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Abstract

Neural sequence model, though widely used for modeling se-
quential data such as the language model, has sequential re-
cency bias (Kuncoro et al. 2018) to the local context, limiting
its full potential to capture long-distance context. To address
this problem, this paper proposes augmenting sequence mod-
els with a span-based neural buffer that efficiently represents
long-distance context, allowing a gate policy network to make
interpolated predictions from both the neural buffer and the
underlying sequence model. Training this policy network to
utilize long-distance context is however challenging due to
the simple sentence dominance problem (Marvin and Linzen
2018). To alleviate this problem, we propose a novel training
algorithm that combines an annealed maximum likelihood es-
timation with an intrinsic reward-driven reinforcement learn-
ing. Sequence models with the proposed span-based neural
buffer significantly improve the state-of-the-art perplexities
on the benchmark Penn Treebank and WikiText-2 datasets to
43.9 and 35.2 respectively. We conduct extensive analysis and
confirm that the proposed architecture and the training algo-
rithm both contribute to the improvements.

Introduction

The ability to make accurate prediction for sequence ele-
ments given their history is extremely important in analyz-
ing, modeling, and utilizing time sequential data including
speech and natural language. In language modeling, a word-
level language model is trained to predict the next word
given its previous words. It is an essential component in var-
ious natural language processing tasks.

Recent works of using neural sequence model (Mikolov
et al. 2010; Merity, Keskar, and Socher 2017; Krause et
al. 2017), in particular long short-term memory networks
(LSTM) and other recurrent neural network (RNN) variants,
have shown that they are very effective. However, sequential
networks have structural sequential recency bias (Kuncoro
et al. 2018) that causes difficulty of the models in utilizing
long-distance context. Moreover, (Khandelwal et al. 2018)
also confirms this issue by comprehensive experiments on
LSTM-based language model.
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Figure 1: Illustration of a span. A context with consecutive
words marked in red box is represented by the difference
f13−f11 marked in red arc, where fijs are the hidden states
from a sequential neural network.

To better capture the long-distance context for neural se-
quence model like language modeling, we have witnessed
three approaches in recent years. The first focuses on us-
ing supervised syntactic parser (Wu et al. 2017), the sec-
ond approach relies on latent tree learning (Shen et al. 2017;
2018), and the third approach augments sequential models
with the memory of context (Tran, Bisazza, and Monz 2016;
Daniluk et al. 2017). However, the first approach requires
extra treebank data that can be domain-specific and expen-
sive to annotate. The second approach of learning latent
trees faces challenges of mitigating gaps of the structures
to be discovered a posteriori from the data and those can be
annotated and interpreted a priori, making it hard to train
and unwieldy in practice (Williams, Drozdov, and Bow-
man 2018). Moreover, performance of the latent tree mod-
els is still behind the sequential network (Shen et al. 2018;
Wang, Gong, and Liu 2019).

In the third approach, (Tran, Bisazza, and Monz 2016)
introduces a memory block to help LSTM retain past hid-
den states. (Daniluk et al. 2017) uses attention mechanism
on the extra memory. However, this type of memory is not
memory efficient as it is word-level, requiring large memory
to store. It is also not computationally efficient, as it needs
much computation to retrieve information from it. Moreover,
it is also observed in (Daniluk et al. 2017) that augmenting
LSTM with this type of memory doesn’t necessarily lead to
effective utilization of long-distance context.
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Extensive works (Nelson et al. 2017) have shown that
language is processed in continuous chunks of words. This
essential property can be deduced from tree-structure rep-
resentation of languages. As resorting to annotation or in-
duction of trees can lead to the aforementioned issues, we
instead rely on this essential continuity property in build-
ing neural sequence models. The key insight in this paper
is therefore to build contexts of a word with one or many
chunks of consecutive words in adjacency to the word or in
distance, without using trees.

This paper proposes a span-based neural buffer to aug-
ment neural sequence model with directly accessible long-
distance context. Different from the word-level memory in
(Tran, Bisazza, and Monz 2016; Daniluk et al. 2017), the
neural buffer is filled with spans representing chunks of
consecutive words. Technically, we use RNN-minus fea-
ture to represent a span (Stern, Andreas, and Klein 2017;
Wang and Chang 2016), as illustrated in Figure 1. This
representation achieves memory efficiency in storing large
amount of context with little memory. Moreover, additional
cost to compute the span representation is very low. With the
span-based representation, we are able to expand the model
capacity without sacrificing run-time efficiency by simply
increasing span size.

Prediction of the next word is an interpolation between the
prediction from the neural buffer and that of the underlying
neural sequence model. However, maximum likelihood esti-
mation can lead the model to make inferences solely based
on local context since most real-world sentences are gram-
matically simple and those words can be easily inferred by
local context (Marvin and Linzen 2018), which we refer the
phenomenon to simple sentence dominance problem. More-
over, the position of relevant distant context and occurrence
of it are sparse from a text of finite size. This means that
the maximum likelihood estimation method doesn’t have re-
liable estimates of the interpolation for this type of rare but
nevertheless possible long-distance context.

To solve this problem, we design a novel training algo-
rithm that combines an annealed maximum likelihood esti-
mation with reinforcement learning that utilizes an intrinsic
reward. The reward encourages exploration of long-distance
context. The proposed maximum likelihood estimation pro-
duces model parameters for both of the sequential networks
and those in using span-based neural buffer. The annealing
with high temperature during training allows gradients to be
directed to both of the local context and distant context. This
temperature is reduced during test so that prediction is not
ambiguous. Moreover, this maximum likelihood estimation
is a regularization for reinforcement learning, avoiding mak-
ing trivial interpolation of using only long-distance context.

We have conducted extensive experiments on two stan-
dard benchmarks to evaluate the proposed model and its
ability to utilize long-distance context. Experimental results
demonstrate that it significantly outperforms all previous
methods. Our contributions are as follows:

• a novel span-based neural buffer with policy network to
address sequential recency bias problem, enabling effi-
cient and effective utilization of long-distance context;

• a training algorithm to solve simple sentence dominance
problem, using an annealed maximum likelihood estima-
tion and a reinforcement learning with intrinsic reward;

• a language model using the proposed approach that signif-
icantly outperforms all previous methods and establishes
new state-of-the-art results on PTB and WT2.

Preliminary
This section briefly introduces neural sequence model for
language modeling. Given a prefix or history, a neural se-
quence language model predicts its next word. Let V be the
vocabulary size of a corpus to train this model. Each word is
represented by a one-hot encoding vector xt ∈ RV , corre-
sponding to its index in the vocabulary. Using the chain rule,
the probability of the sentence S = [x1, x2, · · · , xT ] is

p(S) = p([x1 · · ·xT ]) =

T∏
t=1

p(xt|x1:t−1). (1)

Neural sequence model utilizes a continuous-valued state
vector ht ∈ Rd to encode the prefix x1:t−1. With this repre-
sentation, the conditional probability of the next word xt+1

can be parameterized as

p(xt+1|x1:t) ∝ exp(hT
t Oxt+1

), (2)
where O is a trainable matrix to project the d-dimension
state vector ht to a V -dimension vector for softmax oper-
ation. The model computes the state vector ht recursively
by the following equation at each position t

ht = Φ(xt, ht−1), (3)
where Φ represents the state transition operation that is spe-
cific to neural network types such as LSTM.

Architecture
The proposed model uses an architecture illustrated in Fig. 2.
The span-based neural buffer is used together with an under-
lying sequence model, for instance LSTM. Prediction of the
next word is an interpolation of the predictions from the se-
quence model and the buffer. Weights for the interpolation
are controlled by a policy network.

Span-based Neural Buffer

Instead of utilizing or inducing tree-like structure to endow
a sequence model with access to long-distance context, the
proposed model stores context with a neural buffer of size
B. It uses continuity property of language to split context
into several spans with equal length L. Because of the equal
split, here the phrase structure in the sense of syntactics is
approximated, without resorting to syntactic trees.

A span at position i is represented using the RNN-minus
feature, i.e., si = hi −hi−L+1. The prefix Ct for word xt at
t is a concatenation of m spans, with m = B/L, i.e.,

Ct = [st−B , st−B+L, · · · , st−L+1, st−1]. (4)
Notice that the span index in prefix Ct is from t − B to

t−1 with a step size of L. The model uses attention to access
long-distance context as follows

ξt = CT
t αt. (5)
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idea 0.006

appetite 0.574

Figure 2: The model consists of three components, an underlying neural sequence model such as a sequential RNN, a span-based
neural buffer and a policy network. The policy network interpolates probabilities of predicting the next word from the hidden
state of the RNN and from the neural buffer, the latter is obtained using attention. Policy network has different temperature
during training and test. Pbuffer and Phidden each refer to p(xt+1|x1:t) in Eq. (2) and q(xt+1|x1:t) in Eq. (8).

The attention weight αt ∈ Rm has its i-th element αt,i

which is computed as follows:

αt,i =
exp(γt,i)∑

j∈{t−1,t−1−S,··· ,t−B} exp(γt,j)
, (6)

in which function γ(·) is certain similarity measure. Here we
adopt the formula used in (Wu et al. 2017).

γt,i = vT (Whht +Wssi), (7)
with v, Wh and Ws as learnable parameters.

The logit for the next word xt+1 is obtained by a linear
projection ξTt Oxt+1

with the same matrix O tied with Eq.
(2). The probability of xt+1 is obtained via a softmax output
layer of this logit over all of logits, i.e.,

q(xt+1|x1:t) ∝ exp(ξTt Oxt+1). (8)

Gated Interpolation

To predict the next word xt+1, we interpolate the probabil-
ities from the sequential RNNs p(xt+1|x1:t) in Eq. (2) and
the neural buffer q(xt+1|x1:t) in Eq. (8) as follows

p̃(xt+1|x1:t) = λt ∗ q(xt+1|x1:t)

+(1− λt) ∗ p(xt+1|x1:t).
(9)

The interpolation weight λt ∈ [0.0, 1.0] to the neural buffer
prediction is computed with a policy network. It uses hidden
state of the sequence model as its observation and outputs
a two dimensional weight vector. After normalization with
softmax, one of the dimensions is used as λt; i.e.,

λt ∝ exp(Wght), (10)

where Wg ∈ R2×d is the policy network parameter. The
interpolation weight can be considered as a gate to accom-
modate predictions from the neural buffer. When it is zero,
the prediction from the buffer is completely ignored.

Training Algorithm

Training the policy network parameter Wg and those in
the sequential neural buffer reliably is however challenging.
Most natural language sentences are grammatically simple
and most words can be predicted from their local context
(Khandelwal et al. 2018; Marvin and Linzen 2018), a phe-
nomenon we name it as simple sentence dominance prob-
lem. An example of this problem is illustrated in Fig. 2. Con-
ditioning on the prefix ”I have no”, words ”idea” and ”trou-
ble” have higher probabilities than ”appetite” to be used as
the next word. Only with the information from long-distance
context ”good restaurant”, a model can disambiguate the
predictions and have the correct prediction of ”appetite”.
However, because of the simple sentence dominance prob-
lem, long-distance context is rarely used and sparse. Max-
imum likelihood estimation for the policy network and the
attention parameters for the neural buffer can be unreliable
and insufficient. To address this problem, we define the fol-
lowing objective function:

Łt = − log p̃(xt+1|x1:t)− η ∗ rt log λt, (11)

where the first term log p̃(xt+1|x1:t) aims at increasing like-
lihood of predicting the correct next word. The second term
rt log λt is an objective with intrinsic rewards that encour-
ages exploration of the neural buffer. The constant η > 0 in
the second term is a trade-off coefficient between the like-
lihood objective and the intrinsic reward objective. We de-
scribe in more details below.

Training Policy Network using Intrinsic Rewards

The form rt log λt resembles that used in policy gradient
in REINFORCE algorithm (Williams 1992). Indeed, explo-
ration of long-distance context is encouraged by having a
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Figure 3: The reward function versus likelihood ratio. Also
shown an identical function for comparison.

large λt. However, our heuristic rule is that, only with a
well-trained sequential neural buffer that outputs higher like-
lihood than that from the underlying neural sequence model,
should a large probability λt be encouraged. We design the
intrinsic reward as follows:

rt = f(min((
q(xt+1|x1:t)

p(xt+1|x1:t) + ε
)κ, a)− b), (12)

where f(z) is a leaky RELU function defined as

f(z) =

{
z if z ≥ 0
βz otherwise

. (13)

The ratio q(xt+1|x1:t)
p(xt+1|x1:t)

in Eq. (12) is the division between
the likelihoods from neural buffer q(xt+1|x1:t) and hidden
state p(xt+1|x1:t). It acts as a measure of relative strength
between neural buffer and RNN hidden state for predicting
next word xt+1. Since the exact next word xt+1 is observed
during training, this ratio is exact and can be computed. The
larger the ratio, the higher the reward is. a is the reward clip-
ping threshold, preventing having an extremely large like-
lihood ratio. We use 10.0 for a in this paper. ε is a small
constant, e.g. 1e-10 to avoid numerical issue.

To encourage the policy network outputting λt that makes
clear preference between neural buffer and its underlying
sequence model, we raise the likelihood ratio using power
function. We also use a ratio larger than 1.0 for the leaky
RELU. In this paper, we use 5 for κ and 3 for β.

A baseline is always subtracted from reward to reduce
variance in reinforcement learning (Weaver and Tao 2001).
Here the baseline b is 1. We illustrate the reward function
versus likelihood ratio q(xt+1|x1:t)

p(xt+1|x1:t)
in Figure 3.

Training Neural Buffers using Annealed Maximum
Likelihood Estimation

Because of simple sentence problem, not enough gradient
may be directed to update neural buffer. Here we apply an-
nealing during training. We set a temperature T high enough
so that gradients from the output layer can be distributed

evenly to the neural buffer and the underlying sequence
model. We reformulate Eq. (10) as

λ̂t ∝ exp(
Wght

T
). (14)

This prevents a model from explaining away training se-
quences based on local context only; in fact, this encourages
the neural buffer to also learn to predict the next word. Im-
portantly, during training, λ̂t shall be only applied to the first
likelihood term log p̃(xt+1|x1:t) in Eq. (11).

During test, we reduce the temperature so that the proba-
bility λt can be sharp. The conjecture is that, once the policy
network are well trained, preference to either long-distance
context or local context shall be clear.

Experiments

We use language modeling tasks to verify the effectiveness
of our model. We first compare it with other state-of-the-
art methods on two datasets. We then conduct experiments
with oracle policy to validate the potential of long-distance
context in neural buffer. We conduct ablation and case stud-
ies to understand the importance of each component in the
proposed model. Finally, we also define a measure of long-
distance context utilization and conduct experiments to vi-
sualize its dynamic change during training.

Datasets

We compare models on two benchmark datasets. The first
is the Penn Treebank (PTB) with preprocessing (Mikolov
et al. 2010) 1. It consists of 923k training, 73k validation
and 82k test words. Another word level corpus is WikiText-
2 (WT2) 2. It is about twice the size of Penn Treebank with
a larger vocabulary and much lighter preprocessing. It con-
tains about 2 million words.

Overall Results on Benchmark Datasets

We compare the proposed method (denoted as SNB) with
baselines that have ever achieved state-of-the-art perfor-
mances. We also implement dynamic evaluation (Krause et
al. 2017) for all of the settings. For methods that don’t have
WT2 results, we obtain their performances by running their
publicly-available implementations 3. We made necessary
tuning for these experiments. Following (Wang, Gong, and
Liu 2019), we report language model performances using
perplexity (PPL) on development and test sets. We also re-
port the number of parameters. The results on PTB are sum-
marized in Table 1. Table 2 has results for WT2.

Notably, SNB with the dynamic evaluation (denoted as
AWD-LSTM + MoS + PS + AT + SNB), shown in the last
row of each table, achieves new state-of-the-art results on
PTB and WT2. It has the same number of parameters with
the recently best performing model in (Wang, Gong, and

1http://www.fit.vutbr.cz/ imikolov/rnnlm/
2https://einstein.ai/research/the-wikitext-long-

termdependency-language-modeling-dataset
3https://github.com/yikangshen/Ordered-Neurons,

https://github.com/yikangshen/PRPN
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Method Params Valid Test
w/o dynamic evaluation

AWD-LSTM (Merity, Keskar, and Socher 2017) 24M 60.00 57.30
AWD-LSTM + SNB 24M 56.82 54.92

AWD-LSTM + MoS (Yang et al. 2017) 22M 56.54 54.44
AWD-LSTM + MoS + SNB 22M 54.21 52.62

AWD-LSTM + MoS + PS (Press 2019) 22M 55.89 53.92
AWD-LSTM + MoS + PS + SNB 22M 53.45 51.10

AWD-LSTM + MoS + PS + AT (Wang, Gong, and Liu 2019) 22M 54.10 52.20
AWD-LSTM + MoS + PS + AT + SNB 22M 52.37 50.18

+ dynamic evaluation (Krause et al. 2017)
AWD-LSTM (Merity, Keskar, and Socher 2017) 24M 51.60 51.10
AWD-LSTM + SNB 24M 48.23 47.54

AWD-LSTM + MoS (Yang et al. 2017) 22M 48.33 47.69
AWD-LSTM + MoS + SNB 22M 46.53 45.41

AWD-LSTM + MoS + PS (Press 2019) 22M 47.93 47.49
AWD-LSTM + MoS + PS + SNB 22M 45.51 45.33

AWD-LSTM + MoS + PS + AT (Wang, Gong, and Liu 2019) 22M 46.63 46.01
AWD-LSTM + MoS + PS + AT + SNB 22M 44.37 43.87

Table 1: Perplexity performance of each method on PTB dataset.

Liu 2019), but reduces PPLs to 43.87 on PTB and 35.16
on WT2, by an absolute reduction of 2.14 and 2.91, respec-
tively. Similar reductions of PPLs are also observed when
dynamic evaluation is not used.

Results show that span-based neural buffer is applicable
to all of these settings; reductions from these baselines are
consistently more than 2 points. The reductions from AWD-
LSTM + SNB over AWD-LSTM setting are especially sig-
nificant, reaching 5.53/5.68 and 4.37/3.71 in validation and
test perplexity on the PTB and WT2 dataset.

Oracle Policy Experiments

The experiments here aim at showing the potential of the
long-distance context in the neural buffer. We define an or-
acle policy as, between the neural buffer and its underlying
sequence model, knowing which one to select to output the
prediction of the next word. Since the oracle knows the next
word xt+1, its policy is simply picking the one with higher
likelihood for the next word. The perplexity obtained is a
lower bound of all possible policies.

We compare the oracle policy with the proposed model
AWD-LSTM+MoS+PS+AT+SNB used in the overall ex-
periments. Other comparisons include a model using only
the underlying sequential RNN model and one model that
uses prediction from the neural buffer only.

The results are listed in the top half of Table 3. In compari-
son with AWD-LSTM+MoS+PS+AT+SNB, using only se-
quential RNN has 3 point and 4 point higher PPL, and its
results are close to (Wang, Gong, and Liu 2019), indicating
that the improvement is mainly from the introduced sequen-
tial neural buffer. Furthermore, the oracle policy reaches a
much lower perplexity. This shows great potential for utiliz-
ing the long-distance context.

PPLs from using only sequential neural buffer are higher
than from using only sequential RNN. This validates the

claim in (Marvin and Linzen 2018) that local context pro-
vides much information for language model. However, the
combination of SNB and the underlying sequence model
in AWD-LSTM+MoS+PS+AT+SNB is significantly better
than using either of them. This indicates that the gains from
sequential RNN and neural buffer are complementary.

Ablation Study

We investigate the impact of each methods in the proposed
model, with results shown in the lower part of Table 3.
Annealing is verified with two setups. The first is with-

out using annealing in training (denoted as w/o anneal-
ing in training) and the second is without annealing in
test (denoted as w/o annealing in test). We observe that
it is beneficial to raise temperature during training. Per-
plexity by w/o annealing in training is increased from
43.87 and 35.16 to 45.64 and 38.23, respectively, on the
Penn Treebank and WikiText-2. Results from w/o anneal-
ing in test show that such degradation is less severe for
test. These results indicate that, during training, it is im-
portant to distribute gradients to both sequential RNN and
the neural buffer. However, during test, model should have
clear preference of the context to use.

Intrinsic reward is verified by training without the
second term rt log λt in Eq. (11) (denoted as w/o
reward) and making comparison against AWD-
LSTM+MoS+PS+AT+SNB. Notice that both of them
use sequential neural buffer. Results in Table 3 show that
w/o reward performs much worse than (Wang, Gong, and
Liu 2019)+SNB, therefore confirm the effectiveness of
intrinsic reward-driven learning.

RNN-minus representation is verified by comparing it
with word-level representation. That is, si in Eq. (7) is
replaced with hi. Similarly, Eq. (6) is normalized with re-
spect to all of words in the context. This model is denoted
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Method Params Valid Test
w/o dynamic evaluation

AWD-LSTM (Merity, Keskar, and Socher 2017) 33M 68.60 65.80
AWD-LSTM + SNB 33M 63.07 60.43

AWD-LSTM + MoS (Yang et al. 2017) 35M 63.88 61.45
AWD-LSTM + MoS + SNB 35M 60.62 58.79

AWD-LSTM + MoS + PS (Press 2019) 35M 62.38 59.98
AWD-LSTM + MoS + PS + SNB 35M 60.11 57.87

AWD-LSTM + MoS + PS + AT (Wang, Gong, and Liu 2019) 35M 61.10 58.95
AWD-LSTM + MoS + PS + AT + SNB 35M 58.75 56.12

+ dynamic evaluation (Krause et al. 2017)
AWD-LSTM (Merity, Keskar, and Socher 2017) 24M 46.40 44.30
AWD-LSTM + SNB 24M 40.72 38.59

AWD-LSTM + MoS (Yang et al. 2017) 22M 42.41 40.68
AWD-LSTM + MoS + SNB 22M 40.61 37.76

AWD-LSTM + MoS + PS (Press 2019) 22M 40.75 39.03
AWD-LSTM + MoS + PS + SNB 22M 39.98 37.01

AWD-LSTM + MoS + PS + AT (Wang, Gong, and Liu 2019) 22M 39.58 38.07
AWD-LSTM + MoS + PS + AT + SNB 22M 38.42 35.16

Table 2: Perplexity performance of each method on WT2 dataset.

method PTB WT2
AWD-LSTM+MoS+PS+AT+SNB 43.87 35.16
using only sequential RNN 46.85 39.11
using only sequential neural buffer 52.54 45.57
oracle policy 38.72 32.35

w/o annealing in training 45.64 38.23
w/o annealing in test 44.12 37.45
w/o reward 45.92 38.76
w/o RNNs-minus feature 44.72 37.88

Table 3: Combined results for analysis and ablation study.

as w/o RNN-minus feature. Results in Table 3 show that
PPL of this modification is higher, especially on WT2,
than using span-based representation.

Dynamics of Long-distance Context Utilization

We define a measure for the utilization of long-distance con-
text. The Percentage of Utilization (PoU) of long-distance
context is the relative frequency of preferring long-distance
context, computed as follows

PoU =

∑
t δ(λt ≥ 0.5)

N
, (15)

where δ(·) is an indicator function that outputs one when
its argument is true and zero otherwise. N is the number
of samples. Figure 4 plots the change of PoU with train-
ing epochs. Initially, PoU is close to 0.5, meaning that
the model is ambiguous of using long-distance context. It
quickly drops to almost zero, from which PoU starts to in-
crease and then converges to a certain percentage. In this
example, it converges to approximately 10%. We quest the
oracle policy and obtain the oracle PoU of 7%. This result
indicates that the long-distance context is indeed utilized.

Figure 4: Changes of Percentage of Utilization (PoU) of the
long-distance context with training epochs.

Notice that there is a gap between the PoU after conver-
gence and the oracle PoU. Together with the performance
gap in Table 3 between oracle policy and the proposed
model, it indicates a direction for future performance im-
provements with better policy.

Case Study

We present a case study from PTB dataset in Figure 5. The
heat map in the top half of the figure implies the relative
strength of attention weights in SNB. Given the observation
sequence ”edlerly N N ... social security” in the bottom of
the figure, the method using neural buffer attends to long dis-
tance context, ”of poor <unk> families” and ”edlerly N N
in”, implying that, when predicting the next word, it catches,
to some extent, the global semantics from the observation
and context in the buffer. In this example, its prediction of
the next word ”assist” is related to ”of poor families” and

8282



Figure 5: A snapshot of sequential neural buffer and the preceding words fed into its underlying sequence model. The special
tokens such as <unk> (out of vocabulary) or N (digit number) are results from preprocessing in (Mikolov et al. 2010).

Method Top 4 candidates for prediction
SNB only payment assist money sponsor
Sequential RNN only tax office number payment
Sequental RNN + SNB payment assist money tax

Table 4: The predicted words from SNB only, its underlying
sequential RNN only, and the proposed model with a com-
bination of Sequential RNN and SNB. They are ranked in
likelihood in descending order.

Hyper-parameter PTB WT2
training temperature 100 10
evaluation temperature 0.1 0.01
span length L 8 4
buffer size B 2048 512

Table 5: Table for hyper-parameters on Penn Treebank and
WikiText-2 dataset.

”elderly NN in”. In contrast, the words predicted from the
underlying sequential RNN are closely related to the pre-
ceding 2-gram ”social security”, but are less relevant to the
whole sentence.

More details

Table 5 lists the hyper-parameter settings.

Related Work

Recent best-performing neural sequence model for lan-
guage modeling use a variety of regularization and optimiza-
tion techniques (Press and Wolf 2017; Inan, Khosravi, and
Socher 2016). In particular, AWD-LSTM (Merity, Keskar,
and Socher 2017) improves drop-out for regularization and
gradient descent for optimization. Adversarial training is ap-
plied in (Wang, Gong, and Liu 2019) to improve generaliza-
tion. However, all of them are not directly addressing the
structural sequential recency bias problem.

One direction of using long distance context is through
grammar induction. It aims at extracting underlying gram-
mar from corpus without treebank annotation (Shen et al.

2017; Yogatama et al. 2018; Shen et al. 2018). Integrating
the tree shall benefits utilization of long-distance context.
However, its performance is still far behind sequence model
for sequence prediction tasks.

Neural cache model in (Grave, Joulin, and Usunier 2016)
is a non-parametric method to increase probability to re-
occurring patterns during test. We observe that it performs
worse than dynamic evaluation (Krause et al. 2017), which
is also a method applied during test. Since parameters in our
model are obtained during training, our method is orthogo-
nal to these methods.

A recent work of transformer-xl (Dai et al. 2019) extends
transformer architecture (Vaswani et al. 2017) to model de-
pendency beyond fixed lengths, using a recurrence mecha-
nism on adjacent segments. However, the transformer-xl re-
lies on information from long-distance context to be kept
in the recurrence mechanism. In contrast, the proposed se-
quential neural buffer directly accesses long-distance con-
text without using any time-recurrent mechanism. Never-
theless, the proposed SNB can be used together with trans-
former, in which transformer is used similarly as the LSTM
to encode local information.

Conclusion

This paper presents a neural architecture to enable neural
sequence model to efficiently and effectively utilize long-
distance context. It achieves the best perplexity results ever
reported in standard evaluation settings. A key aspect of the
proposed architecture is that it addresses the sequential re-
cency bias problem by using a span-based representation of
long-distance context, and a policy network to selectively
use local and long-distance context. A novel training algo-
rithm is also crucially important for success: we use both
annealed maximum likelihood estimation and an intrinsic
reward-driven learning to deal with simple sentence domi-
nance problem during training.
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