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Abstract

Cross-domain sentiment classification aims to leverage useful
knowledge from a source domain to mitigate the supervision
sparsity in a target domain. A series of approaches depend on
the pivot features that behave similarly for polarity prediction
in both domains. However, the engineering of such pivot fea-
tures remains cumbersome and prevents us from learning the
disentangled and transferable representations from rich se-
mantic and syntactic information. Towards learning the pivots
and representations simultaneously, we propose a new Trans-
ferable Pivot Transformer (TPT). Our model consists of two
networks: a Pivot Selector that learns to detect transferable n-
gram pivots from contexts, and a Transferable Transformer
that learns to generate domain-invariant representations by
modeling the correlation between pivot and non-pivot words.
The Pivot Selector and Transferable Transformer are jointly
optimized through end-to-end back-propagation. We experi-
ment with real tasks of cross-domain sentiment classification
over 20 domain pairs where our model outperforms prior arts.

Introduction

Despite the great progress achieved by previous works in
the area of Natural Language Processing (NLP), cross-
domain sentiment classification is still a challenging task.
The key challenge lies in that data from different domains
are drawn from different distributions, and there are a lot
of domain-specific words and expressions in practice. There
is a dilemma that domain-common words are usually not
discriminative enough for distinguishing sentiment polarity,
while many sentiment-words are domain-specific and can-
not transfer well across domains. Several techniques have
been proposed for sentiment domain adaptation. The aim
is to bridge the source and target domains by learning
domain-invariant feature representations so that a classifier
trained on a source domain can be adapted to another target
domain. In cross-domain sentiment classification, previous
works (Blitzer, Dredze, and Pereira 2007; Pan et al. 2010;
Wu and Huang 2016; Yu and Jiang 2016) mainly rely on
a basic intuition that non-pivot features could be aligned
with the help of pivot features. For sentiment classification,
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Blitzer et al. (2007) set up multiple pivot-prediction tasks to
induce a projected joint low-dimensional space that bridges
the domains, and these auxiliary tasks are highly correlated
with the sentiment classification task.

With the advances of deep learning in NLP, some early
studies explored deep models for sentiment domain adapta-
tion (Glorot, Bordes, and Bengio 2011; Chen et al. 2012)
by learning cross-domain representations to disentangle the
variational factors behind data. Recently, some works in-
tegrated pivot selection with deep models. Ziser and Re-
ichart (2016) presented the AE-SCL-SR model to marry
pivot based and autoencoder based approaches. They also in-
corporated the pivot to language modeling, and their PBLM
model (Ziser and Reichart 2018; 2019) yielded superior-
ity over many previous approaches. Despite their promising
results, they cannot learn pivots during training and com-
pletely depend on feature selection methods to engineer the
pivots, which may be discriminative for source domain task
but do not transfer well across domains. Further, these works
share another limitation: Akin to left-to-right language mod-
eling, the prediction task conditions on previous words in-
cluding pivots and non-pivots, which may not sufficiently
model the connections between pivot and non-pivot features.

How to detect pivots effectively still remains an important
challenge for sentiment domain adaptation. In this paper, we
propose the Transferable Pivot Transformer (TPT) for cross-
domain sentiment classification. TPT consists of two net-
works: one Pivot Selector for learning to find transferable n-
gram pivots, based on its mutual information and the uncer-
tainty of distinguishing them between domains, and another
Transferable Transformer for explicitly modeling the rela-
tionship between pivots and non-pivots. Unlike pivot engi-
neering, our pivot learning can be seamlessly combined with
representation learning, which enables end-to-end learning
of expressive pivots and representations from scratch. The
experiments conducted on a number of different source and
target domains show that our method achieves the best ac-
curacy compared with a number of strong baselines.

Related Work

Unsupervised Domain Adaptation: In the scenario of un-
supervised domain adaptation, we have access to labeled
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source samples and only unlabeled target samples. Unsu-
pervised representation learning with deep neural networks
(DNN) has been explored for feature adaptation (Glorot,
Bordes, and Bengio 2011; Chen et al. 2012). SDA (Glorot,
Bordes, and Bengio 2011) is the first work that automati-
cally learns feature representations of documents from large
amounts of data. Chen et al. (2012) proposed a Marginal-
ized Stacked Denoising Autoencoder (mSDA) to address the
speed and scalability problem of SDA for high-dimensional
data. Many recent works in vision problems extract domain-
invariant representations in deep models via explicit mini-
mization objectives (Tzeng et al. 2014; Long et al. 2015)
or adversarially learning the feature representations to con-
fuse a domain discriminator (Ganin and Lempitsky 2015;
Tzeng et al. 2015; Ganin et al. 2016; Long et al. 2018).
Pivot-based Domain Adaptation: The majority of feature
adaptation methods for sentiment analysis rely on a key
intuition that even though certain opinion words are com-
pletely distinct for each domain, they can be aligned if they
have a high correlation with some domain-invariant opin-
ion words. Blitzer et al. (2007) proposed a method based
on structural correspondence learning (SCL), which uses
pivot feature prediction to induce a projected feature space
that works well for both the source and the target domains.
Pan et al. (2010) proposed the Spectral Feature Alignment
(SFA) to find an alignment between pivots and non-pivots.
These methods are remarkable advances in sentiment do-
main adaptation, but the pivots are selected by statistical cri-
teria, thus the pivots cannot be learned by the model. Re-
cently, deep neural models are explored to automatically
produce superior real-valued feature representations. Yu and
Jiang (2016) borrow the idea of pivot prediction from SCL
and extend it to a neural network-based solution with aux-
iliary tasks. Ziser and Reichart (Ziser and Reichart 2018)
incorporate the pivot to language modeling, the proposed
PBLM and its improved version RF2 (Ziser and Reichart
2019) have demonstrated their superiority over a large num-
ber of previous approaches. Despite their promising results,
they still cannot learn to select pivots.

Some efforts have been initiated to learn pivots with em-
bedding based model. Li et al. (2017; 2018) incorporated at-
tention mechanism into domain-adversarial learning (Ganin
and Lempitsky 2015) to automatically identify the pivots.
This method opens a new door for selecting pivots with ad-
versarial attention. But the attention learns a weight for each
unigram pivot and fails to learn higher-order n-gram pivots
which play an important role in sentiment analysis (e.g. the
polarity of bigram not good is completely different from
unigram good). Similar problem was also studied in (Wang
et al. 2018), uncovering that attention is not capable of in-
ferring the dependency between words. In addition, attention
networks require pre-trained word embeddings. As pointed
out in recent research (He, Girshick, and Dollar 2018), pre-
training may not be necessary for many situations.
Uncertainty of Bayesian Deep Learning: Bayesian deep
learning offers a practical framework for understanding un-
certainty with deep models (Kendall and Gal 2017; Gal and
Ghahramani 2016). In Bayesian modeling, there are two
main types of uncertainty (Der Kiureghian and Ditlevsen

2009): aleatoric uncertainty and epistemic uncertainty. Both
of them can be estimated in regression and classification
tasks. Epistemic uncertainty can be explained away given
enough data and is often referred to as model uncertainty.
However, aleatoric uncertainty (or heteroscedastic uncer-
tainty specifically) depends on the model inputs and cannot
be explained away. It is worth modeling aleatoric uncertainty
in domain adaptation, since domain invariant features tend to
show higher domain uncertainty.

In this paper, we build a model to learn the pivots and
representations simultaneously. We envision the concept of
transferable pivot, and propose a new approach that uti-
lizes uncertainty (Grandvalet and Bengio 2004) to quantify
the transferability of pivots. Our model can be trained from
scratch not requiring external pre-trained word embeddings.

Approach

Notations and Model Overview

In this paper, we study sentiment classification in an unsu-
pervised domain adaptation setting. Considering in source

domain, we have a set of labeled data Dl
s = {xs

i , y
s
i }|n
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as well as some unlabeled data Du
s = {xs
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l
s+nu

s

i=nl
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, where

Ds = Dl
s ∪ Du

s . In a target domain, only a set of unlabeled
data Dt = {xt

i}|nt
i=1 is available. We utilize mutual infor-

mation (Blitzer, McDonald, and Pereira 2006) to initialize a
pivot set Vp with size np.

In this section, we present a new approach to sentiment
domain adaptation: Transferable Pivot Transformer (TPT).
As shown in Figure 1, the Pivot Selector (top right) learns
to detect transferable pivots while the Transferable Trans-
former jointly learns transferable representations with the
aid of the selected pivots. The ultimate goal is to build a
discriminative classifier on the final representations, that is
trained with labeled data Dl

s and generalize to the target do-
main.

Transferable Transformer

Previous work PBLM (Ziser and Reichart 2018) conducts
a representation learning procedure based on recurrent lan-
guage modeling. The difference is that the recurrent lan-
guage model aims to predict the next word conditioned on its
previous context, while PBLM predicts whether the next to-
ken is a pivot or not. However, this unidirectional language
model severely restricts the power of the model to capture
contextual cues. Furthermore, the pivots are predicted not
only by non-pivot words but also by pivot words, which
means that their pivot prediction task may not sufficiently
model the crucial relationship between the pivot and non-
pivot features. As a consequence, the model tends to learn
trivial features for pivot prediction.

To address these limitations, we propose the Transferable
Transformer which uses a multi-layer bidirectional Trans-
former (Vaswani et al. 2017) to learn transferable represen-
tations. We set up a masked-pivot prediction task, inspired
by BERT (Devlin et al. 2018), to establish the relation-
ship between pivots and non-pivots. Given a sequence U =
{u1, . . . , un}, we mainly mask the pivot tokens and keep the
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Figure 1: The architecture of the proposed Transferable Pivot Transformer (TPT). (left) Training objective used in Representa-
tion Learning with masked sequence as input. (right) Training Pivot Selector with original input.

remaining non-pivot ones unchanged in order to align the
non-pivots with the pivots more strictly. The model applies
a multi-head self-attention operation over the masked input
context tokens Ũ followed by position-wise feed-forward
layers, and the final hidden vectors corresponding to the
masked pivots are fed into an output softmax over the pivot
vocabulary Vp. Hence, masked cross-entropy is a natural
loss function to reason about all masked pivots included in
U :

Lpivot(Ũ) =
1∑
mi

n∑
i=1

mi · Lp(ŷ
p
i ,y

p
i ) (1)

where mi ∈ {0, 1} is the mask value and yp
i ∈

[0, 1, 2, ..., |Vp|] is the ground truth pivot index for the i-th
transformed input token (0 stands for NONE). Lp(ŷ

p
i ,y

p
i )

denotes the cross entropy loss for pivot prediction. Note that
mi and yp

i are the same for two consecutive words consti-
tuting a bigram pivot.

As explained in (Devlin et al. 2018), the main downside
of the bidirectional Transformer is the mismatch between
training and inference for the [MASK] tokens. Since the
masked pivots carry the most transferable and discrimina-
tive information for cross-domain classification, they must
be observed during inference time. In this paper, the training
scheme is designed as follows:

• For pivot words: most of the time are masked for predic-
tion, with a small probability to be kept unchanged.

• For non-pivot words: most of the time are kept unchanged,
with a small probability to be masked for prediction.

We also mask non-pivot tokens with a small probability,
which enables the model to distinguish pivot and non-pivot
tokens. The tokens for prediction may be replaced with a
[MASK] token, or a random token, or the token itself in a

predefined probability. Figure 1 provides an illustration of
Transferable Transformer. The model predicts the masked
pivots great and not bad which convey the relevant
sentiment-related information. Note that even though bad
is also a unigram pivot, it is regarded as a bigram pivot with
higher priority.

Pivot Selector

Pivot Selector is used to learn pivots that transfer better
across domains. The original SCL based on the traditional
discrete features can help identify the words carrying the
most significant sentiment signals in the source. Neverthe-
less, under the circumstance of adopting real-valued embed-
dings as word features in deep models, there is no guarantee
that the contextual features of selected words act similarly
in both domains. In this paper, we envision the idea of trans-
ferable pivot, as follows.
Definition 1 (Transferable Pivot) A transferable pivot is an
n-gram that behaves similarly for its contextual representa-
tion and discriminative learning in both domains.

More intuitively, when using the powerful embedding
based methods, it is very desirable to take the transferability
of contextual representations into account. The Pivot Selec-
tor addresses these issues by learning to select those trans-
ferable pivots. To study the characteristics of transferable
pivots, we visualize the Transformer contextual representa-
tions of some pivots and non-pivots in Figure 2. Similar to
many adversarial domain adaptation approaches, we utilize a
conditional domain discriminator learned to distinguish the
source from the target domains given a word w. Its error
function reflects well the discrepancy between feature con-
dition distributions P (f |w) and Q(f |w). It can be observed
that representations of pivots tend to show higher domain
classification uncertainty than non-pivots.
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book well interesting dvd funny

a. b.

Figure 2: Transferable pivots. Suppose from domain Books
(B filled with color) to domain DVDs (D not filled). (a)
Patterns of the same color indicate representations of same
word in different contexts from both domains. (b) The de-
cision boundary of Bayesian domain discriminator (con-
ditioned on specific word) separates non-pivot distribution
easily with lower variance estimated by Bayesian classifier
(indicated by the darkness of color) compared to pivot.

Motivation. These findings reveal that domain-invariant
features make it hard to tell which domain they are from
(intuitively shown in Figure 2). In other word, the domain
classifier will be uncertain for its predictions. It thus moti-
vates us to use the uncertainty of domain discriminator to
aid the learning of transferable pivots.
Domain Uncertainty: With new Bayesian deep learning
tools, it is possible to capture the uncertainty of deep mod-
els (Kendall and Gal 2017). In Bayesian modeling, there
are two main types of uncertainty (Der Kiureghian and
Ditlevsen 2009): epistemic uncertainty and aleatoric uncer-
tainty. On one hand, out-of-data examples that can be iden-
tified with epistemic uncertainty (model uncertainty) are
not suitable in this work since the model will be certain
for its predictions under transductive transfer setting, where
all data are available during training. On the other hand,
aleatoric uncertainty (data uncertainty) captures the noise
inherent in the observations which implies the domain un-
certainty of pivots. We set up our target to choose the pivot
such that it is discriminative with respect to sentiment la-
bel on the source domain while its contextual features are
domain-invariant enough to fool the discriminator.

We achieve this by introducing a Bayesian domain dis-
criminator D without propagating its gradient to the Trans-
former (top right of Figure 1). According to our definition,
we measure the domain discrepancy of a word’s context con-
ditioned on its word embedding, which may follow different
distributions. It may be better aligned by using a conditional
discriminator (Long et al. 2018). Given a sequence of input
tokens U = {u1, . . . , un}, we only compute the discrimina-
tor loss for pivot words indexed by its mask mi. The discrim-
inator D takes the contextual representation Ec

i as input with
its word embedding Ew

i as condition, where ⊗ is a multilin-
ear map that can be approximated by randomized methods
to avoid dimension explosion:[

fi, σ
2
i

]
= D(Ew

i ⊗Ec
i ) (2)

here fi, σ2
i are the Bayesian network outputs, where fi is

Algorithm 1 Pseudocode for the first stage of TPT
Require: Ds, Dt, Dval

Require: nstep = #steps to reduce np per epoch
Require: nmin = minimum size of Vp

for epoch=1 to max-epoch do
for min-batch Bs, Bt in Ds, Dt do

B̃s = MASK(Bs), B̃t = MASK(Bt)

compute loss Lpivot on B̃s ∪ B̃t

update transformer parameters
end for
if Lpivot converges on Dval and np > nmin then

compute loss Ldom on Ds ∪ Dt

update discriminator parameters
compute φ(w), w ∈ Vp on Dval

sort Vp with φ(w) in descending order
np = np − nstep

Ṽp ← {wi ∈ Vp, for i ∈ [1, np]}
end if

end for

the predictive mean of domain logit while σ2
i is the variance.

To model the aleatoric uncertainty, the scoring prediction is
given by a Gaussian distribution parameterized by fi, σ2

i :

d̂i,t = fi + σi ∗ εt, εt ∼ N (0, I) (3)

We need to maximize the expected log likelihood:

logEN(d̂i;fi,σ2
i )

[
δ(d̂i)

di(1− δ(d̂i))
1−di

]
(4)

where δ(·) is the sigmoid function, di ∈ {0, 1} is domain
label indicating source or target. As there is no analytic so-
lution to integrate out this Gaussian distribution, we approxi-
mate the objective through Monte Carlo integration (Kendall
and Gal 2017). The aleatoric uncertainty loss La(d̂i, di) is
then estimated as − log 1

T

∑
t

(
δ(d̂i,t)

di(1− δ(d̂i,t))
1−di

)
,

where T is the number of Monte Carlo Simulations. The
objective function of the Bayesian domain discriminator is
formulated as follows:

Ldom(U) =
1∑
mi

n∑
i=1

mi · La(d̂i, di) (5)

The aleatoric uncertainty is naturally derived from the pre-
dictive variance σ2

i of the discriminator. We define a new
function φ(·) incorporating both aleatoric uncertainty and
mutual information (MI) to quantify pivot transferability:

UN(w) =

∑
(ui=w) σ

2
i∑

i I (ui = w)
(6)

φ(w) = λ · ÛN(w) + M̂I(w) (7)

where λ is a hyper-parameter controlling the relative weight
of the two criteria to tradeoff discriminability and domain
uncertainty. ÛN(w) and M̂I(w) are standardized values re-
spectively to avoid numerical scale differences.
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TPT for Domain Adaptation

The above Transferable Transformer and Pivot Selector fi-
nally form our TPT (Transferable Pivot Transformer) model,
which learns transferable pivots and the representations si-
multaneously. The ultimate goal is to build a sentiment clas-
sifier, which can be trained on the labeled source data and
generalize well to the unlabeled target data. Like many pre-
vious unsupervised methods, TPT also follows a two-stage
training procedure to be detailed as follows.

In the first stage of representation learning, TPT is trained
with all data from the source and target domains. Algo-
rithm 1 illustrates the training procedure. Firstly, we divide
the whole data into training set and development set and
maintain the size of the pivot set during training. For each
epoch on training data, the discriminator is jointly trained
if the current pivot set size np is larger than the threshold
nmin and the pivot loss has converged on Dval. On devel-
opment data, we rank pivots from the original pivot set Vp

by computing φ(w) which forms a newly generated pivot
set Ṽp. The selected pivots Ṽp, presumed to be better aligned
in both domains, facilitate the Transferable Transformer to
learn domain-invariant representations by the masked-pivot
prediction task Lpivot. We stop this ranking process when
np is smaller than the predefined threshold nmin. In the
second stage, we feed the features from the Transferable
Transformer to predict sentiment polarity. To validate the
efficacy of the representations learned by TPT, we adopt
a one-layer text CNN classifier (Kim 2014) as it is used
in previous sentiment classification (Yu and Jiang 2016;
Ziser and Reichart 2018) tasks for a fair comparison.

Experiments and Results

Experimental Setup

To facilitate direct comparison with previous work we ex-
periment with the product review domains (Blitzer, Dredze,
and Pereira 2007) of – Books (B), DVDs (D), Electronic (E),
Kitchen (K) and airline services reviews (A) (20 ordered
domain pairs), replicating the experimental setup (Ziser
and Reichart 2018) (including baselines, design, and hyper-
parameter details). The airline service reviews have a larger
domain gap with the product reviews. There are 1000 posi-
tive and 1000 negative labeled reviews in each domain and
the remaining reviews form the unlabeled set. All the models
are trained with the data from the source and the unlabeled
data from the target. We test our model with 2000 labeled
target domain data. The experiments are conducted in three
setups: 12 domain pairs between amazon product datasets, 4
product to airline and 4 airline to product setups. The statis-
tics of datasets are summarized in table 1.

Implementation Details

In our implementation, we follow the same pivot selec-
tion criterion used by previous work (Ziser and Reichart
2018). For example, on each domain pair of Amazon Prod-
uct datasets, top 800 pivots ranked by mutual information
with sentiment label of source domain are kept as initialized
pivots for TPT and the minimum threshold nmin is set to

500. Due to the scale of our datasets, our Transferable Trans-
former is a 4-layer (128 or 256 dimensional self-attention
states) structure. For the position-wise feed-forward net-
works, the inner states are 4 times the size of self-attention
states. The word embedding matrix We and position embed-
ding matrix Wp are randomly initialized from a uniform dis-
tribution U [−0.2, 0.2]. We use 50 Monte Carlo integration
samples and keep fixing λ = 0.1 throughout all experiments.
The CNN classifier takes the features from Transformer as
input. We train TPT using RMSprop optimizer with learn-
ing rate set to 7e-4 and use Adam (Kingma and Ba 2014) for
text convolutional network fine-tuning.

Models for Comparison

• Source-only: We consider LSTM (Hochreiter and
Schmidhuber 1997) and CNN (Kim 2014) as two non-
domain-adaptation baselines where the word embeddings
are trained from scratch. As for LSTM, word embeddings
are fed to the LSTM and the final hidden state is used for
classification. As for CNN, 1-d convolution is applied to
these embeddings and the features after max-pooling are
used for classification.
• LSTM-LM-CNN: LSTM is pretrained with language

model objective on unlabeled data. The CNN structure is
the same as above.
• SCL-MI (Blitzer, Dredze, and Pereira 2007): SCL aims

to learn a low-dimensional domain-invariant feature rep-
resentation. The pivots are those words with the highest
mutual information to the sentiment labels in the source
domain. The same pivot and non-pivot selection criterion
is employed for AE-SCL-SR and PBLM models.
• MSDA (Chen et al. 2012): This is one of the state-of-the-

art method based on discrete input features, which learns a
shared hidden representation by reconstructing pivot fea-
tures from corrupted inputs.
• MSDA-DAN (Ganin et al. 2016): Ganin et al. have also

applied their shallow version of DANN on the feature rep-
resentation generated by MSDA. The new representation
is the concatenation of the hidden features of MSDA and
the original input.
• AE-SCL-SR (Ziser and Reichart 2016): AE-SCL-SR

learns a non-linear function from non-pivot features to
pivot features. The reconstruction matrix of the autoen-
coder is initialized with a word embedding model.
• AMN (Li et al. 2017): AMN learns document represen-

tation based on memory network and adversarial training,
and requires well pre-trained word embeddings.

Domain #Train #Dev #Unlabeled Avg.Length

Books 1600 400 6000 156
DVD 1600 400 34741 171

Electronics 1600 400 13153 108
Kitchen 1600 400 16785 91
Airline 1600 400 39396 117

Table 1: Statistics of the Amazon Product and Airline re-
views datasets.
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Method D→B E→B K→B B→D E→D K→D B→E D→E K→E B→K D→K E→K Avg
Our method

TPT 83.3 76.2 78.2 85.8 81.1 81.9 81.2 80.5 88.2 86.1 83.4 88.3 82.9

Previous Work Models
RF2 - - 76.2 84.1 80.2 - - - - 86.1 - - -
PBLM-LSTM 80.5 70.8 73.5 82.6 77.6 78.6 74.5 80.4 85.4 80.9 83.3 87.1 79.6
PBLM-CNN 82.5 71.4 74.2 84.2 75.0 79.8 77.6 79.6 87.1 82.5 83.2 87.8 80.4
AMN 76.9 73.2 72.9 83.5 75.2 77.8 76.4 77.9 85.5 79.1 78.8 85.2 78.5
AE-SCL-SR 77.3 71.1 73.0 81.1 74.5 76.3 76.8 78.1 84.0 80.1 80.3 84.6 78.1
MSDA 76.1 71.9 70.0 78.3 71.0 71.4 74.6 75.0 82.4 78.8 77.4 84.5 75.9
MSDA-DAN 75.0 71.0 71.2 79.7 73.1 73.8 74.7 74.5 82.1 75.4 77.6 85.0 76.1
SCL-MI 73.2 68.5 69.3 78.8 70.4 72.2 71.9 71.5 82.2 77.2 74.0 82.9 74.3

No Domain Adaptation
LSTM-LM-CNN 76.4 66.4 71.3 76.2 72.7 74.8 72.8 74.6 84.8 77.9 78.7 85.8 76.0
LSTM 69.2 67.9 67.5 72.8 68.1 66.2 65.9 68.3 78.2 72.1 70.5 80.6 70.6
CNN 71.2 65.6 66.5 73.6 67.1 70.8 69.6 69.7 79.9 72.7 72.6 80.6 71.6

Table 2: Accuracy of adaption between product review domains.

Method B→A D→A E→A K→A Avg (P-Air) A→B A→D A→E A→K Avg (Air-P)
Our method

TPT 84.9 82.5 87.9 86.9 85.6 73.0 72.1 81.2 82.7 77.3

Previous Work Models
RF2 - - - 86.1 - 72.3 - - - -
PBLM-LSTM 83.7 81.0 87.7 87.4 85.0 70.3 71.1 80.5 82.6 76.1
PBLM-CNN 83.8 78.3 86.5 86.1 83.7 70.6 71.3 81.1 81.8 76.2
AMN 81.2 80.3 84.5 82.1 82.0 66.4 69.2 78.3 77.4 72.8
AE-SCL-SR 79.1 76.1 82.6 76.9 78.7 60.5 66.0 74.4 71.7 68.1
MSDA 72.2 73.3 75.1 76.8 74.3 58.5 61.0 70.6 69.0 64.8
MSDA-DAN 73.5 73.9 76.3 76.6 75.0 59.5 60.7 71.0 71.7 65.7
SCL 70.9 69.0 80.2 72.3 73.0 61.7 62.1 72.3 69.7 66.4

No Domain Adaptation
LSTM-LM-CNN 71.2 69.8 74.5 71.3 71.7 58.9 60.3 72.5 72.2 66.0
LSTM 68.3 65.0 72.1 68.6 67.3 56.7 57.3 66.2 65.0 61.3
CNN 67.6 66.7 72.0 70.0 69.1 56.3 59.0 66.0 66.6 62.0

Table 3: Accuracy of adaption between product (P) review domains and the airline (A) review domain.

• PBLM-LSTM/CNN (Ziser and Reichart 2018): The
bottom two layers are Pivot Based Language Model
(PBLM) built on LSTM, pre-trained before classification.
The last layer is a task specific classifier (CNN or LSTM).

• RF2 (Ziser and Reichart 2019): RF2 is the improved
version of PBLM-CNN enhanced by a curriculum learn-
ing algorithm. It iteratively trains the PBLM model,
gradually increasing the information exposed about each
pivot. Besides, The design of task specific classifier is the
same as PBLM-CNN.

Main Results

Table 2 reports the classification accuracies of different
methods on the Amazon product reviews dataset. Previ-
ous work (Ziser and Reichart 2018; 2019) provided very
comprehensive results on typical sentiment domain adapta-
tion methods under rigorous evaluation protocols, we thus
adopted their published results for a direct and fair com-
parison. The proposed TPT model consistently achieves the
best performance on 12 domain pairs. Results show that
pivots matter a great deal to sentiment domain adaptation.

The non-adapted CNN and LSTM baselines perform poorly
compared with other methods, confirming that information
from unlabeled data is beneficial for domain adaptation. To
explore the importance of pivot, we pre-trained a LSTM
language model and its classifier is also a CNN like non-
adapted baseline methods. The experiment also shows that
it is important to incorporate domain adaptation techniques
in embedding based models. The results of non-adapted
methods are not comparable with adapted baselines based
on discrete word features. Compared with the previous best
baseline PBLM, TPT outperforms PBLM-CNN and PBLM-
LSTM by 2.5% and 3.3% on average. One reason is that we
utilize bidirectional Transformer to capture the relationship
between pivot words and non-pivot words other than recur-
rent language model, resulting in better transferable features
across domains. Besides, the word-level domain discrimina-
tor can help detect more transferable pivots that are superior
to previous pivots selected only by mutual information. The
ablation study demonstrates that both model designs con-
tribute to the final results. In the more challenging product to
airline and airline to product setups, the above observations
are similar. The lower performance of the non-adapted base-
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Figure 3: Visualization of aleatoric uncertainty on learned pivots and corresponding standardized values.

line reflects the larger domain gaps between product and air-
line reviews. TPT performs consistently better in 7 domain
pairs, as reported in Table 3.

Ablation Study

We conduct further experiments to investigate the impact
of word embeddings, Transformer, and transferable pivots.
The results are shown in Table 4. The subscript w2v indi-
cates that the model embeddings are initialized with the well
pre-trained word2vec1. First, we observe that word embed-
dings pre-trained from large scale datasets improve the per-
formance of the non-adapted baseline, but little help for TPT
since the embeddings and Transformer are jointly learned
during training with highly correlated tasks for sentiment
classification. Second, even TPT (w/o learning transferable
pivot) outperforms all previous results, demonstrating the
effectiveness of our Transferable Transformer in modeling
the correlation between pivots and non-pivots. But increas-
ing the pivot number does not seem to improve the classi-
fication accuracy. Besides, it is straightforward to see that
learning representation with random mask (not only on piv-
ots) is superior to recurrent language modeling. However,
predicting pivots with random mask is prone to learn trivial
features, making the pivot-prediction task suffer. In addition,
we evaluate the impact of learning transferable pivots by ap-
plying the pivot learning strategy in transformer or using our
selected pivots on the SCL baseline. The performance boost
proves the effectiveness of learning transferable pivots.

Visualization

In order to validate that our model is able to discover the
potential transferability of pivots, we visualize the aleatoric
uncertainty of the pivot and its context. Figure 3 lists some
example reviews and the darkness of the color indicates the
uncertainty in Eq. (6). We take some pivots that transfer well
or poorly as examples for demonstration. It can be observed

1https://code.google.com/p/word2vec/

Model Avg. Acc
CNN 71.6
CNNw2v 73.8
Transformer (random mask) 79.5
TPT (w/o transferable pivot, np=500) 82.3
TPT (w/o transferable pivot, np=500)w2v 82.1
TPT (w/o transferable pivot, np=800) 82.2
SCL (transferable pivot) 75.0
TPT (np=800, nmin=500) 82.9

Table 4: Comparison between different model variants on
the Amazon Production Reviews Datasets.

that some pivots like but, great and the best, whose
semantics are usually more consistent across domains, tend
to have higher domain uncertainty. Some pivots like movie,
kitchen, the film and author are either biased to the
source or the target, therefore, the domain discriminator may
be more certain on them. Compared to original mutual infor-
mation, those frequent words are very high up the pivot list
ranked by MI but may be filtered by the discriminator (e.g.
clean is ranked 29 by MI, but 796 by uncertainty). Also, it
is interesting to observe that the discriminator tends to be un-
certain on bigram pivots. One reasonable explanation is that
bigrams may convey more informative transferability than
unigrams.

Conclusion

Deep neural networks are widely used in sentiment classi-
fication but suffer from their dependency on large-scale la-
beled training data in a specific domain. In this paper, we in-
corporate pivots into representation learning and propose the
TPT model for cross-domain sentiment classification. Un-
like the previous works, TPT can simultaneously learn pivot
and contextual representations, resulting in robust transfer
performance. We have demonstrated through multiple ex-
periments that it can better leverage unlabeled data compar-
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ing previous works, which shows the effectiveness of TPT.
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