
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

ICD Coding from Clinical Text Using
Multi-Filter Residual Convolutional Neural Network

Fei Li,1 Hong Yu1,2,3,4

1Department of Computer Science, University of Massachusetts Lowell, Lowell, MA, United States
2Center for Healthcare Organization and Implementation Research,

Bedford Veterans Affairs Medical Center, Bedford, MA, United States
3Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States

4School of Computer Science, University of Massachusetts, Amherst, MA, United States
{fei li, hong yu}@uml.edu

Abstract

Automated ICD coding, which assigns the International Clas-
sification of Disease codes to patient visits, has attracted
much research attention since it can save time and labor for
billing. The previous state-of-the-art model utilized one con-
volutional layer to build document representations for pre-
dicting ICD codes. However, the lengths and grammar of text
fragments, which are closely related to ICD coding, vary a
lot in different documents. Therefore, a flat and fixed-length
convolutional architecture may not be capable of learning
good document representations. In this paper, we proposed a
Multi-Filter Residual Convolutional Neural Network (Mul-
tiResCNN) for ICD coding. The innovations of our model
are two-folds: it utilizes a multi-filter convolutional layer
to capture various text patterns with different lengths and a
residual convolutional layer to enlarge the receptive field. We
evaluated the effectiveness of our model on the widely-used
MIMIC dataset. On the full code set of MIMIC-III, our model
outperformed the state-of-the-art model in 4 out of 6 evalua-
tion metrics. On the top-50 code set of MIMIC-III and the full
code set of MIMIC-II, our model outperformed all the exist-
ing and state-of-the-art models in all evaluation metrics. The
code is available at https://github.com/foxlf823/Multi-Filter-
Residual-Convolutional-Neural-Network.

Introduction

The International Classification of Diseases (ICD), which
is organized by the World Health Organization, is a com-
mon coding method used in various healthcare systems
such as hospitals. It includes many pre-defined ICD codes
which can be assigned to patients’ files such as electronic
health records (EHRs). These codes represent diagnostic
and procedural information during patient visits. Healthcare
providers and insurance companies need these information
to diagnose patients and bill for services (Bottle and Aylin
2008). However, manual ICD coding has been demonstrated
to be labor-consuming and costly (O’malley et al. 2005).

The research community has investigated a number of ap-
proaches for automated ICD coding, including the models
based on both traditional machine learning (Perotte et al.
2013; Kavuluru, Rios, and Lu 2015) and deep learning (Shi

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Table 1: Examples of clinical text fragments and their corre-
sponding ICD codes.

998.32: Disruption of external operation wound
... wound infection, and wound breakdown ...
428.0: Congestive heart failure
... DIAGNOSES: 1. Acute congestive heart failure
2. Diabetes mellitus 3. Pulmonary edema ...
202.8: Other malignant lymphomas
... a 55 year-old female with non Hodgkin’s lymphoma
and acquired C1 esterase inhibitor deficiency ...
770.6: Transitory tachypnea of newborn
... Chest x-ray was consistent with transient tachypnea
of the newborn ...
424.1: Aortic valve disorders
... mild aortic stenosis with an aortic valve area of
1.9 cm squared and 2+ aortic insufficiency ...

et al. 2017; Xie and Xing 2018). In terms of data, prior work
utilized different domains of data such as radiology reports
(Pestian et al. 2007) and death certificates (Koopman et al.
2015), and different modal data such as structured (Perotte
et al. 2013) and unstructured text (Scheurwegs et al. 2017).
Moreover, some previous work adopted full ICD codes to
perform this task (Baumel et al. 2018) while other work
adopted partial codes (Xu et al. 2018). Due to such situa-
tion, it is difficult to directly compare different work. In this
paper, we followed the line of predicting ICD codes from un-
structured text of the MIMIC dataset (Johnson et al. 2016),
because it is widely studied and publicly available.

The state-of-the-art model for this line of work is the com-
bination of the convolutional neural network (CNN) and the
attention mechanism (Mullenbach et al. 2018). However,
this model only contains one convolutional layer to build
document representations for subsequent layers to predict
ICD codes. As shown in Table 1, ICD-related text spans and
patterns vary in different examples. Therefore, it may not be
sufficient to learn decent document representations from a
flat and fixed-length convolutional architecture.

In this paper, we proposed a Multi-Filter Residual
Convolutional Neural Network (MultiResCNN) for ICD
coding using clinical discharge summaries. Our Mul-

8180



tiResCNN model is composed of five layers: the input
layer leverages word embeddings pre-trained by word2vec
(Mikolov et al. 2013); the multi-filter convolutional layer
consists of multiple convolutional filters (Kim 2014);
the residual convolutional layer contains multiple residual
blocks (He et al. 2016); the attention layer keeps the inter-
pretability for the model following (Mullenbach et al. 2018);
the output layer utilizes the sigmoid function to predict the
probability of each ICD code.

Our main contribution is that we proposed a novel CNN
architecture that combines the multi-filter CNN (Kim 2014)
and residual CNN (He et al. 2016). The advantages are
two-folds: MultiResCNN not only captures various text pat-
terns with different lengths via the multi-filter CNN, but
also enlarges the receptive field1 (Garcia and Delakis 2004)
via the residual CNN. Thus, our model can benefit from
rich patterns, the large receptive field and deep architec-
ture. Such method has achieved great success in natural lan-
guage processing (Vaswani et al. 2017) and computer vision
(Krizhevsky, Sutskever, and Hinton 2012).

To evaluate our model, we employed the MIMIC dataset
(Johnson et al. 2016) which has been widely used for au-
tomated ICD coding. Compared with 5 existing and state-
of-the-art models (Perotte et al. 2013; Prakash et al. 2017;
Shi et al. 2017; Baumel et al. 2018; Mullenbach et al. 2018),
our model outperformed them in nearly all the evaluation
metrics (i.e., macro- and micro-AUC, macro- and micro-
F1, precision at K). Concretely, in the MIMIC-III experi-
ment using full codes, our model outperformed these mod-
els in macro-AUC, micro-F1 and precision at 8 and 15.
In the MIMIC-III experiment using top-50 codes and the
MIMIC-II experiment using full codes, our model outper-
formed these models in all evaluation metrics. Moreover,
hyper-parameter tuning experiments show that the multi-
filter and residual convolutional layers help our model to
improve its performance significantly.

Related Work

To the best of our knowledge, the earliest work of automated
ICD coding was proposed by Larkey and Croft (1996). They
combined three classifiers, K-nearest-neighbor, relevance
feedback and Bayesian independence, to assign ICD9 codes
to inpatient discharge summaries. However, their method
only assigns one code to each discharge summary. Pestian et
al. (2007) organized a shared task of assigning ICD-9 codes
to radiology reports and their task requires models to assign
a large set of codes to each report.

Early work usually used supervised machine learning
approaches for ICD coding. Perotte et al. (2013) lever-
aged “flat” and “hierarchical” Support Vector Machines
(SVMs) for automatically assigning ICD9 codes to the dis-
charge summaries of the MIMIC-II repository (Johnson et
al. 2016). Their results show that the hierarchical SVM
performs better than the flat one. Kavuluru et al. (2015)
used the unstructured text in 71,463 EMRs, which come
from the University of Kentucky Medical Center, to evalu-
ate supervised learning approaches such as multi-label clas-

1http://cs231n.github.io/convolutional-networks/

sification and learning to rank for the ICD9 code assign-
ment. Koopman et al. (2015) employed the SVM to identify
cancer-related causes of death from 447,336 death certifi-
cates. Their model is cascaded: the first one identified the
presence of cancer and the second identified the type of can-
cer according to the ICD-10 classification system. Scheur-
wegs et al. (2017) evaluated coverage-based feature selec-
tion methods and Random Forests on seven medical special-
ties for ICD9 code prediction and two for ICD10, incorpo-
rating structured and unstructured text.

With the development of deep learning, researchers also
explored neural networks for this task. Shi et al. (2017) uti-
lized the long short-term memory (LSTM) and attention
mechanism for automated ICD coding from diagnosis de-
scriptions. Xie and Xing (2018) also adopted the LSTM but
they introduced the tree structure and adversarial learning
to utilize code descriptions. Prakash et al. (2017) exploited
condensed memory neural networks and evaluated it on the
free-text medical notes of the MIMIC-III dataset. Baumel
et al. (2018) proposed a hierarchical gated recurrent unit
(GRU) network, which encodes sentences and documents
with two stacked layers, to assign multiple ICD codes to
discharge summaries of the MIMIC II and III datasets. Mul-
lenbach et al. (2018) incorporated the convolutional neural
network (CNN) with per-label attention mechanism. Their
model achieved the state-of-the-art performance among the
work using only unstructured text of the MIMIC dataset. Xu
et al. (2018) built a hybrid system that includes the CNN,
LSTM and decision tree to predict ICD codes from unstruc-
tured, semi-structured and structured tabular data. In addi-
tion, Lipton et al. (2015) utilized LSTMs to predict diagnos-
tic codes from time series of clinical measurements, while
our work focuses on text data.

Method

In this section, we will introduce our Multi-filter Residual
Convolutional Neural Network (MultiResCNN), whose ar-
chitecture is shown in Figure 1. Throughout this paper, we
employed the following notation rules: matrices are written
as italic uppercase letters (e.g., X); vectors and scalars are
written as italic lowercase letters (e.g., x).

Input Layer

Our model leverages a word sequence w = {w1, w2, ..., wn}
as input, where n denotes the sequence length. Assuming
that Ẽ denotes the word embedding matrix, which is pre-
trained via word2vec (Mikolov et al. 2013) from the raw
text of the dataset. A word wn will correspond to a vector
en by looking up Ẽ. Therefore, the input will be a matrix
E = {e1, e2, ..., en} ∈ R

n×de

.

Multi-Filter Convolutional Layer

To capture the patterns with different lengths, we leveraged
the multi-filter convolutional neural network (Kim 2014),
where each filter has a different kernel size (i.e., word win-
dow size). Assuming we have m filters f1, f2, ..., fm and
their kernel sizes denote as k1, k2, ..., km. Therefore, m 1-

8181



�

�� ��

�������	�


����������

�

�

�
	

�

�

�

�
��

�










�������	�


����������


����������
����������

�������

��������

��������

�

�� �

��� ��

�

��	�����

�

Figure 1: The architecture of our MultiResCNN model.
“Conv1d” represents the 1-dimensional convolution, “Res-
Block” represents the residual block, “⊕” represents the
concatenation operation and “⊗” represents the matrix mul-
tiplication. Here we use orange and green for U and W to
denote they are learnable parameters, and to distinguish with
other matrices (e.g., H) which are not parameters.

dimensional convolutions can be applied to the input matrix
E. The convolutional procedure can be formalized as:

H1 = f1(E) =

n∧

j=1

tanh(WT
1 Ej:j+k1−1),

...

Hm = fm(E) =

n∧

j=1

tanh(WT
mEj:j+km−1),

(1)

where
n∧

j=1

indicates the convolutional operations from left

to right. Here we forced the row number n of the output
H1 or Hm ∈ R

n×df

to be the same as that of the input E,
because we aimed to keep the sequence length unchanged
after convolution. It is simple to implement such goal, e.g.,
setting the kernel size, padding and stride as k, floor(k/2)
and 1. df indicates the out-channel size of a filter and every
filter has the same output size.

Moreover, Ej:j+k1−1 ∈ R
k1×de

and Ej:j+km−1 ∈
R

km×de

indicate the sub-matrices of E, starting from the
j-th row and ending at the j + k1 − 1 or j + km − 1 row.
W1 ∈ R

(k1×de)×df

and Wm ∈ R
(km×de)×df

indicate the
weight matrices of corresponding filters. Throughout this
paper, the biases of all layers are ignored for conciseness.
The overview of a 1-dimensional convolution filter fm is
shown in Figure 2.

�� ��

��

��

�� ��� �����

�

��

����� �������

� �

	

�

�

��


��

��

Figure 2: The architecture of a 1-dimensional convolution
filter fm. “⊕” represents the concatenation operation and
“⊗” represents the matrix multiplication.

����

�

�������	
���	


�������	
���	� �������	
���	�



����

��	

Figure 3: The architecture of a residual block rmi. “+” rep-
resents the element-wise addition.

Residual Convolutional Layer

On top of each filter in the multi-filter convolutional layer,
there is a residual convolutional layer which consists of p
residual blocks (He et al. 2016). Take the m-th filter as an
example, the computational procedure of its corresponding
residual blocks rm1, rm2, ..., rmp can be formalized as:

1: X = Hm

2: for i = 1 to p do
3: Hmi = rmi(X)
4: X = Hmi

5: return Hmp

For the residual block rmi (Figure 3), it consists of three
convolutional filters, namely rmi1 , rmi2 and rmi3 . The com-
putational procedure can be denoted as:

8182



X1 = rmi1(X) =

n∧

j=1

tanh(WT
mi1X

j:j+km−1),

X2 = rmi2(X1) =

n∧

j=1

WT
mi2X

j:j+km−1
1 ,

X3 = rmi3(X) =

n∧

j=1

WT
mi3X

j:j ,

Hmi = tanh(X2 +X3),

(2)

where
n∧

j=1

indicates the convolutional operations. X denotes

the input matrix of this residual block and Xj:j+km−1 ∈
R

km×di−1

indicate the sub-matrices of X , starting from the
j-th row and ending at the j + km − 1 row. Hmi ∈ R

n×di

denotes the output matrix of the residual block. di−1 and
di denote the in-channel and out-channel sizes of this resid-
ual block. Therefore, the in-channel size of the first residual
block rm1 should be df and the out-channel size of the last
residual block rmp is defined as dp. Similar with the multi-
filter convolutional layer, we let the row numbers of Hmi as
well as X1, X2 and X3 ∈ R

n×di

be n, which is identical to
that of the input X .

Moreover, Wmi1 ∈ R
(km×di−1)×di

, Wmi2 ∈
R

(km×di)×di

and Wmi3 ∈ R
(1×di−1)×di

denote the
weight matrices of the three convolutional filters, rmi1 , rmi2
and rmi3 . Thereinto, rmi1 and rmi2 have the same kernel
size km with the corresponding filter fm in the multi-filter
convolutional layer, but they have different in-channel sizes.
rmi3 is a special convolutional filter whose kernel size is 1.

Because the m-th filter fm in the multi-filter con-
volutional layer corresponds to p residual blocks
rm1, rm2, ..., rmp in the residual convolutional layer,
we employed the output Hmp ∈ R

n×dp

of the p-th residual
block rmp as the output of these residual blocks. Since
there are totally m filters in the multi-filter convolutional
layer, the final output of the residual convolutional layer is
a concatenation of the output of m residual blocks, namely
H = H1p ⊕H2p...Hmp ∈ R

n×(m×dp).

Attention Layer

Following Mullenbach et al. (2018), we employed the per-
label attention mechanism to make each ICD code attend to
different parts of the document representation H . The atten-
tion layer is formalized as:

A = softmax(HU),

V = ATH,
(3)

where U ∈ R
(m×dp)×l represents the parameter matrix

of the attention layer, A ∈ R
n×l represents the attention

weights for each pair of an ICD code and a word, V ∈
R

l×(m×dp) represents the output of the attention layer. Here
l denotes the number of ICD codes.

Output Layer

In the output layer, V is first fed into a linear layer followed
by the sum-pooling operation to obtain the score vector ŷ
for all ICD codes, and then the probability vector ỹ is cal-
culated from ŷ by the sigmoid function. This process can be
formalized as:

Y = VW,where Y ∈ R
l×l,

ŷ = pooling(Y ), where ŷi =

l∑

j=1

Yij ,

ỹ = sigmoid(ŷ),

(4)

where W ∈ R
(m×dp)×l is the weight matrix of the out-

put layer. For training, we treated the ICD coding task as a
multi-label classification problem following previous work
(McCallum 1999; Mullenbach et al. 2018). The training ob-
jective is to minimize the binary cross entropy loss between
the prediction ỹ and the target y:

L(w, y, θ) = −
l∑

j=1

yj log(ỹj) + (1− yj)log(1− ỹj), (5)

where w denotes the input word sequence and θ denotes
all the parameters. We utilized the back-propagation algo-
rithm and Adam optimizer (Kingma and Ba 2014) to train
our model.

Experiments

Datasets

MIMIC-III In this paper, we employed the third version
of Medical Information Mart for Intensive Care (MIMIC-
III) (Johnson et al. 2016) as the first dataset to evaluate
our models. Following Mullenbach et al. (2018), we used
discharge summaries, split them by patient IDs, and con-
ducted experiments using the full codes as well as the top-
50 most frequent codes. Finally, the MIMIC-III dataset us-
ing 8,921 ICD-9 codes consists of 47,719, 1,631 and 3,372
discharge summaries for training, development and testing
respectively. The dataset using top-50 codes has 8,067 dis-
charge summaries for training, 1,574 for development, and
1,730 for testing.

MIMIC-II Besides the MIMIC-III dataset, we also lever-
aged the MIMIC-II dataset to compare our models with the
ones in previous work (Perotte et al. 2013; Mullenbach et
al. 2018; Baumel et al. 2018). Follow their experimental set-
ting, there are 20,533 and 2,282 clinical notes for training
and testing, and 5,031 unique ICD-9 codes in the dataset.

Preprocessing Following previous work (Mullenbach et
al. 2018), the text was tokenized, and each token were trans-
formed into its lowercase. The tokens that contain no alpha-
betic characters were removed such as numbers and punc-
tuations. The maximum length of a token sequence is 2,500
and the one that exceeds this length will be truncated. We

8183



Table 2: Performance comparisons using different configurations in the multi-filter and residual convolutional layers. k denotes
the kernel sizes k1, k2, ..., km and p denotes the residual block number.

Model Config MIMIC-III, full codes MIMIC-III, top-50 codes
P@8 Micro-F1 Macro-F1 P@5 Micro-F1 Macro-F1

CNN k=9 0.706 0.508 0.053 0.590 0.592 0.519

MultiCNN
k=5,9,15 0.731 0.534 0.061 0.616 0.633 0.556
k=3,5,9,15,19 0.735 0.542 0.067 0.630 0.646 0.576
k=3,5,9,15,19,25 0.736 0.545 0.068 0.633 0.652 0.584

ResCNN
p=1 0.714 0.532 0.063 0.618 0.645 0.560
p=2 0.713 0.532 0.059 0.589 0.601 0.531
p=3 0.710 0.529 0.059 0.575 0.585 0.500

MultiResCNN k=3,5,9,15,19,25 0.741 0.561 0.073 0.638 0.673 0.608
p=1

utilized the scripts2 provided by Mullenbach et al. (2018)
for preprocessing.

Evaluation Metrics

To compare with previous work, we utilized different evalu-
ation metrics in different experiments. In the MIMIC-III ex-
periment using full ICD codes, we utilized macro-averaged
and micro-averaged AUC (area under the ROC, i.e., re-
ceiver operating characteristic curve), macro-averaged and
micro-averaged F1, precision at 8 (P@8) and precision at 15
(P@15). When computing macro-averaged AUC or F1, we
first computed the performance for each label and then av-
eraged them. When computing micro-averaged AUC or F1,
we considered every pair of a clinical note and a code as an
independent prediction. The precision at K (P@K) indicates
the proportion of the correctly-predicted labels in the top-K
predicted labels.

In the MIMIC-III experiment using the top-50 ICD codes,
we employed the P@5 besides macro-averaged and micro-
averaged AUC, macro-averaged and micro-averaged F1. In
the MIMIC-II experiment using full codes, we employed the
same evaluation metrics except that P@5 was changed to
P@8.

Hyper-parameter Tuning

Since our model has a number of hyper-parameters, it is in-
feasible to search optimal values for all hyper-parameters.
Therefore, some hyper-parameter values were chosen em-
pirically or following prior work (Mullenbach et al. 2018).
The word embedding size de is 100, the out-channel size df
of a filter in the multi-filter convolutional layer is 100, the
learning rate is 0.0001, the batch size is 16 and the dropout
rate is 0.2.

To explore a better configuration for the filter number m
and the kernel sizes k1, k2, ..., km in the multi-filter convo-
lutional layer, and the residual block number p in the resid-
ual convolutional layer, we conducted the following experi-
ments. First, we developed three variations:

• CNN, which only has one convolutional filter and is
equivalent to the CAML model (Mullenbach et al. 2018).

2https://github.com/jamesmullenbach/caml-mimic

• MultiCNN, which only has the multi-filter convolutional
layer.

• ResCNN, which only has the residual convolutional layer.

Then we tried several configurations for these models on
the development set of MIMIC-III using the full and top-50
code settings. The experimental results are shown in Table 2.
For each configuration, we tried three runs by initializing the
model parameters randomly. The results shown in the table
are the means of three runs. We selected such kernel sizes
since they do not only capture various text patterns from
different granularities, but also keeps the sequence length
unchanged after convolution (e.g., setting the padding and
stride sizes as floor(k/2) and 1). In addition, we pre-defined
the in-channel and out-channel sizes of residual blocks em-
pirically:

• p=1: d0=100, d1=50

• p=2: d0=100, d1=100, d2=50

• p=3: d0=100, d1=150, d2=100, d3=50

As shown in Table 2, MultiCNN performs better than
CNN. As the kernel number increases, the performance in-
creases consistently in both full and top-50 code settings.
The performance reaches a peak when the kernel sizes
are 3,5,9,15,19,25. Moreover, ResCNN also performs bet-
ter than CNN, but the difference is that the performances
deteriorate as the residual block number increases. ResCNN
achieves the best performance when the residual block num-
ber is 1. Therefore, we applied the best configuration of Mul-
tiCNN and ResCNN to MultiResCNN. The results show that
the performance of MultiResCNN was further improved af-
ter combining MultiCNN and ResCNN. Therefore, we kept
such configuration in other experiments.

Baselines

CAML & DR-CAML The Convolutional Attention net-
work for Multi-Label classification (CAML) was proposed
by Mullenbach et al. (2018). It has achieved the state-of-the-
art results on the MIMIC-III and MIMIC-II datasets among
the models using unstructured text. It consists of one convo-
lutional layer and one attention layer to generate label-aware
features for multi-label classification (McCallum 1999). The

8184



Table 3: MIMIC-III results (full codes). The results of MultiResCNN are shown in means ± standard deviations.
AUC F1 P@K

Model Macro Micro Macro Micro 8 15
CAML (Mullenbach et al. 2018) 0.895 0.986 0.088 0.539 0.709 0.561
DR-CAML (Mullenbach et al. 2018) 0.897 0.985 0.086 0.529 0.690 0.548

MultiResCNN 0.910 0.986 0.085 0.552 0.734 0.584
±0.002 ±0.001 ±0.007 ±0.005 ±0.002 ±0.001

Table 4: MIMIC-III results (top-50 codes). The results of MultiResCNN are shown in means ± standard deviations.
AUC F1

Model Macro Micro Macro Micro P@5
C-MemNN (Prakash et al. 2017) 0.833 - - - 0.420
C-LSTM-Att (Shi et al. 2017) - 0.900 - 0.532 -
CAML (Mullenbach et al. 2018) 0.875 0.909 0.532 0.614 0.609
DR-CAML (Mullenbach et al. 2018) 0.884 0.916 0.576 0.633 0.618

MultiResCNN 0.899 0.928 0.606 0.670 0.641
±0.004 ±0.002 ±0.011 ±0.003 ±0.001

Description Regularized CAML (DR-CAML) is an exten-
sion of CAML and incorporates the text description of each
code to regularize the model.

C-MemNN The Condensed Memory Neural Network
was proposed by Prakash et al. (2017), which equips the
neural network with iterative condensed memory representa-
tions. The model achieved competitive results to predict the
top-50 ICD codes for the medical notes in the MIMIC-III
dataset.

C-LSTM-Att Shi et al. (2017) proposed a Character-
aware LSTM-based Attention model to assign ICD codes to
clinical notes. They employed LSTM-based language mod-
els to generate representations of clinical notes and ICD
codes, and proposed an attention method to address the mis-
match between notes and codes. They also focused on pre-
dicting the top-50 ICD codes for the medical notes in the
MIMIC-III dataset.

SVM Perotte et al. (2013) experimented two approaches:
one treats each ICD9 code independently (flat SVM) and the
other uses the hierarchical nature of ICD9 codes (hierarchy
SVM). Their results show that the hierarchy SVM performs
better than the flat one, yielding 29.3% f1-measure in the
MIMIC-II dataset.

HA-GRU Baumel et al. (2018) presented a model named
Hierarchical Attention Gated Recurrent Unit (HA-GRU) for
automatic ICD coding of clinical documents. HA-GRU in-
cludes two main layers: the first one encodes sentences and
the second one encodes documents. They reported their re-
sults in the MIMIC-II dataset, following the data split from
Perotte et al. (2013).

Results

In this section, we compared our model with existing work
for automated ICD coding. We ran our model three times for
each experiment and each time we used different random
seeds for parameter initialization. The final results are the

means and standard deviations of three runs. Following prior
work (Mullenbach et al. 2018), we compared our model with
existing work using the MIMIC-III and MIMIC-II dataset.
For the MIMIC-III dataset, we also performed the compar-
isons with two experimental settings, namely using the full
codes and top-50 codes. For the MIMIC-II dataset, only the
full codes were employed.

MIMIC-III Results (full codes) As shown in Table 3, we
can see that our model obtained better results in the macro-
AUC, micro-F1, precision@8 and precision@15, compared
with the state-of-the-art models, CAML and DR-CAML.
Our model improved the macro-AUC by 0.013, the micro-
F1 by 0.013, the precision@8 by 0.025, the precision@15
by 0.023. In addition, our model achieved comparable per-
formance on the micro-AUC and a slightly worse macro-F1.
More importantly, we observed that our model is able to at-
tain stable good results from the standard deviations.

MIMIC-III Results (top-50 codes) From Table 4, we
observed that our model outperformed all the baselines,
namely C-MemNN (Prakash et al. 2017), C-LSTM-Att (Shi
et al. 2017), CAML and DR-CAML (Mullenbach et al.
2018), in all evaluation metrics. Our model improves the
macro-AUC, micro-AUC, macro-F1, micro-F1 and preci-
sion@5 by 0.015, 0.012, 0.030, 0.037 and 0.023, respec-
tively. Our model outperformed the C-MemNN by 0.221 and
0.066 in precision@5 and macro-AUC. It also outperformed
the C-LSTM-Att by 0.138 and 0.028 in micro-F1 and micro-
AUC. Its precision@5 is 0.032 and 0.023 higher than those
of CAML and DR-CAML.

MIMIC-II Results (full codes) Table 5 shows the results
on the full code set of MIMIC-II. Perotte et al. (2013) used
the SVM to predict ICD codes from clinical text and their
method obtained 0.293 micro-F1. By contrast, our model
outperformed their method by 0.171 in micro-F1. Baumel
et al. (2018) utilized the attention mechanism and GRU
for automated ICD coding. Our model outperformed their
model by 0.098 in micro-F1. Our model also outperformed

8185



Table 5: MIMIC-II results (full codes). The results of MultiResCNN are shown in means ± standard deviations.
AUC F1

Model Macro Micro Macro Micro P@8
SVM (Perotte et al. 2013) - - - 0.293 -
HA-GRU (Baumel et al. 2018) - - - 0.366 -
CAML (Mullenbach et al. 2018) 0.820 0.966 0.048 0.442 0.523
DR-CAML (Mullenbach et al. 2018) 0.826 0.966 0.049 0.457 0.515

MultiResCNN 0.850 0.968 0.052 0.464 0.544
±0.002 ±0.001 ±0.002 ±0.002 ±0.007

Table 6: Analysis of the computational cost between CAML
and MultiResCNN. “m”, “s”, “ep” and “d” denote million,
second, epoch and document respectively.

CAML MultiResCNN
Parameter Amount 6.2m 11.9m
Training Time 438s/ep 1026s/ep
Training Epoch 85 26
Inference Speed 108.7d/s 70.9d/s

the state-of-the-art model, CAML or DR-CAML, by 0.024,
0.002, 0.003, 0.007 and 0.021 in all evaluation metrics.

Discussion

Computational Cost Analysis

In this section, we analyzed the computational cost between
the state-of-the-art model, CAML and our model, Mul-
tiResCNN. The analysis was conducted from four aspects,
namely the parameter amount, training time, training epoch,
inference speed. Our experimental settings are as follows.
For CAML, we used the optimal hyper-parameter setting
reported in their paper (Mullenbach et al. 2018). For Mul-
tiResCNN, we used six filters and 1 residual block, which
obtained the best result in our hyper-parameter tuning ex-
periments. The batch size, learning rate and dropout rate are
identical in every experiment. We used the training set and
development set of MIMIC-III (full codes) as experimen-
tal data. The experiments were conducted on NVIDIA Tesla
P40 GPUs. Training will terminate if the performance on the
development set does not increase for 10 times.

As shown in Table 6, the parameter of MultiResCNN is
approximately 1.9 times as many as that of CAML. The
training time of MultiResCNN is about 2.3 times more
than that of CAML. It is reasonable since MultiResCNN
has more filters and layers. Interestingly, MultiResCNN
needs much less epochs to converge. Considering the in-
ference speed, CAML is approximately 1.5 times faster
than MultiResCNN. Overall, the computational cost of Mul-
tiResCNN is larger than that of CAML, but we hold the
opinion that the increased cost is still acceptable.

Effect of Truncating Data

During preprocessing, we truncated the discharge sum-
maries that are longer than 2,500 tokens. To investigate the
effect of the length limitation, we further conducted the

experiments using 3,500, 4,500, 5,500 and 6,500. We se-
lected these values because the maximum length of the dis-
charge summaries in the development set is approximately
6,300. Results show that the performance differences be-
tween different settings are not significant. P@8 ranges be-
tween 0.736 and 0.741, and micro-F1 ranges between 0.557
and 0.566. 2,500 seems to be a decent selection considering
the tradeoff between performance and cost.

Limitations

In this study, the performance improvement mostly comes
from deep and diversified representations of text. In the fu-
ture, we will explore how to incorporate BERT (Devlin et al.
2019) into this task effectively and efficiently. In our prelimi-
nary experiments, BERT did not perform well due to the lim-
itations of hardware and its fixed-length context. Therefore,
potential solutions include recurrent Transformer (Dai et al.
2019) and hierarchical BERT (Zhang, Wei, and Zhou 2019).
Moreover, we chose the kernel sizes of the multi-filter layer
and channel sizes of the residual layer empirically, which
should be further studied and optimized in the future.

Conclusions

In this paper, we proposed a multi-filter residual convolu-
tional neural network for ICD coding. We conducted three
experiments on the widely-used MIMIC-III and MIMIC-II
datasets. Results show that our model achieved the state-
of-the-art performance compared with several competitive
baselines. We found that both multi-filter convolution and
residual convolution helped the performance improvement
with acceptable computational cost. This shows deep and
diversified text representations could benefit the ICD coding
from clinical text. Our model can be a strong baseline for
not only ICD coding, but also other text classification tasks.

Acknowledgments

This work was supported in part by the Center for Intelli-
gent Information Retrieval, R01DA045816, R01HL125089,
R01HL137794, R01HL135219, and R01LM012817. Any
opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect those of the sponsor.

References

Baumel, T.; Nassour-Kassis, J.; Cohen, R.; Elhadad, M.; and
Elhadad, N. 2018. Multi-label classification of patient notes:

8186



case study on icd code assignment. In Workshops at the
Thirty-Second AAAI Conference on Artificial Intelligence.
Bottle, A., and Aylin, P. 2008. Intelligent information: a
national system for monitoring clinical performance. Health
services research 43(1p1):10–31.
Dai, Z.; Yang, Z.; Yang, Y.; Carbonell, J.; Le, Q.; and
Salakhutdinov, R. 2019. Transformer-XL: Attentive lan-
guage models beyond a fixed-length context. In Proceedings
of the 57th Annual Meeting of the ACL, 2978–2988.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of deep bidirectional transformers for
language understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), 4171–4186. Minneapo-
lis, Minnesota: Association for Computational Linguistics.
Garcia, C., and Delakis, M. 2004. Convolutional face
finder: A neural architecture for fast and robust face detec-
tion. IEEE Transactions on pattern analysis and machine
intelligence 26(11):1408–1423.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Johnson, A. E.; Pollard, T. J.; Shen, L.; Li-wei, H. L.; Feng,
M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Celi, L. A.; and
Mark, R. G. 2016. Mimic-iii, a freely accessible critical care
database. Scientific data 3:160035.
Kavuluru, R.; Rios, A.; and Lu, Y. 2015. An empirical eval-
uation of supervised learning approaches in assigning diag-
nosis codes to electronic medical records. Artificial intelli-
gence in medicine 65(2):155–166.
Kim, Y. 2014. Convolutional neural networks for sen-
tence classification. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP), 1746–1751.
Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Koopman, B.; Zuccon, G.; Nguyen, A.; Bergheim, A.; and
Grayson, N. 2015. Automatic icd-10 classification of can-
cers from free-text death certificates. International journal
of medical informatics 84(11):956–965.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Pereira, F.; Burges, C. J. C.; Bottou, L.; and Wein-
berger, K. Q., eds., Advances in Neural Information Process-
ing Systems 25. Curran Associates, Inc. 1097–1105.
Larkey, L. S., and Croft, W. B. 1996. Combining classi-
fiers in text categorization. In SIGIR, volume 96, 289–297.
Citeseer.
Lipton, Z. C.; Kale, D. C.; Elkan, C.; and Wetzel, R. 2015.
Learning to diagnose with lstm recurrent neural networks.
arXiv preprint arXiv:1511.03677.
McCallum, A. 1999. Multi-label text classification with a
mixture model trained by em. In AAAI workshop on Text
Learning, 1–7.

Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In Advances in neural
information processing systems, 3111–3119.
Mullenbach, J.; Wiegreffe, S.; Duke, J.; Sun, J.; and Eisen-
stein, J. 2018. Explainable prediction of medical codes from
clinical text. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume
1 (Long Papers), 1101–1111.
O’malley, K. J.; Cook, K. F.; Price, M. D.; Wildes, K. R.;
Hurdle, J. F.; and Ashton, C. M. 2005. Measuring diagnoses:
Icd code accuracy. Health services research 40(5p2):1620–
1639.
Perotte, A.; Pivovarov, R.; Natarajan, K.; Weiskopf, N.;
Wood, F.; and Elhadad, N. 2013. Diagnosis code assign-
ment: models and evaluation metrics. Journal of the Ameri-
can Medical Informatics Association 21(2):231–237.
Pestian, J. P.; Brew, C.; Matykiewicz, P.; Hovermale, D. J.;
Johnson, N.; Cohen, K. B.; and Duch, W. 2007. A shared
task involving multi-label classification of clinical free text.
In Proceedings of the Workshop on BioNLP 2007: Biolog-
ical, Translational, and Clinical Language Processing, 97–
104. Association for Computational Linguistics.
Prakash, A.; Zhao, S.; Hasan, S. A.; Datla, V.; Lee, K.;
Qadir, A.; Liu, J.; and Farri, O. 2017. Condensed memory
networks for clinical diagnostic inferencing. In Thirty-First
AAAI Conference on Artificial Intelligence.
Scheurwegs, E.; Cule, B.; Luyckx, K.; Luyten, L.; and
Daelemans, W. 2017. Selecting relevant features from the
electronic health record for clinical code prediction. Journal
of biomedical informatics 74:92–103.
Shi, H.; Xie, P.; Hu, Z.; Zhang, M.; and Xing, E. P. 2017.
Towards automated icd coding using deep learning. arXiv
preprint arXiv:1711.04075.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. In Advances in neural information
processing systems, 5998–6008.
Xie, P., and Xing, E. 2018. A neural architecture for auto-
mated icd coding. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), 1066–1076.
Xu, K.; Lam, M.; Pang, J.; Gao, X.; Band, C.; Xie, P.; and
Xing, E. 2018. Multimodal machine learning for automated
icd coding. arXiv preprint arXiv:1810.13348.
Zhang, X.; Wei, F.; and Zhou, M. 2019. HIBERT: Document
level pre-training of hierarchical bidirectional transformers
for document summarization. In Proceedings of the 57th
Annual Meeting of the ACL, 5059–5069.

8187


