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Abstract

Learning to generate text with a given label is a challenging
task because natural language sentences are highly variable
and ambiguous. It renders difficulties in trade-off between
sentence quality and label fidelity. In this paper, we present
CARA to alleviate the issue, where two auxiliary classifiers
work simultaneously to ensure that (1) the encoder learns
disentangled features and (2) the generator produces label-
related sentences. Two practical techniques are further pro-
posed to improve the performance, including annealing the
learning signal from the auxiliary classifier, and enhancing
the encoder with pre-trained language models. To establish a
comprehensive benchmark fostering future research, we con-
sider a suite of four datasets, and systematically reproduce
three representative methods. CARA shows consistent im-
provement over the previous methods on the task of label-
conditional text generation, and achieves state-of-the-art on
the task of attribute transfer.

Introduction

Text generation is an important challenge in natural lan-
guage processing (NLP). Most previous research in this area
has focused on unsupervised text generation (Bengio et al.
2003; Mikolov et al. 2010), and success has been achieved
recently, such as pre-trained generative training (Radford
et al. 2019; Yang et al. 2019). However, these setups mea-
sure the ability of models to generate the coherent con-
tent of a sentence, but do not address more natural human
communication in a given context. For example, generat-
ing more engaging conversions requires conditioning on per-
sonality in image captioning and dialogue systems. Synthe-
sis of coherent sentences requires conditioning on a given
topic/sentiment. These setups can be formulated as label-
conditional text generation.

Several attempts have been made to solve this problem.
Most are based on deep latent variable models (LVMs), such
as variational autoencoders (VAE) (Kingma and Welling
2013) and their conditional variants (Hu et al. 2017; Yang
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et al. 2017). One attractive property of these models is that
they map sentences to global language features in a latent
space, and allow manipulation of generated sentences with
a specific tense, sentiment or topic.

One prominent challenge for LVMs is to learn smooth
and disentangled latent representations, such that genera-
tion from this space results in realistic sentences and can
be effectively controlled in the category it belongs to dur-
ing conditional decoding. Hu et al. (Hu et al. 2017) pro-
posed Ctrl-Gen, which uses a VAE to represent sentences as
smooth Gaussian distributions, regularized towards a stan-
dard normal prior distribution in the latent space. However,
VAE-based methods (Kingma and Welling 2013) are dif-
ficult to train due to the notorious posterior collapse and
KL vanishing (Bowman et al. 2015). To solve this problem,
ARAE (Zhao et al. 2017) uses adversarial learning to con-
struct a flexible prior distribution. It further proposes an aux-
iliary classifier in the latent space to disentangle the learned
latent feature from the conditional labels.

In this paper we re-examine the relationship between dis-
entangled feature learning and label-conditional generation,
and show that the former does not necessarily lead to the lat-
ter. We term this issue as a non-identifiability issue. This is
manifested when the generator is able to resemble training
samples perfectly but degenerates to ignoring conditional la-
bel and solely relying on the latent code, even though the
encoder learns label-agnostic representations.

To solve this issue, we propose Complementary Auxiliary
classifier Regularized Auto-encoder (CARA), where there
are two classifiers to predict labels: a classifier in the la-
tent space is used for disentangling feature learning as in
ARAE, and a complementary classifier in the observation
space is proposed to encourage the generator to contain the
conditional label. We prove that the proposed complemen-
tary auxiliary classifiers introduce a cycle-consistency loss
for conditional labels, leading to maximizing the mutual
information between generated sentences and their corre-
sponding labels. Further, we explore the trade-off between
generation quality and label-conditional accuracy, and pro-
pose two practical techniques for improving overall perfor-
mance: (i) an annealing training schedule for the proposed
complementary auxiliary classifier to gradually incorporate
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label-conditional supervision signals; (ii) BERT (Devlin et
al. 2018) is used as an encoder to provide more universal and
generalizable latent representations. We show it provides
empirically improved LVM-based conditional text genera-
tion. We build a suite of four datasets for comprehensive
study of label-conditional text generation. Quantitative and
qualitative experimental results demonstrate that the pro-
posed techniques consistently shows improved performance.
We further apply CARA to the style transfer task, where
CARA achieves state-of-the-art performance.

Preliminaries

Consider a training set S = {(xn, yn)}Nn=1 of pairwise
data, where xn = [xn,1, xn,2, ..., xn,Tn

] is a text se-
quence of length Tn, and yn ∈ Y is its corresponding la-
bel/attribute/class. The goal of conditional text generation is
to generate a new x for a given y. Due to the diversity of nat-
ural language, a latent code z is introduced to characterize
diverse information associated with y, required to generate
faithful and variable x. Typically, z is drawn from an easily-
sampled prior distribution p(z), such as Gaussian N (0, I).

Given z and y, the sampling procedure for the conditional
pG(x|z, y) =

∏T
t=1 pG(xt|x<t, z, y) is performed in a se-

quential manner, and an auto-regressive generator model G
is used to generate xt at the every time step:

xt = G(x<t, z, y), (1)

where x<t indicates all tokens before t. The synthesis of a
given sentence continues until the end-of-sentence symbol
is manifested.

Auto-encoder for Conditional Text Generation

The generator G is typically learned by maxi-
mizing the marginal log likelihood log pG(x) =
log

∫
pG(x|z, y)p(z)p(y)dzdy, where p(y) is the la-

bel distribution. However, the marginalizing integral wrt
z is intractable to compute for many generator choices.
Thus, variational inference is considered, and the true
posterior pG(z|x) ∝ pG(x|z)p(z) is approximated via
the variational distribution qE(z|x), implemented via an
encoder:

z = E(x, ς), ς ∼ q0(ς) (2)

where q0(ς) is a noise distribution. The observed sentence x
can be represented using z̃ ∼ qE(z|x), and reconstructed as
x̂ ∼ pG(x|z̃, y), where y is the corresponding label of x. A
reconstruction loss is applied to the generated sentence and
observation:

min
E,G

Lrec = −Ez̃∼qE(z|x),y∼p(y)[log pG(x|z̃, y)]. (3)

There are challenges in optimizing the auto-encoder ob-
jective in (3) for conditional text generation.
• Smoothness: The learned latent code z should be a

smooth distribution such that samples or interposition of
samples from it can lead to plausible sentence generation.
This problem is inherited from using an auto-encoder for
generic sentence generation.

• Disentanglement: For better control of attributes, z and
y are desired to be disentangled, where the features en-
coded in each variable are exclusive of each other. Inde-
pendence constraints are applied on these two variables
in prior work, such as reconstruction of z through an en-
coder (Hu et al. 2017) and using a latent space discrimi-
nator to enforce z to be independent from y (Zhao et al.
2017).

Adversarially Regularized Auto-Encoders

Various techniques have been proposed to learn smooth
and disentangled latent representations (Higgins et al. 2017;
Alemi et al. 2017; Fu et al. 2019). In the context of con-
ditional text generation, adversarially regularized autoen-
coders (ARAEs) (Zhao, Zhao, and Eskenazi 2017) have
been introduced. Learning ARAEs can be viewed as pro-
ceeding in two alternating steps, including disentangled fea-
ture learning and adversarial feature generation.

In the first step, in addition to the reconstruction objective
in (3), the inferred z is trained to only contain information
exclusive of y. This disentanglement objective is achieved
using an auxiliary classifier C(z):

min
E

max
C

Ldisentangle = Ez∼qE(z|x)[log pC(y|z)], (4)

where the classifier C is learned to categorize z into its cor-
responding labels, while E is forced to infer z to fake the
classifier C. Ideally, at convergence, one cannot predict y
using z, and thus {y, z} are disentangled.

In the second step, we learn a prior using a neural sampler
z = S(ε) to replace the fixed prior, where ε ∼ p0(ε) is
an auxiliary distribution that one may easily draw samples
from. The neural sampler is trained to generate features, to
match the distribution q(z) learned in the first step.

A discriminator D(z) is introduced to distinguish the do-
main of z, with d = 1 indicating z comes from E(x) and
d = 0 indicating z comes from S(ε). The min-max objective
in the latent space can be written as:

min
E,S

max
D

Ladversarial = Ex∼p(x)[log pD(d = 1|E(x))]

+ Eε∼p0(ε)[log pD(d = 0|S(ε))]. (5)

where p(x) is data distribution. When the optimum is
achieved, the generated feature distribution π(z) induced by
z = S(ε) can match the disentangled distribution qE(z) =∫
qE(z|x)q(x)dx.
The two steps are updated iteratively. Since (4) in the first

step ensures the disentangled representation of q(z) wrt to
p(y), and (5) in the second step ensures the marginal dis-
tribution matches π(z) = q(z), the two steps together can
guarantee that the generated features π(z) from the neural
sampler S can characterize the disentangled representation
wrt to p(y) at its optimum.

The full objective of ARAEs for the encoder E and gen-
erator G is:

min
E,G

LARAE = Lrec + Ldisentangle + Ladversarial (6)

We see that ARAE can be viewed as regularizing the basic
auto-encoder objective in (3) with a disentanglement term
and an adversarial term.
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Figure 1: Illustration of possible solutions to the disentan-
gled feature learning objective in (7). For the example sen-
tences shown in the top row, three possible solutions are pro-
vided in the bottom row. Solution A and B are valid to (7)
and Solution C is false.

Advantages of ARAEs ARAE has the following char-
acteristics: (i) it provides a smooth latent space for dis-
crete sequences, with a flexible learned prior. Compared
to variational auto-encoder (VAE)-based methods (Kingma
and Welling 2013), ARAE does not suffer from KL van-
ishing or posterior collapse (Bowman et al. 2015; Kingma
and Welling 2013; Chen et al. 2016) caused by using KL-
divergence with a fixed prior as regularization in the latent
space. (ii) the classifier C applied in the latent space ex-
plicitly constrains the encoder E to only record attribute-
independent features, encouraging disentanglement of latent
features and attributes during encoding, and thus improv-
ing control and manipulation of attributes during conditional
generation performed by generator G.

Complementary Auxiliary Classifiers

Pitfalls of ARAEs In ARAE the generator G learns to
generate text x from a joint distribution constructed by the
latent code z and the label condition y. During the disen-
tangled feature learning stage of ARAE, the encoder E is
trained to satisfy two objective:

min
E

Lrec + Ldisentangle (7)

This means that (i) the reconstruction Lrec in (3) encour-
ages z to be unique in the latent space, so that the original
x can be perfectly reconstructed; and (ii) the disentangle-
ment Ldisentangle in (4) encourages z to be disentangled from
y, thus y becomes the only source to control the label of
the generated sentences. However, we argue that it is chal-
lenging for the encoder E to produce z that simultaneously
satisfies both objectives, and generator G to only rely on z
(ignore the dependence of y) during generation.

Issues on Disentanglement vs Controllable Generation
The above implies that disentanglement does not necessar-
ily lead to controllable generation. We call this phenomenon
the non-identifiability issue in disentangled feature learning.
This problem occurs only under the assumption that train-
ing samples are non-parallel, where there is no sentence pair

that has the same content but the opposite labels. This is
common in many cases, such as text style transfer and con-
ditional generation with non-parallel data.

We construct an example in Figure 1 to explain this fur-
ther, where the dataset only contains two sentence sam-
ples S1 = {(x1, y=1), (x2, y=0)}. Here the condition-
ing information y is the sentiment, and the auxiliary clas-
sifier C learns to categorize “good” into y=1 and “bad”
into y = 0. We show three possible solution candidates.
First, the disentanglement objective encourages the en-
coder to learn to summarize label-agnostic information, such
as “The pizza tasted” and “The sushi tasted” into z,
which is independent from the label-related information
such as “good” and “bad”. Therefore, Solutions A and B
are valid, and Solution C is invalid to the disentanglement
objective. Further, it can be shown that both Solutions A and
B satisfy the reconstruction objective, as the the joint {z, y}
is unique enough to identify its corresponding x. If Solu-
tion A is chosen, the model can perfectly generate S1 using
pG(x|z), rather than pG(x|z, y).

Ideally, the generator is expected to synthesize sen-
tences successfully conditioned on any combination of
label-agnostic and label-related information, by training
with the objectives in (6). However, as the dataset is non-
parallel, the model only sees a limited combination of label-
agnostic and label-related information. For example, in the
illustrative dataset, the model is only able to see pairs of
“pizza, good” and “sushi, bad”, instead of a full set of
pairs (e.g., “pizza, good”, “pizza, bad”, “sushi, good”
and “sushi, bad”). Thus, by only relying on one source
such as “pizza/ sushi” or “good/ bad”, the generator is
able to perfectly reconstruct all training sentences. In this
case, the generator may learn a degenerated distribution
pG(x|z) or pG(x|y) instead of pG(x|z, y), depending on
which source is dominant in the dataset.

Proposed Method: CARA

To solve this issue, we propose Complementary Auxiliary
classifier Regularized Auto-encoder (CARA). It enhances
ARAE with an additional auxiliary classifier for the gener-
ated sentences. Specifically, during training, the generator
synthesizes a sentence x̂ conditioned on a latent code z and
a sampled conditional label y, which is then fed to a classi-
fier. The generator is optimized to minimize the classifica-
tion loss of the classifier corresponding to the conditioned
label. Let CMI denote the classifier in the output space. The
formulation can be written as:

max
E,G,CMI

LMI = Ez∼qE(z|x),y∼p(y),x∼pG(z,y) log pCMI(y|x)
(8)

The full model architecture of CARA is illustrated in Fig-
ure 2. Since the output of the generator is discrete, this com-
plicates loss back-propagation from the classifier in the out-
put space. We therefore follow (Hu et al. 2017), adopting
the Gumbel Softmax distribution for continuous approxi-
mation of discrete output. Note that the idea of introducing
the additional auxiliary classifier has been studied in TAC-
GAN (Gong et al. 2019). The motivations are different: the
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Figure 2: Illustration of the proposed CARA method. A
complementary auxiliary classifier CMI is proposed to guide
the generated sentences to contain the label information. In
the training stage, E learns to maximize the classifier loss of
C for disentanglement, and G learns to minimize the classi-
fier loss of CMI for conditional generation. In the evaluation
stage, only the networks in blue (i.e., the neural sampler S
and generator G) are used for label-conditional text genera-
tion. Further, we consider BERT as the encoder E, and add
CMI with an annealing schedule.

complementary classifier in CARA aims to encourage label-
related information, while twin classifier in TAC-GAN aims
to match the joint distributions.

Connection to Mutual Information Note that the gener-
ator G and the proposed complementary auxiliary classifier
CMI constitute a path for the reconstruction of y, as illus-
trated in the third row of Figure 2:

y
G−→ x

CMI

−→ y

By marginalizing the dependence on z in (8), we have the
reconstruction loss for y, written in its log likelihood form
as:

FE = Ep∼p(y),x∼p(x|y)[log pCMI(y|x)]. (9)

Following (Li et al. 2017), we show that this cycle-
consistency term for y leads to maximizing the mutual in-
formation between the generated x and its label y.

Corollary 1 For random variables x and y, the mutual in-
formation between x and y can be written as

I(x, y) ≥ H(y) + FE (10)

The proof is provided in the Appendix. Since the label
distribution p(y) is known, H(y) is fixed, and FE becomes a
lower bound for I(x, y). In practice, CARA maximizes FE

in (9), which effectively maximizes the mutual information,
enforcing the generated x to contain the label information.

The full objective for CARA is:

min
E,G

LCARA = LARAE + λLMI (11)

where λ is the weighting hyper-parameter for LMI.

Note that the proposed CARA model has two classifiers,
C and CMI, to predict labels. Classifier C operates in the la-
tent space, and the encoder is trained to maximize the clas-
sification loss so that disentangled features can be learned.
The other classifier CMI is in the observation space, and the
generator is trained to minimize the classification loss so that
the generated sentences can be controlled. As such, the two
auxiliary classifiers are complementary: CMI helps reduce
the non-identifiability issue that C causes, and C disentan-
gles z and y so that CMI can effectively constitute a cycle-
consistency term to maximize the mutual information.

Trade-off Between Generation Quality and
Conditional Accuracy

Though CARA can generate more controllable sentences,
due to the proposed auxiliary classifier CMI, it introduces
an additional issue on how to tune λ to balance sentence
quality (e.g., coherence and faithful linguistic meaning) and
label-conditional accuracy (e.g., reflecting the category it be-
longs), as discussed by (Pang and Gimpel 2018; Li et al.
2019). When λ is small, the label-agnostic information may
dominate, as pG(x|z, y) tends to degenerate to pG(x|z).
Example scenarios include text style transfer where only few
sentiment-connected words (e.g., “like”, “hate”, “good” and
“bad”) in a sentence can indicate sentiment, or topic trans-
fer where the number of topical words (e.g., “philosophy”,
“finance” and “sports”) in a sentence (e.g., “I just watched a
video about how to play tennis this morning.”) can be few.
The result is that the model can perfectly resemble the train-
ing sentences, but fail to change the conditional category
when given different conditional labels. When λ is large,
the label information can dominate, and pG(x|z, y) tends
to degenerate to pG(x|y). The model learns to output label-
related sentences but sacrifices sentence quality (e.g., “I like
like like” and “It is bad, bad, bad”). We propose two practi-
cal techniques to alleviate this issue.

Annealing Training Schedule We first consider an an-
nealing training schedule on λ, to gradually incorporate LMI
into training without greatly changing the learning from
Lrec. Formally, λ has the form:

λt =

{
f( t

T ), if t
T ≤ R

λmax, otherwise
(12)

where t is the iteration step, T is the total number of iter-
ations, and f is a monotonically increasing function. There
are two hyper-parameters:

• R: the proportion of total iterations used for increasing
λ to a plateau.

• λmax: the maximum value λ can reach.

f monotonically increases λ from 0 to λmax using R portion
of T iterations.

BERT as a Strong Encoder We consider to improve
the encoder for stronger sentence representation z. Re-
cently, models that are pre-trained with large-scale text data
have been shown to provide superior generalization capa-
bility when fine-tuned for various language-understanding
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tasks (Devlin et al. 2018; Radford et al. 2018; 2019). It has
been shown in (Subramanian et al. 2018) that general pur-
pose encoders help text generation. In this paper, we con-
sider BERT (Devlin et al. 2018) as our encoder to provide
more generalizable sentence representations, so as to bal-
ance model learning from different losses and make training
more stable.

Related Work

Difference with Attribute Transfer

This paper focuses on label-conditional text generation,
where z is drawn from a latent distribution, allowing gen-
eration of diverse sentences. This task is different from
attribute transfer, where z is extracted from a given sen-
tence and fixed during sentence generation. Therefore, label-
conditional text generation requires learning a smooth la-
tent space such that sampling from this space leads to faith-
ful linguistic sentences. Many methods for attribute trans-
fer treat the problem as sequence-to-sequence translation,
and source sentences must be provided in order to transfer
labels in target sentences (Li et al. 2018; Xu et al. 2018;
Zhang, Ding, and Soricut 2018). Such methods are not able
to conduct label-conditional generation due to the lack of
a smooth space to draw samples from. In contrast, the pro-
posed CARA can be used for both label-conditional genera-
tion and style transfer tasks.

Differences from Prior Work

The most related work with ours is Ctrl-Gen (Hu et al. 2017),
ARAE (Zhao et al. 2017) and NN-Outlines (Subramanian
et al. 2018). In Ctrl-Gen, a label classifier is also incorpo-
rated in the observation space. However, our model learns a
smoother latent space, via adversarial learning, and a more
effective disentanglement constraint is enforced by the aux-
iliary classifier in the latent space. It is noted that ARAE
adopts separate generators for each conditional label, and
train them only with samples within the corresponding cate-
gory. This aims to implicitly alleviate the non-identifiability
issue, but sacrifices performance as each generator is trained
with less samples. It is also inherently impractical when
the number of labels increases. On the contrary, CARA
does not suffer from either performance degrading due to
less samples or excessive parameters. NN-Outlines used a
pre-trained general purpose sentence encoder for providing
black-box high-level “outlines”, and an generative adversar-
ial network in the latent space to match the distribution of
the latent representations induced by the encoder. Compared
to CARA, NN-Outlines does not have any disentanglement
constraints, or additional label control supervision signals.

Experiments

Code and experiment setup is available at Github 1.

Experimental Setting

Datasets Since label-conditional text generation is less
comprehensively studied, we consider a suite of four

1https://github.com/s1155026040/CARA

Dataset Attribute Train Valid Test

Personality
Captioning

Happy 864 30 39
Angry 868 26 42

Malicious 872 14 58

Style
Captioning

Humorous 6000 300 300
Romantic 6000 300 300
Factual 6000 300 300

Yahoo
Questions

Science & Math 126K 14K 6000
Entertainment & Music 126K 14K 6000
Politics & Government 126K 14K 6000

Yelp Positive 270K 2000 500
Negative 180K 2000 500

Table 1: Dataset statistics

datasets to study this problem, as summarized in Table 1.

• Personality captioning (Shuster et al. 2019) was pro-
posed for engaging image captioning via personality.
Each image contains captions with one designated person-
ality. We choose captions from 3 distinctive personalities:
happy, angry and malicious.

• Style captioning We adapt the style-based image caption-
ing dataset in (Gan et al. 2017) to construct the style-based
caption generation task. Three different styles are consid-
ered: humorous, romantic and factual.

• Topic-based question generation We choose three cate-
gories from the Yahoo dataset (Zhang, Zhao, and LeCun
2015): Society & Culture, Business & Finance, and
Family & Relationships. We follow (Zhao et al. 2017)
to only generate questions.

• Sentiment manipulation We use the Yelp dataset with
binary sentiment labels. We follow the setup of (Shen et
al. 2017) for data splitting.

Evaluation We consider three metrics: (1) BLEU for sen-
tence quality, (2) Accuracy for conditional generation capa-
bility. The accuracy is assessed by an oracle classifier to cor-
rectly predict the attributes that generated sentences are con-
ditioned on. (3) G-score is reported as the geometric mean
of Accuracy and BLEU (Xu et al. 2018). This is the most
important metric, as it evaluates the overall performance.

We consider two settings: (i) Conditional generation. z is
generated by the neural sampler S and y is uniformly sam-
pled, (z, y) is used for generation. BLEU of each generated
sentence is computed by comparing with all sentences in
the test set, as there are no source sentences. We further re-
port Self-BLEU (Zhu et al. 2018) to evaluate the diversity of
generated sentences. (ii) Attribute transfer. z of a sentence
is extracted by encoder E. It is combined with a different
label for transfer generation. In this setting, we follow com-
mon practice to incorporate the generator an attention mech-
anism to attend encoded features of source sentences. BLEU
of each transferred sentence is computed by comparing with
its source sentence.

Baselines We compare with three baselines: (1) Ctrl-Gen
(Hu et al. 2017); (2) ARAE (Zhao et al. 2017), and a ver-
sion without using separate generators (ARAE-); and (3)
NN-Outlines (Subramanian et al. 2018) proposes the use
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Model Conditional Generation Attribute Transfer
ACC↑ BLEU↑ G-score↑ Self-BLEU↓ ACC↑ BLEU↑ G-score↑

Ctrl-Gen 65.49 11.14 27.01 96.94 67.61 22.87 39.32
ARAE 66.66 2.64 13.27 99.98 69.87 0.00 0.00
ARAE- 71.83 14.31 32.06 98.81 88.03 20.31 42.28

NN-Outlines 60.12 5.35 17.93 93.57 - - -
CARA 70.42 15.90 33.46 95.08 91.55 21.61 44.48

CARAA 67.61 17.56 34.46 94.46 84.51 19.55 40.65
CARAAB 61.13 18.85 33.95 88.95 66.20 29.67 44.32

Table 2: Personality captioning results.

Model Conditional Generation Attribute Transfer
ACC↑ BLEU↑ G-score↑ Self-BLEU↓ ACC↑ BLEU↑ G-score↑

Ctrl-Gen 41.53 28.53 34.42 76.22 42.60 16.73 26.70
ARAE 43.90 58.53 50.69 99.78 47.02 2.58 11.01
ARAE- 32.80 61.94 45.07 89.63 36.67 0.66 4.92

NN-Outlines 37.68 17.27 25.51 87.32 - - -
CARA 41.98 52.45 46.92 83.76 42.32 1.08 6.76

CARAA 44.40 57.49 50.52 86.62 45.47 1.19 7.36
CARAAB 47.80 55.38 51.45 75.18 40.20 22.60 30.14

Table 3: Style captioning results.

Figure 3: Schedule comparison.

of a general purpose encoder for text generation, and we im-
plement it using BERT.

We consider three variants of CARA:

• CARA: the basic model;

• CARAA: CARA with annealing training scheme;

• CARAAB: CARA with annealing and BERT encoder.

We provide training details in the Appendix.

Results & Analysis

Results of the four datasets are shown in Tables 2, 3, 4 and 5,
respectively. We aim to answer the following questions.

Effectiveness of CMI schedule Figure 3 compares the
constant and annealing schedules for λ. The two schedules
with various configurations are performed, and each dot rep-
resent the result for each configuration. The constant sched-
ule has difficulties balancing BLEU and Accuracy, while
the annealing schedule can help balance the two metrics, as

demonstrated by the a large number of dots positioned closer
to the diagonal line.

Effectiveness of BERT The incorporation of BERT yields
consistent improvement for both conditional generation and
attribute transfer. Note that the intra-class diversity of Per-
sonality and Style captioning datasets are quite high. Most
models without BERT show low diversity on these two chal-
lenging datasets By incorporating BERT as a strong encoder,
the collapse is not observed in CARAAB, demonstrating that
a strong universal encoder provides more meaningful latent
codes for the generator to rely on in decoding.

Attribute Transfer As CARA can be applied to the at-
tribute transfer task, we further compare it with models
specifically designed for this task. On the Yelp dataset, we
compare with additional previous methods, including Cross-
Align (Shen et al. 2017), MultiDecoder (Fu et al. 2018),
DeleteAndRetrieve (Li et al. 2018), StyleTransformer (Dai
et al. 2019), Back-Translation (Prabhumoye et al. 2018), and
iVAEMI (Le Fang 2019). Due to limited space, we provide a
comparison with more methods in the Appendix.

Conditional Text Generation The proposed CARAAB
consistently achieves the best G-score for all datasets, except
Personality captioning. It indicates that CARA is a strong
competitor for controllable sentence generation. Meanwhile,
the lower Self-BLEU scores of CARA shows that the gener-
ated sentence samples of CARA are diverse. On two large-
scale datasets, Yahoo and Yelp, CARA provides consistent
improvement. ARAE achieves similar overall performance
as ARAE-, while CARA improves ARAE-. This verifies our
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Model Conditional Generation Attribute Transfer
ACC↑ BLEU↑ G-score↑ Self-BLEU↓ ACC↑ BLEU↑ G-score↑

Ctrl-Gen 60.47 21.38 35.96 59.21 60.12 64.21 62.13
ARAE 50.05 22.94 33.88 84.24 37.73 17.06 25.37
ARAE- 46.79 23.74 33.33 51.93 49.38 60.23 54.54

NN-Outlines 38.81 19.90 27.79 51.53 - - -
CARA 63.67 25.60 40.31 52.45 68.26 34.10 48.25

CARAA 67.55 25.88 41.81 50.33 69.17 68.96 69.06
CARAAB 69.67 30.62 46.19 56.11 75.61 69.97 72.74

Table 4: Topic-based question generation results on Yahoo dataset.

Model Conditional Generation Attribute Transfer
ACC↑ BLEU↑ G-score↑ Self-BLEU↓ ACC↑ BLEU↑ G-score↑

Cross-Align - - - - 79.5 12.4 31.40
MultiDecoder - - - - 47.6 13.25 25.11

DeleteAndRetrieve - - - - 88.7 14.75 36.17
StyleTransformer - - - - 93.6 17.1 40.01

iVAEMI - - - - 92.0 36.7 58.11
Ctrl-Gen 87.81 28.83 50.31 51.23 87.57 37.75 57.50
ARAE 96.72 20.18 44.18 35.81 85.43 22.97 44.30
ARAE- 60.07 27.63 40.74 33.04 61.29 28.62 41.88

NN-Outlines 55.31 19.84 33.12 54.57 - - -
CARA 91.45 30.12 52.48 52.08 91.69 43.64 63.26

CARAA 91.49 32.46 54.50 49.74 92.42 46.28 65.40
CARAAB 94.90 37.23 59.44 44.51 95.45 53.25 71.29

Table 5: Sentiment transfer results on Yelp dataset.

Business & Finance

ARAE
Where was the most emst adie place you apply as?

Do you need a flat right now?
What is the law was a parent’s length at their child’s pepmed?

CARAAB

What is the conversion of irish money to american money?
Knowing what the effect of ads are on people , why do we allow ads showing beautiful people.

Where is the best place to look for a grant for a nonprofit soccer club?
Family & Relationships

ARAE
What is the meaning of compliment?

What would you do if you just got out of heavyyme and have no job no where to
When ur a level 2 do u get 20some the same day?

CARAAB

Why does a cheating man act like he is not cheating if he isn’t interested in his
Why do people think that children involved in a gay/lesiban adoption will be rebound

what does it mean when someone tells you they always think about you?

Table 6: Qualitative results of conditional generation in topic-based question generation. Sentences in Italic form indicate their
demonstrated categories do not match with their conditioned labels.

assumption that ARAE’s solution for alleviating the non-
identifility is less effective than CARA, and sacrifices sen-
tence quality due to less training samples for each generator.

Generated Samples In Table 6, we show the samples for
conditional generation. The sentences generated by ARAE
may lose its label information, while CARA shows strong
dependence on the labels. Please see more results on label-
conditional generation and attribute transfer in Appendix.

Conclusions

We have described CARA for label-conditional text genera-
tion. CARA utilizes one auxiliary classifier for disentangled
feature learning in the latent space, and the other auxiliary
classifier for more accurate label-conditioning on the gener-
ated sentences. An annealing training schedule and adopting
BERT as a strong encoder further improve CARA’s perfor-
mance. Experiments on four datasets consistently show that
CARA achieves both improved natural sentences generation
and accurate label transfer.
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