
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Relevance-Promoting Language Model for Short-Text Conversation∗

Xin Li,1 Piji Li,2 Wei Bi,2 Xiaojiang Liu,2 Wai Lam1

1Department of Systems Engineering and Engineering Management,
The Chinese University of Hong Kong

2Tencent AI Lab, Shenzhen, China
{lixin, wlam}@se.cuhk.edu.hk, {pijili, victoriabi, kieranliu}@tencent.com

Abstract

Despite the effectiveness of sequence-to-sequence framework
on the task of Short-Text Conversation (STC), the issue of
under-exploitation of training data (i.e., the supervision sig-
nals from query text is ignored) still remains unresolved.
Also, the adopted maximization-based decoding strategies,
inclined to generating the generic responses or responses with
repetition, are unsuited to the STC task. In this paper, we pro-
pose to formulate the STC task as a language modeling prob-
lem and tailor-make a training strategy to adapt a language
model for response generation. To enhance generation per-
formance, we design a relevance-promoting transformer lan-
guage model, which performs additional supervised source
attention after the self-attention to increase the importance of
informative query tokens in calculating the token-level rep-
resentation. The model further refines the query representa-
tion with relevance clues inferred from its multiple references
during training. In testing, we adopt a randomization-over-
maximization strategy to reduce the generation of generic re-
sponses. Experimental results on a large Chinese STC dataset
demonstrate the superiority of the proposed model on rele-
vance metrics and diversity metrics.1

Introduction

Short Text Conversation (STC) (Shang, Lu, and Li 2015),
also known as single-turn chit-chat conversation, is a pop-
ular research topic in the field of natural language pro-
cessing. It is usually formulated as a sequence translation
problem (Ritter, Cherry, and Dolan 2011; Shang, Lu, and
Li 2015) and the sequence-to-sequence encoder-decoder
(SEQ2SEQ) framework (Cho et al. 2014; Sutskever, Vinyals,
and Le 2014; Bahdanau, Cho, and Bengio 2015) is ap-
plied for solving this problem. The decoder generates the
responses token-by-token, conditioned on the compressed
query representations from the encoder. Following this
paradigm, many attempts have been conducted to refine

∗The work described in this paper is substantially supported by
a grant from the Research Grant Council of the Hong Kong Special
Administrative Region, China (Project Code: 14204418). It was
mainly done when Xin Li was an intern at Tencent AI Lab.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Code available at https://ai.tencent.com/ailab/nlp/dialogue/.

the quality of the generated responses (Li et al. 2016a;
Xing et al. 2017; Du et al. 2018; Wu et al. 2019).

Despite the effectiveness of these efforts, some intrinsic
issues of SEQ2SEQ-based models still hinder further im-
provement of generation performance. Under the SEQ2SEQ
formulation, the auto-regressive decoder is only trained on
the gold-standard response text while the query text is ig-
nored, leading to under-exploitation of the training data. Be-
sides, the maximization-based decoding strategies adopted
in existing models, such as beam search and greedy search,
restrict the search space to the most frequent phrases and
thus they have the tendency to generate the generic re-
sponses or repetitive responses with unnaturally high like-
lihood, degrading the conversational experience.

GPT-2 (Radford et al. 2019), a recently proposed
Transformer-based language model, provides an alternative
solution for language generation. One advantage of GPT-2 is
that the transformer language model can not only capture the
context of arbitrary length but also make full use of the tex-
tual supervision signals because the generator is actually the
language model itself. Moreover, GPT-2 adopts top-k sam-
pling (Fan, Lewis, and Dauphin 2018) to diversify the gen-
erated texts while preserving the relevance. Obviously, these
characteristics are attractive and meaningful for solving the
STC task, whose aim is to generate informative and diverse
human-like responses given the user queries.

However, due to the essence of language modeling, di-
rectly applying GPT-2 on the STC task, a conditional lan-
guage generation task, may be insufficient because the lan-
guage model is unable to discriminate the source (query)
sentence and the target (response) sentence. The original
experimental results of GPT-2 on the abstractive summa-
rization task (Nallapati et al. 2016) also verify this claim.
Another potential issue of adapting language model for
the STC task comes from recency bias (Khandelwal et
al. 2018) and explanation-away effects (Yu et al. 2017;
Holtzman et al. 2019), where the language model has the
tendency to rely overly on the immediate context and ex-
plain away from the long-term context2, yielding fluent but
topically irrelevant responses.

2Long-term context in language model is roughly equivalent to
the source information in SEQ2SEQ framework.
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Figure 1: Representations of the example input with n = 7
and m = 4.

With the motivation of inheriting the merits of transformer
language model while alleviating the potential issues under
the language model formulation, we carefully design a train-
ing strategy to adapt the auto-regressive transformer-based
language model3 for the conditional response generation.
First of all, it is observed that the dialog conversation is ac-
tually a process of text continuation, in other words, giving
the response right after the query. Based on this observation,
we can regard the STC task as a language modeling prob-
lem on the concatenated sequence of query and response. To
discriminate the generation of query tokens and that of re-
sponse tokens, we inject a special token between query and
response, acting as the trigger of response generation. With
this formulation, the language model based training objec-
tive can make use of the textual data from query, alleviating
the under-exploitation issue mentioned above.

Since the transformer-based language model tends to fo-
cus on the short-term context and ignore the long-term con-
text, namely, the explanation away issue, we propose to
empower the self-attention with encoder-decoder attention,
which enforces the model to pay additional attention to
the query, especially the query tokens of user interest, and
guides the model to rely on informative query tokens to
make good predictions. It is also observed that some re-
sponse tokens not mentioned in the query are still closely
related to the discussed topic in the conversation. In order to
exploit such kind of relevance clues hidden behind the re-
sponses, we propose a topic inference component to learn
a compact source (query) representation encoding the infor-
mation relevant to the query and feed the query represen-
tation into each generation step, encouraging the language
model to consider the generation of the topic words poten-
tially related to the query.

As with the decoding strategy, different from the existing
STC models, we propose to decode with randomization-
over-maximization method, namely, the top-k sampling,
from the transformer language model to generate the rele-
vant response with high originality.

In summary, our contributions are as follows:
• We tailor-make a training strategy to adapt the

transformer-based language model for the Short Text
Conversation (STC) task.
• We propose two components, namely, Supervised

Source Attention (SSA) component and Topic Inference

3Without explicit specification, the language model in our paper
refers to the “auto-regressive” language model, which is different
from those “auto-encoding” language models (Devlin et al. 2019;
Dong et al. 2019).

(TI) component to promote the relevance modeling in the
language model based response generator.
• To the best of our knowledge, we are the first to intro-

duce top-k sampling, a randomization-over-maximization
strategy, for diverse response generation.4

Model

Overview

In our language model formulation, each training query-
response pair and the special tokens are concatenated as
a single sequence x = {x1, · · · , xm, xm+1, · · · , xn} of
length n. x1:m corresponds to the query token sequence of
length m and xm is the special token [EOQ], denoting the
end of query. xm+1:n corresponds to the response and xn

is [EOS], the end symbol of the whole sequence. The train-
ing objective of our model is to maximize the unconditional
likelihood p(x1:n), similar to the existing language mod-
els (Bengio et al. 2003; Merity, Keskar, and Socher 2018).

The architecture of our model is depicted in Fig 2, where
L decoder-only transformer layers (Vaswani et al. 2017)5

are involved. Different from the original transformer layer
solely containing the self-attention component, the trans-
former layer in our model is further empowered with the pro-
posed supervised source attention (SSA) component. The
outputs of the l-th transformer layer are the contextual-
ized token representations of size dimh, denoted as Hl ∈
R

n×dimh . When predicting the tokens, a Topic Inference
(TI) component is introduced to provide the refined query
representations encoding the topic information inferred from
the reference.

Language Model as Response Generator

To achieve the goal of adapting language model for the STC
task, we should carefully design a training strategy differ-
ent from that in the SEQ2SEQ framework. Based on the ob-
servation that the human conversations can be regarded as a
process of text continuation (i.e., giving the response/answer
right after the query/question), we concatenate the query to-
ken sequence and the response token sequence into a single
sequence and formulate the STC task as a contextual text
continuation problem. One input example of our model is
illustrated in Fig 1. The training goal of the model is to min-
imize the joint negative log likelihood over the whole se-
quence:

Lmle = − logP (x1:n) = −
n∑

t=1

logP (xt|x<t) (1)

Obviously, it is easy to bridge the gap between the task-
specific training and the auto-regressive pre-training (Peters
et al. 2018; Radford et al. 2018; 2019) because the formu-
lations of their objectives are almost the same. Another ad-
vantage of this language model formulation is that it takes

4We notice that some concurrent works (Olabiyi and Mueller
2019; Zhang et al. 2019) also adopt the strategy similar to ours
after the submission.

5For the technical details of transformer, we recommend the
reader to read the paper (Vaswani et al. 2017).
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the likelihood of query tokens into consideration, which is
ignored in the existing works (Shang, Lu, and Li 2015;
Xing et al. 2017). Intuitively, the text generated by the
language model is more fluent than those generated by
SEQ2SEQ framework because the generator of the language
model (the language model itself) is not only trained on the
response sentence but also the query sentence.

Relevance Modeling Component

The vanilla transformer decoder is equipped with self-
attention (Cheng, Dong, and Lapata 2016; Lin et al. 2017)
and can theoretically capture the context of arbitrary length.
Given the input Hl−1 ∈ R

n×dimh , the contextualized repre-
sentations hl

t (l ∈ [1, L], t ∈ [1, n]) at the t-th time step is
built as follows:

hl
t,ααα

l
t = SLF-ATT(ql−1

t ,Kl−1
≤t ,V

l−1
≤t )

Ql−1 = Hl−1WQ

Kl−1,Vl−1 = Hl−1WK ,Hl−1WV

(2)

where SLF-ATT is the self-attention layer6 and αααl
t ∈ R

t is
the calculated attention vector. Q, K, V ∈ R

n×dimh respec-
tively denote the query7, key and value in the self-attention
layer. Kl−1

≤t = {kl−1
1 , · · · ,kl−1

t } indicate the leftward el-
ements and the same to Vl−1

≤t . Despite its capability of
learning global dependency, the transformer-based language
model still has the tendency to overly rely on the short-term
context and ignore the long-term context when predicting
the next word, dubbed as explanation away problem (Holtz-
man et al. 2019). This problem is catastrophic for the STC
task because the query acts as the long-term context in our
language model formulation and not involving the query in-
formation is prone to generating the content irrelevant to
the query. Therefore, explicitly modeling the relevance and
emphasizing the importance of the query are essential. In
this paper, we propose two components, namely, Supervised
Source Attention (SSA) and Topic Inference (TI), to handle
the explanation away problem.

Supervised Source Attention In the existing SEQ2SEQ-
based frameworks, incorporating the query/source infor-
mation is achieved by applying encoder-decoder attention
solely on the encoder hidden representations. Similarly, at-
tending only on the long-term context of language model is
presumably beneficial for improving the relevance. There-
fore, we propose to introduce another source attention layer
on top of the self-attention layer. The computational formula
of the t′-th (t′ ≥ m) query-enhanced hidden representation
ĥl
t′ is below:

ĥl
t′ ,βββ

l
t′ = SRC-ATT(q̂l

t′ , K̂
l, V̂l)

Q̂l = HlWQ

K̂l, V̂l = Hl
1:mWK ,Hl

1:mWV

(3)

6The symbols for the feed-forward layer and residual connec-
tions are not shown.

7Here, the “query” refers to a real-valued vector while the
“query” in the STC task is a sentence.

SRC-ATT refers to our source attention layer on top of the
self-attention layer. βββl

t′ ∈ R
m is the attention scores for the

corresponding hidden representations of the query tokens.
Hl is the output of SLF-ATT layer and Q̂l ∈ R

n×dimh , K̂l,
V̂l ∈ R

m×dimh are the corresponding query, key, value in
the source attention. Note that we only additionally apply
source attention when the current token is not query token,
i.e., t′ ≥ m, and do nothing in the preceding steps. Learning
word alignment from data is possible but may be inaccurate
without any supervision or external knowledge (Liu et al.
2016; Mi, Wang, and Ittycheriah 2016), therefore, we em-
ploy the keywords as the knowledge and enforce the source
attention component to be concentrated on the important
query tokens. First of all, we perform max-over-time pool-
ing over the attention vectorsβββl

t′ ∈ R
m (t′ ∈ [m+1, n]) and

induce the vector ŷsrc ∈ R
m reflecting the salience scores

of the query/source tokens:

ŷsrc
i = max{βββL

m+1,i, · · · ,βββL
n,i}, i ∈ [1,m] (4)

Then, given the query keyword indicator vector ysrc ∈
{0, 1}m, we introduce additional source attention loss Lsrc

into Eq (1):

Lsrc =
1

m
||ŷsrc

i − ysrc||22 (5)

Ideally, the generation process will rely on more important
query tokens if the salience score ŷsrc is more close to the
keyword vector ysrc.

Topic Inference The SSA component attempts to improve
the relevance by highlighting the importance of the impor-
tant query tokens/words in the attention process. However,
the range of the words topically related to the query is far
more than that of the keywords explicitly mentioned in the
query. Considering the query “what is your favorite fruit?”
and two valid responses “I like the watermelon very much”
and “My favorite fruit is pineapple”, “fruit” should be em-
phasized during the generation but the words used to dis-
cuss fruit such as “watermelon” and “pineapple” are also
very meaningful for building a response. Inspired by this,
we collect the multiple references of each query in the train-
ing set and gather all of the keywords extracted from such
responses8. To exploit the latent topic information, we intro-
duce Topic Inference (KI) component to estimate the global
topical word distribution based on the query representation
hq as follows:

hq = f(x1:m), P (z|x1:m) = Softmax(Wohq) (6)

where f : Rm → R
dimh denotes the function mapping the

input query tokens to a low-dimensional query representa-
tion. Specifically, we feed the last query hidden representa-
tion in the transformer, namely, hL

m, into a linear layer with
tanh activation and regard the output as the query represen-
tation hq for simplifying the modeling part. To encode the

8(Xing et al. 2017) extend the keyword set using external cor-
pus. Here, we focus on improving the relevance rather than en-
riching the topical words in the response, thus, we only utilize the
training data to explore more keywords.
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Figure 2: Overall architecture. The Topic Inference (TI) component on top of the transformer layers and the Supervised Source
Attention (SSA) component inside the transformer layers are the proposed relevance-promoting components. Training losses
are calculated on top of the obtained representation vectors st’s.

topic information into the query representation, we employ
the global keyword indicator vector ykwd ∈ {0, 1}|V| as su-
pervision signals and enforce the components correspond-
ing to keywords/important tokens in the query-based global
topic distribution to be up-weighted. The computational for-
mula is as follows:

Lkwd = − 1

|V|
|V|∑
i=1

ykwd
i · logPi(z|x1:m) (7)

where the subscript i denotes the i-th component of a vec-
tor and |V| is the vocabulary size. Note that we attempt to
replace the Softmax in Eq 6 with the component-wise Sig-
moid, typically used in multi-label classification problem,
but the empirical results become worse. Thus, we keep the
Softmax probability function unchanged in the experiment.
Similar to Eq 5, the Lkwd will be added in the training loss.

Different from (Yao et al. 2017) and (Gao et al. 2019) re-
garding the concrete topic/keyword as the trigger of gener-
ation, we introduce the query representation encoding the
global topic information as the supplementation for each
token-level representation to encourage the generation of the
relevant topical words. The representation vector st for pre-
dicting the output is calculated below:

st =

{
(1− gt) ∗ hL

t + gt ∗ hq , if t > m
hL
t , Otherwise

gt = σ(Wghq +WlhL
t + b),

(8)

where gt ∈ R
dimh is the gate value and Wg,Wl ∈

R
dimh×dimh are parameter matrices in the TI component.

Model Training

The proposed SSA component and the TI component are
jointly trained with the transformer-based language model.
Based on Eq 1, Eq 5 and Eq 7, the overall training objective
L(θ) of the proposed model is as follow:

L(θ) = 1

|D|
∑

(x,ysrc,ykwd)∈D

L(x,ysrc,ykwd)

L(x,ysrc,ykwd) = Lmle + γ1Lsrc + γ2Lkwd

(9)

Here, γ1 and γ2 are the coefficients controlling the propor-
tion of Lsrc and Lkwd involved in the training respectively.

Decoding

Due to the limited search space, it is difficult for the beam
search or greedy search to find the interesting and di-
verse responses. Therefore, we do not adopt them but a
“randomization-over-maximization” strategy (also know as
‘top-k sampling”) to perform the decoding, as done in (Fan,
Lewis, and Dauphin 2018; Radford et al. 2019). (Holtzman
et al. 2019) and (Ippolito et al. 2019) explore the usage of
other advanced decoding strategies in the language gener-
ation task. Since our aim in this paper is not to compare
the performances across the different decoding strategies,
we consistently use the top-k sampling.

Experiment

Experiment Setup

We utilize the benchmark STC dataset (Liu et al. 2018)
to evaluate the effectiveness of the proposed relevance-
promoting transformer language model. This dataset is built
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based on the real conversations from Weibo9 and contains
about 7M high-quality query-response pairs. We split the
dataset such that #train:#dev:#test is 7,024,156:2,000:800.
Training details are provided in the appendix.

To avoid word segmentation errors and out-of-vocabulary
issue, the tokens in our model and the baseline models are
Chinese characters and the vocabulary size is about 12,000.

Evaluation Metrics

We introduce the following metrics to evaluate the model’s
capability of generating relevant and diverse responses:
Relevance Metrics We employ BLEU-2, BLEU-3 &
BLEU-4 (Papineni et al. 2002) to estimate the relevance of
the generated responses. Moreover, we also design two more
metrics, namely, HIT-Q and HIT-R to calculate the hit rates
of the topical words in the query and the response respec-
tively. Firstly, we build a high-precision-low-recall keyword
set for each query/response sentence based on keyword ex-
traction toolkit10 and filter some noisy words based on ad-
ditional hand-crafted rules. Then, we calculate the HIT-Qi

and HIT-Ri for the i-th predictions as follows:

HIT-Qi =
|Kri ∩K

qi |
|Kri | , HIT-Ri =

|Kri ∩K
rgi |

|Kri | (10)

where K
qi , K

ri and K
rgi respectively denote the topical

word set for the i-th query, predicted response and gold stan-
dard response. Then we obtain the HIT-Q and HIT-R by per-
forming the corpus-level average:

HIT-Q =
1

N

N∑
i

HIT-Qi, HIT-R =
1

N

N∑
i

HIT-Ri (11)

Diversity Metrics Following (Li et al. 2016a), we employ
DIST-1 and DIST-2 to calculate the ratios of the distinct
uni-grams and bi-grams in the generated responses.
Human Evaluations We also conduct human evaluations.
Specifically, we randomly sampled 100 queries and recruit
five helpers to judge Relevance (4-scale rating, 0-3), Fluency
(3-scale rating, 0-2) and Acceptance (0 or 1) of the generated
responses from our model and the baselines. Details of the
rating criteria are stated in the appendix.

Comparison Models

• LSTM-LM (Mei, Bansal, and Walter 2017): LSTM-
based auto-regressive language model armed with incre-
mental self-attention. We train LSTM-LM using the same
strategy mentioned in this paper.

• LSTM-S2S: Attention-based LSTM Sequence-to-
Sequence model.

• TFM-S2S: Transformer Sequence-to-Sequence model
where the network components are identical to those
in (Vaswani et al. 2017).

• TFM-LM: Transformer-based auto-regressive language
model. We train TFM-LM using the same strategy men-
tioned in this paper.
9https://www.weibo.com/

10https://github.com/fxsjy/jieba

• MMI (Li et al. 2016a): LSTM-S2S with Maximum Mu-
tual Information objective in decoding. In this paper, we
set the number of responses for re-ranking as 50.

• CVAE (Zhao, Zhao, and Eskenazi 2017)11: Conditional
Variational Auto-Encoder for response generation. We re-
place the dialogue acts used in the original model with the
keywords extracted from the references.

• MMPMS (Chen et al. 2019): The model with the state-of-
the-art performance on the STC task. We re-run the offi-
cially released code12 to obtain the results on our dataset.

Main Results

Table 1 and 2 list the automatic evaluation results and
the human evaluation results respectively. In terms of
BLEU, the proposed model with beam search decoding,
namely, OURS-bm, consistently achieve the best scores.
Besides, OURS-bm outperforms all compared models on
the keyword-overlapping-based HIT metrics, suggesting that
our model, armed with Supervised Source Attention compo-
nent (SSA) and Topic Inference (TI) component, is benefi-
cial for the generation of informative topical words related to
the query. Surprisingly, OURS-bm also obtains better DIST
metrics than the baseline models. After replacing the beam
search with top-k sampling, our model (OURS-tk) is further
enhanced in diversity modeling, reaching 0.107 and 0.544
on DIST-1 and DIST-2 respectively.

Regarding the more reliable human evaluations, both
of OURS-bm and OURS-tk are the top-ranked models.
Specifically, despite its unsatisfactory results on the auto-
matic BLEU and HIT metrics, OURS-tk performs the best
on the manually annotated Relevance metric with 5% im-
provement over the current state-of-the-art MMPMS model.
Instead, OURS-bm, the best model on the automatic rele-
vance metrics, still yields competitive results on the Rele-
vance. It is reasonable because some words not appearing in
the query/references, especially those not being frequently
used, are still related to the discussed topic in the conversa-
tions. At the same time, such inconsistency between auto-
matic and human evaluations demonstrates the effectiveness
of top-k sampling, a randomization-over-maximization de-
coding strategy, in discovering infrequent but meaningful
patterns for the STC task.

We now turn to discuss the performance of the other com-
pared methods. Inheriting the powerful modeling capability
of Transformer, TFM-S2S obtains the best automatic rele-
vance scores as well as the second best Relevance among
the baselines. TFM-LM, another Transformer-based base-
line following the language model formulation in our pa-
per, performs not as good as TFM-S2S on all of the met-
rics except Fluency, verifying the postulation that the ex-
planation away issue of language model has the tendency
to produce fluent but topically irrelevant responses. Despite
of this, the TFM-LM outperforms LSTM-LM and LSTM-
S2S, proving the superiority of Transformer to LSTM in
response generation. Owing to the re-ranking mechanism,

11https://github.com/snakeztc/NeuralDialog-CVAE
12https://github.com/PaddlePaddle/models
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Model
Relevance Diversity

BLEU-2 BLEU-3 BLEU-4 HIT-Q HIT-R DIST-1 DIST-2
LSTM-LM 3.8 0.9 0.3 0.084 0.066 0.028 0.094
LSTM-S2S 5.6 2.8 1.8 0.293 0.145 0.039 0.137
TFM-LM 6.9 3.2 2.1 0.295 0.144 0.058 0.259
TFM-S2S 7.3 3.5 2.3 0.369 0.172 0.078 0.290
MMI 7.9 2.5 1.0 0.197 0.145 0.093 0.349
CVAE 5.8 1.5 0.4 0.211 0.135 0.060 0.211
MMPMS 6.7 3.0 1.8 0.151 0.102 0.057 0.220
OURS-tk w/o SSA & TI 4.9 1.0 0.3 0.119 0.076 0.086 0.441
OURS-tk w/o SSA 5.5 2.1 1.5 0.150 0.146 0.102 0.521
OURS-tk w/o TI 5.1 2.1 1.4 0.171 0.132 0.090 0.445
OURS-bm 10.3 5.3 3.4 0.510 0.193 0.102 0.398
OURS-tk 6.0 3.6 2.5 0.191 0.152 0.107 0.544

Table 1: Experimental results on the automatic metrics. The best results are in bold.

Model
Evaluation Metrics

Relevance Fluency Acceptance
LSTM-LM 1.206 1.297 0.26
LSTM-S2S 1.386 1.285 0.37
TFM-LM 1.412 1.328 0.39
TFM-S2S 1.475 1.306 0.43
MMI 1.432 1.301 0.34
CVAE 1.316 1.274 0.33
MMPMS 1.528 1.396 0.42
OURS-tk w/o SSA & TI 1.273 1.368 0.28
OURS-tk w/o SSA 1.485 1.407 0.39
OURS-tk w/o TI 1.503 1.303 0.36
OURS-bm 1.515 1.359 0.38
OURS-tk 1.606 1.346 0.44

Table 2: Human evaluation results with the best ones in bold.

the MMI model is the strongest baseline on diversity mod-
eling but OURS-bm/OURS-tk still achieves approximately
14%/55% improvement on DIST-2.

Ablation Study

In order to track the source of the performance gains, we
also conduct the ablation study on the OURS-tk. The corre-
sponding automatic and human evaluation results are shown
in the second group of Table 1 and Table 2. As expected, the
model without relevance-promoting design, i.e., OURS-tk
w/o SSA & TI, is the worst one on the relevance metrics.
OURS-k w/o SSA and OURS-tk w/o TI, the variants in-
corporating either TI or SSA for relevance modeling, boost
the Relevance score by ∼17% and ∼18% respectively. Al-
though they are comparable on the relevance metrics but the
former achieves higher diversity scores (DIST-2: 0.521 v.s.
0.441). We attribute this phenomenon to the TI component,
which exploits the usage of more related topical words men-
tioned in the multiple references. With the help of both SSA
component and TI component, OURS-tk becomes the best
model on Relevance and DIST metrics, demonstrating the
necessity of the relevance modeling for the transformer lan-
guage model. Another interesting finding is that the SSA
component decreases the Fluency score (see the results of
OURS-tk w/o TI), which indicates that fighting against
explanation-away issue by incorporating additional query
context may be coupled with corrupting the language model.

Case Study

Figure 3 shows example responses generated by our model
and the most competitive baseline models. OURS-tk, which
explicitly incorporates the query context and exploits the to-
kens potentially related to the query, always produces mean-
ingful and informative responses. Taking the Query #1 & #2
as examples, the generated responses accurately respond to
the query because they mention “flower ladder”/“matcha”
and “cream”, which are exactly the topics discussed in
the conversations. The response for the Query #3 can eas-
ily engage user in the conversation and thus it is also a
meaningful prediction. The outputs of TFM-LM are gen-
erally fluent. However, due to the explanation away issue,
TFM-LM tends to generate the irrelevant response (Case
#1) or response with phrase repetition (Case #2). Under the
sequence-to-sequence formulation, TFM-S2S obtains the re-
sponses moderately related to the corresponding queries al-
though the third output, directly copying part of the source
text (i.e., query), is still unsatisfactory. MMPMS and MMI,
the models aiming for promoting diversity, have chances to
yield irrelevant responses.

Further Discussions on Top-k Sampling

We further investigate the impact of top-k sampling on
the STC models. Firstly, we conduct additional automatic
and human evaluations on the baseline models with results
shown in Table 3. As can be seen, the top-k sampling con-
sistently improves the DIST-2 score by a large margin on
all models but the Relevance scores of LSTM-S2S, TFM-
LM and TFM-S2S decrease after top-k sampling is applied.
The variation trends of Fluency across the evaluated models
are also inconsistent. These observations suggest that top-k
sampling is simple yet effective to achieve diverse response
generation but it should be carefully utilized in the model
because of its uncertainty on relevance and fluency.

As discussed in Case Study, the transformer-based models
adopting beam search have the tendency to generate the re-
sponses with repetition and those directly copying the query.
We here investigate whether top-k sampling can help solve
these issues. Figure 4 depicts the ratios of responses in the
test set falling into the phrase repetition and query copy. The
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TFM-LM MMI TFM-S2S MMPMS OURS-tk
Query #1: 有了这样的花梯，回家的感觉真好 (With this flower ladder, it feels so good going back home.)

好漂亮的花，好喜欢 我也有这样的感觉 我很喜欢！ 我擦，这也太有才了吧 美得令人窒息的花梯

The flower is beautiful! Like it! I have the same feeling! I really like it! Oh my god! It is really funny What a beautiful flower ladder!!
Query #2: 抹茶与奶油的结合，精致得不忍下口 (This is the combination of matcha and cream. It is quite delicate such that I couldn’t bear to eat. )

不忍下口，不忍下口。 好想吃啊！ 我能接受。 我喜欢抹茶味的抹茶。 我喜欢抹茶和奶油

Couldn’t bear to eat, couldn’t bear to eat. I really want to have a try. The food is acceptable for me. I like the matcha of matcha flavor. I love matcha and cream!
Query #3: 移动的别墅。介个太强大了 (This moving cottage is awesome!)

我也想要这样的房子 有创意，有创意啊 介个太强大了，房间装不下 移动和联通
这是哪儿啊，怎么拍的，好厉害
好酷哦

I wanna a house like this, too. It is quite creative. It is too strong to fit in the room. Chinese Mobile and Chinese Uni-
com

Where is it? How do you shoot this
video. It look cool!

Figure 3: Examples of response generation. We translate Chinese samples to English.

Figure 4: Comparison results on beam search and top-k sam-
pling. Specifically, if the length of the longest common sub-
string between response and query is larger than 4, then the
response is regarded as a “copy” of query. If a response con-
tains the word/phrase loop over 3 times, it is regarded as a
response with repetition.

top-k sampling greatly reduces the query copy rate (about
72% on average) and almost eliminates the phrase repeti-
tion phenomenon in the Transformer-based models. How-
ever, note that Table 3 shows both TFM-LM and TFM-S2S
perform worse on Relevance after using top-k sampling. We
consider these results are consistent with human perception
because enriching the morphology via sampling-based de-
coding strategy will inevitably introduce irrelevant informa-
tion, leading to the degradation of relevance score. It is no-
ticeable that the proposed model (i.e., OURS) is not affected
on relevance modeling due to its capability of filtering some
topically irrelevant candidates for the sampling process.

Models Relevance (Δ) Fluency (Δ) DIST-2 (Δ)
LSTM-LM-tk 1.111 (-0.09) 1.270 (-0.03) 0.383 (+0.29)
LSTM-S2S-tk 1.439 (+0.05) 1.265 (-0.20) 0.490 (+0.35)
TFM-LM-tk 1.273 (-0.14) 1.368 (+0.04) 0.441 (+0.18)
TFM-S2S-tk 1.270 (-0.15) 1.321 (+0.15) 0.507 (+0.22)
OURS-tk 1.606 (+0.10) 1.346 (-0.13) 0.544 (+0.20)

Table 3: Experimental results on the models adopting top-
k sampling. Δ refers to the improvement over the original
model adopting beam search. The best results are in bold.

Related Work

Short Text Conversation Short Text Conversation (STC)
is usually formulated as a conditional text generation
task (Shang, Lu, and Li 2015; Serban et al. 2016). The

sequence-to-sequence (SEQ2SEQ) encoder-decoder frame-
work (Cho et al. 2014; Sutskever, Vinyals, and Le 2014;
Bahdanau, Cho, and Bengio 2015) and its variants have been
studied extensively for solving this task. Li et al. 2016a
introduce diversity-promoting decoding strategies into the
SEQ2SEQ model. Some (Mou et al. 2016; Xing et al. 2017;
Yao et al. 2017; Zhou et al. 2017; Gao et al. 2019) attempt
to guide the SEQ2SEQ model to generate keyword/topic-
aware responses while others (Wu et al. 2019; Cai et al.
2019) try to control the response generation with addi-
tional retrieved data. The advanced techniques such as RL,
GAN and VAE are also considered for improving con-
versational experience (Li et al. 2016b; Xu et al. 2017;
Du et al. 2018).
Transformer-based Language Model Deep transformer-
based architecture (Vaswani et al. 2017) has led to sig-
nificant performance gains on the language modeling
task (Al-Rfou et al. 2019; Dai et al. 2019; Radford et al.
2019), compared to the existing CNN/RNN-based architec-
tures (Dauphin et al. 2017; Merity, Keskar, and Socher 2018;
Melis, Dyer, and Blunsom 2018). Meanwhile, GPT-2 (Rad-
ford et al. 2019) and UNILM (Dong et al. 2019) are the pio-
neer works adapting the transformer language model for the
conditional text generation tasks.

Conclusion

In this paper, we present a language model based solution in-
stead of traditional SEQ2SEQ paradigm for handling Short-
Text Conversation (STC). We firstly tailor-make a train-
ing strategy to adapt the language model for the STC task.
Then, we propose a relevance-promoting transformer lan-
guage model to distill the relevance clues from the query
as well as the topics inferred from the references, and in-
corporate them into the generation. Moreover, we explore
the usage of top-k sampling for the STC task to further im-
prove the response diversity. Experimental results on a large-
scale STC dataset validate that our model is superior to the
compared models on both relevance and diversity from au-
tomatic and human evaluations.
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