

where TSW(i, j) is the type-sensitive weight function to
compute the edge weight between i, j considering the data
type t(i) and t(j), which is defined as

TSW(i, j) =

⎧⎪⎨
⎪⎩

PPMI(i, j) t(i), t(j) are textual
max(0, 1− 2∗|i−j|

i+j ) t(i), t(j) are numerical
0 otherwise

(2)

The PPMI value is the positive point-wise mutual infor-
mation of token i and j, which is computed as

PPMI(i, j) = max

(
0, log

#(i, j) ·#W

#(i) ·#(j)

)
, (3)

where #(i, j) is the co-occurrences of i, j in sliding win-
dows over textual attributes, #W is the total number of slid-
ing windows, and #(i) and #(j) are the occurrences of i
and j, respectively.

A higher PPMI value indicates a higher semantic cor-
relation of tokens. Thus, for textual attributes, we employ
PPMI to weight the semantic correlation between words.
The PPMI weighting also enables our ER-GCN model to
mimic the behavior of conventional skip-gram model whose
objective is equivalent to implicitly factorizing a PPMI ma-
trix (Levy and Goldberg 2014).

For numerical type, we employ relative similarity to
weight numerical pairs, and simply cut-off the weights less
than 0 to exclude very different values from computation.

It is worth noting that, the adjacency matrix A is non-
negative and symmetric, indicating that it is strictly posi-
tive semi-definite, which is a necessity to perform Fourier
transform-based convolution on G.

Graph Convolutional Networks (GCNs). Given the ad-
jacent matrix A of graph G, the spectral convolutions (Bruna
et al. 2013) on G’s node feature matrix X ∈ R

n×m is de-
fined as

gθ ⊗X = UgθU
TX, (4)

where gθ denotes the convolution kernel, U is the eigen-
vectors of graph-Laplacian (commonly defined as L = I −
D− 1

2AD− 1
2 = UΛUT, where Dii =

∑
j Ai,j), and UTX

is the Fourier transform of X . Considering its computational
cost is expensive (O(n2) as the multiplican of eigenvectors),
we employ the layer-wise linear GCN (LGCN) (Kipf and
Welling 2017; Yao, Mao, and Luo 2019) instead, which has
a linear computational complexity with stellar results.

For each convolution layer, LGCN can capture informa-
tion within 1-hop neighbors, and information within i-hop
neighbors can be fetched by sequentially stacking i convo-
lution layers. ρ is an activation function, such as ReLU or
Leaky ReLU. The new k-dimensional node feature matrix
L(i) ∈ R

n×k of i-th layer is computed as

L(i) = ρ(ÃL(i−1)Θ(i)), (5)

where Ã = D− 1
2AD− 1

2 is the normalized symmetric adja-
cency matrix, and Θ(i) ∈ R

m×k is a weight matrix. Initially,
L(0) is an identity matrix, i.e., L(0) = I .

In our ER-GCN model, we employ a two-layer LGCN
with ReLU activation function, and the final node embed-
dings E can be computed as

E = ReLU(Ã ReLU(ÃIΘ(1))Θ(2)). (6)

This two-layer ER-GCN model enables that (1) since the
nodes belonging to a same record are at maximum 2-hop
away, information within a same record can be comprehen-
sively integrated; (2) although there are no direct record-
record links in the graph, information can still be exchanged
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among different records via token-attribute-record paths.
The above intuition is in accordance with our experimen-
tal results showing that two-layer GCN performs better than
other layer sizes.

Records Comparison via Hybrid Attention

The comparison layer consists of three steps: cross-
encoding, token gating, and comparison. Cross-encoding
aims to encode each token in P against Q (or encode Q
against P ) by an inter-attention mechanism. Token gating
use intra-attention to adaptively weight the importance of
tokens and allows tokens to be encoded by themselves ac-
cording to their importance. Finally, we use a comparison
function to generate a comparison vector by comparing en-
coded representation and the original representation.

Please note that, we make a bilateral matching (Wang,
Hamza, and Florian 2017), i.e., compare P with Q in two
directions (both P → Q and Q ← P ). To avoid the repeti-
tion, we only define our comparison method for one match-
ing direction P → Q in the following. The readers can infer
the reverse direction easily.

Cross-encoding via inter-attention. We feed two entity
records P = tP1 , t

P
2 , ..., t

P
|P | and Q = tQ1 , t

Q
2 , ..., t

Q
|Q|

into an ER-GCN to get their output embed-
dings EP = [eP1 ; e

P
2 ; ...; e

P
|P |]

T ∈ R
|P |×d, and

EQ = [eQ1 ; e
Q
2 ; ...; e

Q
|Q|]

T ∈ R
|Q|×d. The inter-attention

between the tPi and tQj can be computed by

αi,j =
exp(g(ePi 
 eQj ))∑|Q|
k=1 exp(g(e

P
i 
 eQk ))

, (7)

where g(X) = WTX + b is a linear layer, where W and b
are both parameters. 
 denotes the Hadamard product. The
inter-attention score is symmetric in P and Q.

Let αi = [αi,1;αi,2; ...;αi,|Q|] ∈ R
1×|Q| be the atten-

tion vectors of tPi against all tokens in Q, then tPi ’s cross-
encoding cPi ∈ R

1×d can be computed as the weighed sum
of EQ:

cPi = αiEQ. (8)

The cross-encoding of P is the concatenation of cPi

CP = [cP1 ; c
P
2 ; ...; c

P
|P |]

T. (9)

The intuition behind cross-encoding is that, if the seman-
tic of token tPi contained in Q, it could be restored to the
original state ePi by encoding Q, making cross-encoding
cPi similar to ePi . Thus, one can conclude if token i is
matched/mismatched by simply comparing cPi with ePi .

Token gating via intra-attention. Albeit cross-encoding
could represent the matching relations between tokens, it
is unable to weight the importance of a token itself. Com-
monly, the importance of a token in matching could be to-
tally different, for example, consider the DESCRIPTION at-
tribute of entities r2 and r3 in Table 1: “powerpoint 2004
upgrade mac” and “powerpoint 2004 mac by microsoft”.
Both “upgrade” and “by” mismatch in their counterparts.

However, “upgrade” is obviously more important than “by”
which is just an auxiliary word that can be neglected.

We use an intra-attention mechanism to adaptively weight
the importance of tokens. The intra-attention weights βP ∈
R

1×n are computed by

βP = σ(w2 tanh(W1E
T
P )), (10)

where σ(x) = 1
1+exp(−x) is the sigmoid function, W1 ∈

R
da×d and w2 ∈ R

1×da are parameters with hidden unit
numbers da, where da is a hyper-parameter we can set arbi-
trarily.

Based on intra-attention weights, the token gating yields
the gated encoding GP as a mixture of the cross-encoding
CP and the original encoding EP :

GP = BPCP + (I −BP )EP , (11)

where I denotes identity matrix, and 
 denotes the
Hadamard product, and BP is the diagonal matrix of βP :

BP =

⎡
⎢⎢⎢⎣
βP
1

βP
2

. . .
βP
|P |

⎤
⎥⎥⎥⎦ . (12)

Here intra-attention weights act as gate values to control
the degree to which original encoding is “mixed” into the
cross-encoding. For example, for auxiliary words, their gate
values would be likely low thus making it similar to its orig-
inal encoding.

Comparison. We employ subtraction function (Wang and
Jiang 2017) to compare EP with GP , and yield a compari-
son matrix M (P→Q) ∈ R

|P |×d:

M (P→Q) = (EP −GP )
 (EP −GP ). (13)

Eq. 13 implies the Euclidean distance between EP and
GP , where GP comes from the cross-encoding from Q.
Thus, if P is similar to Q, GP should be similar to EP ,
and subtraction function would yield a comparison matrix
with smaller element values (implies a smaller Euclidean
distance); if P is dissimilar to Q, the comparison function
will yield a matrix with larger element values (implies a
larger Euclidean distance).

Aggregation Layer

In aggregation layer, we employ a one-layer CNN to ag-
gregate the comparison matrix M (P→Q) into a fixed-length
matching vector r(P→Q):

r(P→Q) = CNN(M (P→Q)), (14)

where CNN(·) is a composite function consisting of four
cascaded operations: a convolutional operation, a 1-max-
over-time pooling operation (Kim 2014), a dropout opera-
tion, and a ReLU unit. The convolutional layer has w filter
widths and l filters, and each filter has the size of h × d (h
denotes the filter width), which is helpful to capture multi-
scale matching features (i.e., h-grams). The 1-max-pooling
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Table 2: Comparisons of our models with state-of-the-art models on entity resolution task. Except Magellan, we run all models
10 times and report mean ± standard deviation. The best results are marked in bold font.

Model Amazon-Google BeerAdvo-RateBeer
P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Magellan (Konda et al. 2016) 67.7 38.5 49.1 68.4 92.9 78.8
RNN (Mudgal et al. 2018) 59.33 ± 4.40 48.12 ± 6.06 52.77 ± 3.07 74.82 ± 4.48 70.00 ± 15.36 71.34 ± 7.53
Hybrid (Mudgal et al. 2018) 58.82 ± 5.43 64.02± 12.36 60.51 ± 4.73 73.44 ± 9.43 70.00 ± 8.11 71.08 ± 5.80
GraphER 69. 11± 1.70 67.13 ± 2.26 68.08 ± 1.50 79.34 ± 7.84 80.81 ± 5.41 79.71 ± 2.16

operation selects the largest value over the feature map of
a particular filter to capture the most important feature. The
output vector r(P→Q) has a fixed size 1× wl.

The final matching vector R ∈ R
1×2wl is generated by

concatenating the matching vectors of both P → Q and
Q→ P directions:

R = [r(P→Q); r(Q→P )]. (15)

Finally, we feed R into a two-layer fully-connected ReLU
HighwayNet to get the final ER decision.

Objective Function

The training objective is to minimize standard cross-entropy
loss:

φ = L(y, h(W,R)), (16)
where L(l, p) denotes cross-entropy function between l and
p. h(W,R) is the predicted distribution of the final predic-
tion layer, and y is the golden label.

Experimental Evaluation

In this section, we evaluated our model on entity resolution
task, and demonstrated its superiority over state-of-the-art
models.

Table 3: Statistics of the two datasets for experiments.

Datasets Table Sizes # Labeled # Pos. # Attr.
Amazon-Google (4344, 2999) 11460 962 3

BeerAdvo-RateBee (1362, 3225) 450 68 4

Evaluation Datasets and Metric

We used two datasets, each contains two tables, and a list
of golden matches. Following (Mudgal et al. 2018), the
golden matches lists is an after-blocking candidate set us-
ing (Konda et al. 2016). For both datasets, we use the same
3:1:1 train/dev/test split as in (Mudgal et al. 2018).Their de-
tailed statistics are summarized in Table 3.

• Amazon-Google contains software product data from
Amazon and Google (Köpcke, Thor, and Rahm 2010).
The tables contains 3 attributes: (TITLE, textual);
(MANUFACTURES, textual); (PRICE, numerical). At-
tribute TITLE commonly contains rich and important in-
formation (e.g., software version), which is descriptive
and contains a lot of synonyms across matching pairs.
Note that in this dataset, there are 135 records, over 962
positively labeled entities pairs (or roughly 14%), has

more than one matching records (maximum matching
records is 5).
• BeerAdvo-RateBeer contains beer product data from

BeerAdvo and RateBeer websites (Mudgal et al. 2018).
The tables contains 3 attributes: (BEER NAME, tex-
tual); (BREW FACTORY NAME, textual); (STYLE, tex-
tual); (ABV, numerical). This dataset is more cleaner and
shallower than Amazon-Google.

Following the previous research efforts, we reported pre-
cision (P), recall (R), and F1 score (F1) on test datasets.

Training Settings

For ER-GCN, the size of Θ(1) was set to |V | × 300, |V | was
the number of nodes in corresponding ER-Graph, and the
size of Θ(2) was 300 × 200. The textual window size was
set to 20. Token embeddings were initiallized using 300-
dimensional pretrained vectors of Glove1, while unknown
words were initialized with an embedding drawn from a uni-
form distribution U(−0.25, 0.25). All the weight matrices in
ER-GCN are initialized using Xavier initialization (Glorot
and Bengio 2010) with gain 1. da in Eq. 10 was set to 350.

For the CNN used in aggregation layer, we took three
filter widths [1, 2, 3], each filter width having 150 kernels.
For the final prediction layer, the number of hidden units of
HighwayNet is set to 4000.

For optimization, we used Adam (Kinga and Adam 2015)
with an initial learning rate 0.001, dropout rate as 0.5, and
the gradient clipping to 5; the batch size to be 32 and 3 for
Amazon-Google and BeerAdvo-RateBeer dataset, respec-
tively; all other hyper-parameters were their default values.

We trained the model for a maximum of 100 epochs, and
stopped training if the validation loss did not decrease by
10 consecutive epochs. Unless noted otherwise, we used the
same hyper-parameter settings in all the experiments.

Baselines

We compared our model GraphER with three existing
models, including two state-of-the-art DL-based models:
RNN (Mudgal et al. 2018), and Hybrid (Mudgal et al.
2018), and one state-of-the-art ML-based (non-DL) ER sys-
tem Magellan (Konda et al. 2016).

Main Results

Table 2 lists the results of our GraphER model compared
with state-of-the-art models on entity resolution task. To bet-

1https://nlp.stanford.edu/projects/glove/
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Table 4: Ablation study results compared with the full GraphER model.

Model Amazon-Google BeerAdvo-RateBeer
P (%) R (%) F1 (%) Δ F1 P (%) R (%) F1 (%) Δ F1

GraphER 69.11 67.13 68.08 - 79.34 80.81 79.71 -
- ER-GCN 66.72 49.61 56.91 -11.17 54.55 85.71 66.67 -13.04
- Cross-encoding 34.29 20.52 25.67 -42.41 50.00 28.57 36.36 -43.35
- Token-gating 68.64 64.53 66.52 -1.56 77.72 77.04 77.38 -2.33
- Pretrained embeddings 70.42 64.10 67.11 -0.97 79.30 75.83 77.53 -2.18

ter evaluate the perforamance and stability of the three DL-
based model – GraphER, RNN and Hybrid, we ran each
model 10 times and reported their mean ± standard devia-
tion. For the ML-based model Magellan, we directly used
performance reported in (Mudgal et al. 2018). From Table 2,
we can see that:

1) Our model stably outperformed all existing models
in terms of F1 score, achieving new state-of-the-art re-
sults on these two datasets. Compared with attribute-centric
models RNN and Hybrid, GraphER significantly outper-
formed them by 7.57 percentage points (pts) and 8.37 pts on
Amazon-Google and BeerAdvo-RateBeer dataset, respec-
tively. This demonstrates our ER-GCN and token-centric
strategy could greatly improve accuracy in matching entity
records and account for its better performance. Compare
with ML-based model Magellan, our model achieved 18.98
pts and 0.91 pt F1 improvements on the two datasets. This
demonstrate DL-based model could beat traditional ML-
based methods not only on semantically deep dataset but
also on clean and shallow dataset.

2) On Amazon-Google dataset, the three DL-based mod-
els (RNN, Hybrid and GraphER) performed much better
than the non-DL model Magellan. This is because the most
informative attribute is TITLE, which is descriptive and con-
tains a lot of synonyms across matching pairs. That is, they
are semantically similar but may have large string similar-
ity distance. Thus, it is better for DL-based models to cap-
ture semantic information on this dataset than feature-based
model Magellan which mainly relies on computing string
similarity. Among the three DL-based models, GraphER
achieved the best performance. This indicates our token-
centric representation and comparison strategy could cap-
ture fine-grained information within single (or few) infor-
mative attribute, which is helpful for information dilution
problem.

3) On BeerAdvo-RateBeer dataset, the performance of
the three DL-based models were not as better as on Amazon-
Google dataset. Especially, RNN and Hybrid performed
even worse than non-DL model Magellan. The reason lies
in the fact that all the textual attributes are clean and shal-
low in this dataset, and thus, the numerical attribute ABV as
an importance indicator makes more impact on final results.
RNN and Hybrid suffer more from heterogeneous attribute
types, since they do not distinguish different attribute types.
By contrast, our model performs better than Magellan indi-
cating our model could be type-sensitive and accounts for its
better performance.

Detailed Analysis

Ablation Study. To evaluate the contribution of ER-GCN,
cross-encoding, token-gating, and pretrained embeddings
components to final results, we conducted an ablation study
by ablating a specific component from the full model once
per test. The results are shown in Table 4. We can see that ab-
lation on ER-GCN results in roughly 12 pts performance de-
cline, which demonstrates the structural information is im-
portant and the ER-GCN layer is critical for model perfor-
mance. The biggest performance gap happened in remov-
ing the cross-encoding component. The main reason is the
model cannot effectively generate comparison features with-
out cross-encoding, which is critical for detecting matching
relation. Another observation is, there are only slight dif-
ferences after removing pretrained embeddings, and hence
demonstrates GraphER can achieve good result only us-
ing information in the target input dataset, without relying
on too much external information. From above we can con-
clude that these components contribute significantly to the
effectiveness of our model.

Table 5: Comparison of record-centric, attribute-centric and
token-centric comparison strategy.

Model Amazon-Google BeerAdvo-RateBeer
F1 (%) Δ F1 F1 (%) Δ F1

Record-centric 45.54 -22.54 57.27 -22.44
Attribute-centric 47.87 -20.21 52.55 -27.16
Token-centric 68.08 - 79.71 -

Effects of Token-centric Comparison Strategy. To anal-
ysis the effectiveness of our token-centric representation and
comparison strategy, we compare it with attribute-centric
and record-centric strategy by applying the same compari-
son layer but on different granularity. The results are shown
in Table 5. We can see that the token-centric strategy had a
huge advantage (more than 20 pts) over others. We believe it
is mainly caused by the information dilution problem when
compare the matching pair in attribute and record levels. An-
other possible reason is the cross-encoding and token-gating
operations are more suitable for token-centric comparison,
while it may entail errors in attribute and record levels where
soft-alignment are unnecessary. This again verified the ef-
fectiveness of our model.

Parameter Sensitivity. In order to test the efforts of
hyper-parameters on F1 scores, and offer an empirical way
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to tune its setting, we conducted a parameter sensitivity anal-
ysis. The results are shown in Fig. 3.
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(a) F1 v.s. different number of
GCN layers.
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(b) F1 v.s. different embedding
dimensions.
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(c) F1 v.s. different filter width
ranges.
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(d) F1 v.s. different kernel sizes.

Figure 3: F1 scores by varying hyper-parameters on Dev set.

Fig. 3(a) shows F1 scores with different GCN layers depth
on Amazon-Google and BeerAdvo-RateBeer datasets. We
can see that the performance of two-layer GCN is slightly
better than single layer GCN, but there is a significant per-
formance drop after stacking more than 2 layers. This sug-
gests that single layer GCN could not fully integrate useful
information that outsides 1-hop neighbors, while stacking
too many layers will make the value of each node tend to
be the average over the entire graph under the influence of
Laplacian smoothing, which will entail too much noisy thus
will lower F1 score.

Fig. 3(b) depicts the F1 scores with different dimension of
the-first layer embeddings. We found that low dimensional
embeddings may not fit the model well, while high dimen-
sional embeddings do not effectively improve F1 scores and
may cost more training time. Thus, an appropriate dimen-
sion setting is among 200− 400.

Fig. 3(c) and Fig. 3(d) shows the F1 scores with different
ranges of filter width and kernel sizes. We can see that, solely
using 1-gram filter could not provide a good enough perfor-
mance for both datasets. This indicates consecutive n-gram
comparison features are important in identifying matching
pairs. Considering the extra computational cost brought by
a larger width range, a smaller range (e.g., 2 or 3) is prefer-
able. With the increase of the kernel size, F1 scores rise to
a peak region and then has a slow drop down. The most ap-
propriate kernel size is supposed to be among 150 - 350, and
further, considering the training cost, we choose 150 as our
setting.

Related Works

Existing works can be broadly classified into three cate-
gories: rule-based solutions, crowd-based solutions, and ma-
chine learning (ML) based solutions.

Rule-based solutions either rely on predefined declarative
matching rules such as DNF (Hernández and Stolfo 1995;
Arasu, Ré, and Suciu 2009) or dynamically synthesized en-
tity matching rules (Singh et al. 2017) to find matching pairs.
Rule-based solution is easily interpretable, however, heavily
relying on domain experts and lacking enough flexibilities
to handle heterogeneous data schema.

To alleviate the drawbacks of rule-based solutions, crowd-
based solutions (Wang et al. 2012; Firmani, Saha, and
Srivastava 2016) have been proposed to employ crowd-
sourcing workers to manually identify matching tuples.
However, the human labor cost is extremely expensive.

ML-based solutions try to automatically learn match-
ing functions (Bilenko and Mooney 2003) with limited an-
notations. Traditional ML-based approaches mostly design
different similarity measures (e.g., jaccard similarity, ED-
distance) (Konda et al. 2016), and then train a classifier
on top of similarity features, such as SVM (Bilenko and
Mooney 2003), activate learning (Sarawagi and Bhamidi-
paty 2002), or clustering-based classifier (Cohen and Rich-
man 2002). In order to further refine the quality of learned
matching functions, some other works (Stonebraker et al.
2013; Gokhale et al. 2014) leverage human experts to guide
the learning process.

Most recent efforts (Thirumuruganathan, Tang, and Ouz-
zani 2018) have sought deep learning (DL) techniques for
better attribute representation. Ebraheem et al. (2018) pro-
posed a DL-based ER system DeepER, which represents
each attribute as the aggregation of its words’ representa-
tions using RNN and LSTM. Another DL-based ER model
DeepMatcher (Mudgal et al. 2018) used a bidirectional
RNN with attention mechanism for attribute summariza-
tion. The decoding steps for both DeepER and DeepMatcher
are similar: compare attribute representations using vari-
ous comparison functions (e.g., cosine similarity, element-
wise subtraction etc.), and then employ a dense layer to
get the ER decision on top of attribute-level comparison
features. The advantage of DL-based approaches is that
they can capture semantic similarity better especially for
textual attributes. Another closely related task is unstruc-
tured matching (e.g., QA-matching) (Wang and Jiang 2017;
Wang, Hamza, and Florian 2017). Since the important struc-
tural information are neglected by those methods, their per-
formance on ER task is commonly not competitive to specif-
ically designed ER models.

Existing DL-based ER models are attribute-centric, which
need to manually align schema for different data sources,
and too coarse-grained to capture subtle key information. By
contrast, our work is the first effort to perform ER task in a
token-centric manner with the help of GCN.

Conclusion

In this paper, we propose a new token-centric paradigm for
DL-based ER model. Instead of representing and compar-
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ing entity records in attribute-level, our model first integrate
schematic and structural information into token representa-
tions with ER-GCN, and the final ER decisions are fetched
by directly aggregating token-level comparison features.
Compared with the best state-of-the-art models, our model
gains a 7.57 pts and 0.91 pt improvements on Amazon-
Google and BeerAdvo-RateBeer dataset, respectively.
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potti, P.; Quiané-Ruiz, J.-A.; Solar-Lezama, A.; and Tang,
N. 2017. Synthesizing entity matching rules by examples.
VLDB 11(2):189–202.
Srivastava, R. K.; Greff, K.; and Schmidhuber, J. 2015.
Highway networks. In ICML.
Stonebraker, M.; Bruckner, D.; Ilyas, I. F.; Beskales, G.;
Cherniack, M.; Zdonik, S. B.; Pagan, A.; and Xu, S. 2013.
Data curation at scale: The data tamer system. In CIDR.
Thirumuruganathan, S.; Tang, N.; and Ouzzani, M. 2018.
Data curation with deep learning [vision]: Towards self driv-
ing data curation. arXiv preprint arXiv:1803.01384.
Wang, S., and Jiang, J. 2017. A compare-aggregate model
for matching text sequences. In ICLR.
Wang, J.; Kraska, T.; Franklin, M. J.; and Feng, J.
2012. Crowder: Crowdsourcing entity resolution. VLDB
5(11):1483–1494.
Wang, Z.; Hamza, W.; and Florian, R. 2017. Bilateral multi-
perspective matching for natural language sentences. In IJ-
CAI, 4144–4150. AAAI Press.
Yao, L.; Mao, C.; and Luo, Y. 2019. Graph convolutional
networks for text classification. In AAAI, volume 33, 7370–
7377.

8179


