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Abstract

State-of-the-art Transformer-based neural machine transla-
tion (NMT) systems still follow a standard encoder-decoder
framework, in which source sentence representation can be
well done by an encoder with self-attention mechanism.
Though Transformer-based encoder may effectively capture
general information in its resulting source sentence repre-
sentation, the backbone information, which stands for the
gist of a sentence, is not specifically focused on. In this
paper, we propose an explicit sentence compression method
to enhance the source sentence representation for NMT.
In practice, an explicit sentence compression goal used to
learn the backbone information in a sentence. We propose
three ways, including backbone source-side fusion, target-
side fusion, and both-side fusion, to integrate the compressed
sentence into NMT. Our empirical tests on the WMT English-
to-French and English-to-German translation tasks show
that the proposed sentence compression method significantly
improves the translation performances over strong baselines.

1 Introduction
Neural machine translation (NMT) is popularly imple-
mented as an encoder-decoder framework (Vaswani et
al. 2017), in which the encoder is right in charge
of source sentence representation. Typically, the input
sentence is implicitly represented as a contextualized source
representation through deep learning networks. By further
feeding the decoder, the source representation is used to
learn dependent time-step context vectors for predicting
target translation (Bojar et al. 2018).

In state-of-the-art Transformer-based encoder, self-
attention mechanisms are good at capturing the general
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information in a sentence (Dou et al. 2018a; Wang et
al. 2019; Yang et al. 2019a). However, it is difficult to
distinguish which kind of information lying deeply under the
language is really salient for learning source representation.
Intuitively, when a person reads a source sentence, he/she
often selectively focuses on the basic sentence meaning,
and re-reads the entire sentence to understand its meaning
completely. Take the English sentence in Table 1 as an
example. We manually annotate its basic meaning as a
shorter sequence of words than in the original sentence,
called backbone information. Obviously, these words with
the basic meaning contain more important information for
human understanding than the remaining words in the
sentence. We argue that such backbone information is
also helpful for learning source representation, and is not
explicitly considered by the existing NMT system to enrich
the source sentence representation.

In this paper, we propose a novel explicit sentence
compression approach to enhance the source representation
for NMT. To this end, we first design three sentence
compression models to accommodate the needs of various
languages and scenarios, including supervised, unsuper-
vised, and semi-supervised ways, to learn a backbone
information words sequence (as shown in Table 1) from
the source sentence. We then propose three translation
models, including backbone source-side fusion based NMT
(BSFNMT), backbone target-side fusion (BTFNMT), and
both-side fusion based NMT (BBFNMT), to introduce this
backbone knowledge into the existing Transformer NMT
system for improving translation predictions. Empirical
results on the WMT14 English-to-German and English-to-
French translation tasks show that the proposed approach
significantly improves the translation performance over the
strong even state-of-the-art NMT baselines.

2 Explicit Sentence Compression

Generally, sentence compression1 is a typical sequence
generation task which aims to maximize the absorption and
long-term retention of large amounts of data over a relatively

1There are many types of sentence compression. In this paper,
we focus on abstract sentence summarization.
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Sentence Both the US authorities and the Mexican security forces are engaged
in an ongoing battle against the drug cartels.

Basic Meaning US authorities and Mexican forces battle against drug cartels
Backbone supervised ESC US and Mexican fight drug cartels
Backbone unsupervised ESC US authorities and Mexican security forces battle drug cartels
Backbone semi-supervised ESC US authorities and Mexican security forces battle against drug cartels

Table 1: An example of sentence compression.

short sequence for text understanding (Knight and Marcu
2002; Che et al. 2015). To distinguish the importance of
words in the sentence and, more importantly, to dig out the
most salient part in the sentence representation, we utilize
the sentence compression method to explicitly distill the key
knowledge that can retain the key meaning of the sentence,
termed explicit sentence compression (ESC) in this paper.
Depending on whether or not the sentence compression
is trained using human annotated data, the proposed
method can be implemented in three ways: supervised ESC,
unsupervised ESC, and semi-supervised ESC.

2.1 Supervised ESC

Sentence compression usually relies on large-scale raw
data together with their human-labeled data, which can
be viewed as supervision, to train a sentence compression
model (Rush, Chopra, and Weston 2015a; Hu, Chen, and
Zhu 2015; Chopra, Auli, and Rush 2016; Cheng and
Lapata 2016; Nallapati et al. 2016; Duan et al. 2019).
For example, Nallapati et al. (2016) proposed an attentive
encoder-decoder recurrent neural network (RNN) to model
abstractive text summarization. Song et al. (2019) furture
proposed MAsked Sequence to Sequence pre-training
(MASS) for the encoder-decoder sentence compression
framework which reported state-of-the-art performance on
both the Gigaword Corpus and DUC Corpus2.

Sentence compression can be conducted by a typical
sequence-to-sequence model. The encoder represents the
input sentence S as a sequence of annotation vectors, and
the decoder depends on the attention mechanism to learn the
context vector for generating a compressed version S

′
with

the key meaning of the input sentence. Recently, the new
Transformer architecture proposed by Vaswani et al. (2017),
which fully relies on self-attention networks, has exhibited
state-of-the-art translation performance for several language
pairs. We follow this practice and attempt to apply the
Transformer architecture to such a compression task.

2.2 Unsupervised ESC

A major challenge in supervised sentence compression is
the scarce high quality human annotated parallel data. In
practice, due to the lack of parallel annotated data, the
supervised sentence compression model cannot be trained
or the annotated data domain is different, resulting in
the sentence compression model trained on the in-domain
performing poorly on the out-of-domain.

2https://duc.nist.gov/duc2004/tasks.html

Supervised sentence compression models have achieved
impressive performances based on large corpora containing
pairs of verbose and compressed sentences with human
annotation (Nallapati et al. 2016; Song et al. 2019).
However, the effectiveness relies heavily on the availability
of large amounts of parallel original and human-annotated
compressed sentences. This hinders the sentence compres-
sion approach from further improvements for many low-
resource scenarios. Recently, motivated by recent progress
in unsupervised cross-lingual embeddings, the unsupervised
NMT (Artetxe et al. 2018; Lample et al. 2018a; 2018b)
opened the door to solving the problem of sequence-to-
sequence learning without any parallel sentence pairs. It
takes advantage of the lossless (ideal situation) nature of
machine translation between languages; i.e., it can translate
language L1 to language L2 and back translate L2 to
language L1. However, sentence compression does not have
this feature. It is lossy from sentence S to sentence S

′
, which

makes it difficult to restore from the compressed sentence S
′

to the original sentence S.
Fevry and Phang (2018) added noises to extend the

original sentences and trained a denoising auto-encoder to
recover the original, constructing an end-to-end training
network without any examples of compressed sentences in
sequence to sequence framework. In doing so, the model
has to exclude and reorder the noisy sentence input, and
hence learns to output more semantic important, shorter
but grammatically correct sentences. There are two types
of noise used in the model: Additive Sampling Noise and
Shuffle Noise.
Additive Sampling Noise: To extend the original sentence,
we sample additional sentence from the training dataset
randomly, and then sub-sample a subset of words from
each without replacement. The newly sampled words are
appended to the original sentence.
Shuffle Noise: In order for the model to learn to rephrase
the input sentence to make the output shorter, we shuffle the
resultant additive noisy sentence.

To gain a better quality for the compressed sentences,
we transfer the method of Fevry et al. (2018) into the
Transformer architecture instead of their suggested RNN
architecture, which makes it conducive to deeper network
training and a larger corpus.

2.3 Semi-supervised ESC

As pointed out in Song et al. (2019), sequence to sequence
framework has attracted much attention recently due to
the advances of deep learning by using large-scale data.
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Many language generation tasks have only a small scale of
pair data which can’t support to train a deep model with
good generalization ability. In comparison, there is a lot of
unpaired data which is earier to obtain.

We observe a performance degradation caused by
different domains in the supervised ESC. According to
the experimental results of Fevry and Phang (2018), the
accuracy of the unsupervised ESC is currently lower than
the supervised one. Therefore, we have further adopted
the semi-supervised explicit sentence compression model
to alleviate this problem. Specifically, the unsupervised
training (often referred to as pre-training) is performed on
the unpaired data first and fine-tuning with the small scale
paired data (supervised training) to obtain the ESC model
with good performance and generalization ability.

2.4 Compression Rate Control

Explicit compression rate (length) control is a common
method which has been used in previous sentence
compression works. Kikuchi et al. (2016) examined several
methods of introducing target output length information, and
found that they were effective without negatively impacting
summarization quality. Fan et al. (2018) introduced a length
marker token that induces the model to target an output of a
desired length, coarsely divided into discrete bins. Fevry et
al. (2018) augmented the decoder with an additional length
countdown input which is a single scalar that ticks down to
0 when the generation reached the desired length.

Different with the length marker or length countdown
input, to induce our model to output the compression
sequence with desired length, we use beam search during
generation to find the sequence S

′
that maximizes a score

function s(S
′
, S) given a trained ESC model. The length

normalization is introduced to account for the fact that we
have to compare hypotheses of different length. Without
some form of length-normalization regular ln, beam search
will favor shorter sequences over longer ones on average
since a negative log-probability is added at each step,
yielding lower (more negative) scores for longer sentences.
Moreover, a coverage penalty cp is also added to favor the
sequence that cover the source sentence meaning as much as
possible according to the attention weights (Wu et al. 2016).

s(S
′
, S) = log(P (S

′ |S))/ln(S′
) + cp(S;S

′
), (1)

ln(S
′
) = (5 + |S′ |)α/(5 + 1)α, (2)

cp(S;S
′
) = β ×

|S|∑

i=1

log(min(

|S′ |∑

j=1

pi,j , 1.0)), (3)

where pi,j is the attention probability of the j-th target
word on the i-th source word. Parameters α and β control
the strength of the length normalization and the coverage
penalty. Although α can be used to control the compression
ratio softly, we use the compression ratio γ to control
the maximum length of decoding generation by hard
requirements. When the decoding length |S′ | is greater than
γ|S|, the decoding stops.
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Figure 1: The architecture of proposed BSFNMT model.

3 NMT with ESC

In this section, we first introduce the Transformer networks
for machine translation. Then based on the fusion position of
the backbone knowledge sequence, we propose three novel
translation models: the backbone source-side fusion based
NMT model (as shown in Figure 1), the backbone target-side
based NMT model (as shown in Figure 2), and the backbone
both-side based NMT. All of these models can make use of
the source backbone knowledge generated by our sentence
compression models.

3.1 Transformer Networks

A Transformer NMT model consists of an encoder and
a decoder, which fully rely on self-attention networks
(SANs), to translate a sentence in one language into another
language with equivalent meaning. Formally, one input
sentence x={x1, · · · , xJ} of length J is first mapped into a
sequence of word vectors. Then the sequence and its position
embeddings add up to form the input representation vx =
{vx1 , · · · , vxJ}. The sequence {vx1 , · · · , vxJ} is then packed
into a query matrix Qx, a key matrix Kx, and a value matrix
Vx. For the SAN-based encoder, the self-attention sub-layer
is first performed over Q, K, and V to the matrix of outputs
as:

SelfAtt(Q,K,V) = Softmax(
QKT

√
dmodel

)V, (4)

where dmodel represents the dimensions of the model.
Similarly, the translated target words are used to generate the
decoder hidden state si at the current time-step i. Generally,
the self-attention function is further refined as multi-head
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Figure 2: The architecture of proposed BTFNMT model.

self-attention to jointly consider information from different
representation subspaces at different positions:

MultiHead(Q,K,V) = Concat(head1, · · · , headH)WO,

headh = SelfAtt(QW
Q
h , kWK

h ,VWV
h ),

(5)

where the projections are parameter matrices
W

Q
h ∈Rdmodel×dk , WK

h ∈Rdmodel×dk , WV
h ∈Rdmodel×dv ,

and WO∈Rhdv×dmodel . For example, there are H=8 heads,
dmodel is 512, and dk=dv=512/8=64. A position-wise
feed-forward network (FFN) layer is applied over the
output of multi-head self-attention, and then is added with
the matrix V to generate the final source representation
Hx={Hx

1 , · · · , Hx
J}:

Hx = FFN(MultiHead(Q,K,V)) + V. (6)

The SAN of decoder then uses both Hx and target context
hidden state Htgt to learn the context vector oi by “encoder-
decoder attention”:

ci = FFN(MultiHead(Htgt, Hx, Hx)), (7)

oi = ci +Htgt. (8)

Finally, the context vector oi is used to compute
translation probabilities of the next target word yi by a linear,
potentially multi-layered function:

P (yi|y<i, x) ∝ Softmax(LoGeLU(Lwoi)), (9)

where Lo and Lw are projection matrices.

3.2 Backbone Source-side Fusion based NMT

In the backbone source-side fusion based NMT (BSFNMT)
model, given an input sentence x={x1, · · · , xJ}, there is
an additional compressed sequence xc={xc

1, · · · , xc
K} of

length K generated by the proposed sentence compression
model. This compressed sequence is also input to the
SAN shared with the original encoder with word vectors
vc = {vci , · · · , vcK} in shared vocabulary to learn its
final representation Hc={Hc

1 , · · · , Hc
K}. In the proposed

SFNMT model, we introduce an additional multi-head
attention layer to fuse the compressed sentence and the
original input sentence for learning a more effective source
representation.

Specifically, for the multi-head attention-fusion layer,
a compressed sentence-specific context representation Hc

x
is computed by the multi-head attention on the original
sentence representation Hx and the compressed sentence
representation Hc:

Hc
x = FFN(MultiHead(Hx, Hc, Hc)). (10)

Hc
x and Hx are added to form a fusion source

representation H
′
x:

H
′
x = Hx +Hc

x. (11)

Finally, the H
′
x instead of Hx is input to the Eq. (7) in turn

for predicting the target translations word by word.

3.3 Backbone Target-side Fusion based NMT

In the backbone target-side fusion based NMT (BTFNMT)
model, both the original sentence and its compressed version
are also represented as Hx and Hc respectively by the shared
SANs. We then use a tuple (Hx, Hc) instead of the source-
side fusion representation H

′
x as the input to the decoder.

Specifically, we introduce an additional “encoder-decoder
attention” module into the decoder to learn the compressed
sequence context bi at the current time-step i:

bi = FFN(MultiHead(Htgt, Hc, Hc)). (12)

Since we are here to treat the original sentence and the
compressed sentence as two independent source contexts
when encoding at the source side, we use a context gate
gc for integrating two independent contexts of the source:
original context ci and compressed context bi. The gate gi is
calculated by:

gi = σ(MLP([ci; bi])). (13)

Therefore, the final target fusion context c′i is:

c′i = gi ⊗ ci + (1− gi)⊗ bi, (14)

where σ is the logistic sigmoid function, ⊗ is the point-wise
multiplication, and [·] represent the concatenation operation.

The context c′i is input to replace the ci the Eq. (8) to
compute the probabilities of next target word.
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3.4 Backbone Both-side Fusion based NMT

In the backbone both-side fusion based NMT (BBFNMT)
model, we combine BSFNMT and BTFNMT. Both the
original representation Hx and its compressed enhanced
representation H

′
x are as the input to the decoder. Similarly,

we introduce an additional “encoder-decoder attention”
module into the decoder to learn the compressed sequence
enhanced context b

′
i at the current time-step i:

b
′
i = FFN(MultiHead(Htgt, H

′
x, H

′
x)). (15)

Then, the context gate gi consistent with BTFNMT is
applied to combine the two context information ci and b

′
i.

4 Experiments

4.1 Setup

Sentence Compression To evaluate the quality of our
sentence compression model, we used the Annotated
Gigaword corpus (Napoles, Gormley, and Van Durme 2012)
as the benchmark (Rush, Chopra, and Weston 2015b). The
data includes approximately 3.8 M training samples, 400
K validation samples, and 2 K test samples. The byte
pair encoding (BPE) algorithm (Sennrich, Haddow, and
Birch 2016) was adopted for subword segmentation, and
the vocabulary size was set at 40 K for our supervised,
unsupervised and semi-supervised settings (Zhang et al.
2019).

Baseline systems include AllText and F8W (Rush,
Chopra, and Weston 2015b; Wang and Lee 2018). F8W
is simply the first 8 words of the input, and AllText uses
the whole text as the compression output. The F1 score of
ROUGE-1 (R-1), ROUGE-2 (R-2), and ROUGE-L (R-L)
was used to evaluate this task (Lin 2004). We use beam
search with a beam size of 5, the length length normalization
of 0.5, and the coverage penalty of 0.2.

For the semi-supervised setting, in order to make the
results comparable to Song et al. (2019), we used the same
190M English monolingual unpaired data from WMT News
Crawl datasets for pre-training (unsupervised training). We
included the other pretraining methods: masked language
modeling (MLM, BERT) (Devlin et al. 2018), denoising
auto-encoder (DAE) (Vincent et al. 2008), and masked
sequence to sequence (MASS) (Song et al. 2019) to compare
with our unsupervised pretraining method in the semi-
supervised setting.

Machine Translation The proposed NMT model was
evaluated on the WMT14 English-to-German (EN-DE) and
English-to-French (EN-FR) tasks, which are both standard
large-scale corpora for NMT evaluation. For the EN-DE
translation task, 4.43 M bilingual sentence pairs from the
WMT14 dataset were used as training data, including
Common Crawl, News Commentary, and Europarl v7. The
newstest2013 and newstest2014 datasets were used as the
dev set and test set, respectively. For the EN-FR translation
task, 36 M bilingual sentence pairs from the WMT14 dataset
were were used as training data. Newstest12 and newstest13
were combined for validation and the newstest14 was the

test set, following the setting of Gehring et al. (2017). The
BPE algorithm (Sennrich, Haddow, and Birch 2016) was
also adopted, and the joint vocabulary size was set at 40
K. For the hyper-parameters of our Transformer (base/large)
models, we followed the settings used in Vaswani et
al. (2017)’s work.

In addition, we also reported the state-of-the-art results
in recent literatures, including modelling local dependencies
(Localness) (Yang et al. 2018), fusing multiple-layer
representations in SANs (Context-Aware) (Yang et al.
2019b), and fusing all global context representations
in SANs (global-deep context) (Dou et al. 2018b).
MultiBLEU was used to evaluate the translation task.

4.2 Main Results

Model R-1 R-2 R-L

Baselines:
All text 28.91 10.22 25.08
F8W 26.90 9.65 25.19
Unsupervised:
(Fevry and Phang 2018) 28.42 7.82 24.95
ESC (This work) 31.37 8.25 28.01
Supervised:
RNN-based Seq2seq 35.50 15.54 32.45
(Nallapati et al. 2016) 34.97 17.17 32.70
ESC (This work) 37.53 18.48 34.79
Semi-supervised:
MLM Pretraining 37.75 18.45 34.85
DAE Pretraining 35.97 17.17 33.14
(Song et al. 2019) 38.73 19.71 35.96
ESC (This work) 39.54 20.35 36.79

Table 2: Performance on the sentence compression task

Sentence Compression To evaluate the quality of our
sentence compression model, we conducted a horizontal
comparison between the proposed sentence compression
model and other sentence compression models in different
settings. Table 2 shows the comparison results. We observed
that the proposed unsupervised ESC model performed
substantially better than Fevry and Phang (2018)’s
unsupervised method. The proposed supervised ESC model
also substantially outperformed the RNN-based Seq2seq
and Nallapati et al. (2016)’s baseline method. That is, our
supervised model gave +2.0 improvements on R-1, R-2, and
R-L scores over the RNN-based Seq2seq. This means that
the proposed Transformer-based approaches can generate
compressed sentences of high quality.

We further compared our semi-supervised model with
the semi-supervised pretraining methods of MLM (Devlin
et al. 2018), DAE (Vincent et al. 2008), and MASS
(Song et al. 2019). Our unsupervised pretrainining method
outperformed the other unsupervised pretrainining ones on
the sentence compression task consistently.

Machine Translation According to the results in Table 2,
we chose the semi-supervised ESC model (which
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System EN-DE #Speed #Params EN-FR #Speed #Params
Existing NMT systems

Transformer (base) (Vaswani et al. 2017) 27.3 N/A 65.0M 38.1 N/A N/A
+Localness (Yang et al. 2018) 28.11 N/A 88.8M N/A N/A N/A
+Context-Aware SANs (Yang et al. 2019b) 28.26 N/A 194.9M N/A N/A N/A
+global-deep context (Dou et al. 2018b) 28.58 N/A 111M N/A N/A N/A

Transformer (big) (Vaswani et al. 2017) 28.4 N/A 213.0M 41.0 N/A N/A
+Localness (Yang et al. 2018) 28.89 N/A 267.4M N/A N/A N/A
+Context-Aware SANs (Yang et al. 2019b) 28.89 N/A 339.6M N/A N/A N/A
+global-deep context (Dou et al. 2018b) 29.21 N/A 396M N/A N/A N/A

Our NMT systems
Transformer (base) 27.24 131k 66.5M 38.21 130k 85.7M
BSFNMT 27.75++ 121k 72.1M 39.09++ 120k 89.0M
BTFNMT 28.14+ 120k 72.7M 39.22++ 119k 89.8M
BBFNMT 28.35++ 119k 78.6M 39.40++ 116k 91.4M
Transformer (big) 28.23 11k 221.0M 41.15 11k 222.3M
BSFNMT 28.52+ 10k 225.2M 41.92+ 9k 227.1M
BTFNMT 29.16++ 9k 225.7M 42.22++ 8k 227.5M
BBFNMT 29.37++ 8k 228.9M 42.52++ 8k 230.3M

Table 3: Comparison with existing NMT systems on WMT14 EN-DE and EN-FR Translation Tasks. “++/+” after the BLEU
score indicate that the proposed method was significantly better than the corresponding baseline Transformer (base or big) at
significance level p<0.01/0.05. “#Speed” denotes the decoding speed measured in target tokens per second.

performed the best) to generate compressed sentences for
the machine translation task. The main results on the
WMT14 EN-DE and EN-FR translation tasks are shown
in Table 3. In the EN-DE task, we made the following
observations:

1) The baseline Transformer (base) in this work achieved
a performance comparable to the original Transformer
(base) (Vaswani et al. 2017). This indicates that it is a strong
baseline NMT system.

2) All BSFNMT, BTFNMT, and BBFNMT significantly
outperformed the baseline Transformer (base/big). This
indicates that the learned compressed backbone information
was beneficial for the Transformer translation system.

3) Among the proposed three methods, BTFNMT
performed better than BSFNMT. This indicates that the
backbone fusion at the target-side is better than at the
source-side. In addition, BBFNMT (base/big) outperformed
the comparison systems +Localness and +Context-Aware
SANs. This indicates that the compression knowledge as an
additional context can enhance NMT better.

4) BBFNMT (based) is comparable to the +global-
deep context, the best comparison system, while BBFNMT
(big) slightly outperformed +global-deep context by 0.16
BLEU scores. In particular, the parameters of BBFNMT
(base/big) model, which just increased 12.1/7.9M over the
Transformer (base/big), were only 70% of the +global-
deep context model. This denotes that the BBFNMT model
is more efficient than the +global-deep context model. In
addition, the training speed of the proposed models slightly
decreased (8%), compared to the corresponding baselines.

5) The proposed BBFNMT (base) slightly outperformed
the Transformer (big) which contains much more parameters
than BBFNMT (base). This indicates that our improvement
is not likely to be due to the increased number of parameters.

For the EN-FR translation task, the proposed models
gave similar improvements over the baseline systems and
comparing methods (except that the Transformer (big)
performed much more better than Transformer (base)).
These results show that our method is robust for improving
the translation of other language pairs.

4.3 Ablation Study

Evaluating Sentence Compression To demonstrate the
effectiveness of sentence compression, we compared the
compressed sentences (γ = 0.6) generated in the
Transformer translation system (BBFNMT) under different
settings: AllText, F8W, RandSample (random sampling),
supervised ESC, Unsupervised ESC and semi-supervised
ESC. Table 4 shows the results on newstest2014 for the EN-
DE translation task.

Model BLEU on EN-DE
Baseline 27.24

+AllText 27.24
+F8W 27.40
+RandSample 26.53
+Supervised ESC 27.80
+Unsupervised ESC 27.97
+Semi-supervised ESC 28.35

Table 4: The effect of our ESC methods.

We made the following observations: 1) Simply
introducing AllText and F8W achieved few improvement,
and RandSample is lower than the baseline. In comparison,
all the +supervised ESC, +unsupervised ESC, and +semi-
supervised ESC models substantially improved the perfor-
mance over the baseline Transformer (base). This means that
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our ESC method provides a richer source information for
machine translation tasks.

2) +Unsupervised ESC can gain better improvements over
the +supervised ESC although supervised ESC model can
achieve higher quality than the unsupervised ESC model
in the benchmark test dataset. This may be due to that the
annotated sentence compression training data is in different
domain with the WMT EN-DE traing data. Meanwhile,
+Semi-supervised ESC with annotated data fine-tuning
outperformed both +Unsupervised and +supervised ESC.

Effect of Encoder Parameters In our model, represen-
tations of the original sentence and its compressed version
were learned by a shared encoder. To explore the effect of the
encoder parameters, we also designed a BBFNMT with two
independent encoders to learn representations of the original
sentence and its compressed version, respectively. Table 5
shows results on the newstest2014 test set for the WMT14
EN-DE translation task.

Model BLEU #Params
Transformer (base) 27.24 66.4M
BBFNMT w/ Shared encoder 28.35 78.6M
BBFNMT w/ Independent encoders 28.50 91.6M

Table 5: The effect of encoder parameters.

The BBFNMT (w/ independent params) slightly out-
performed the proposed shared encoder model by a
BLEU score of 0.15, but its parameters increased by
approximately 30%. In contrast, the parameters in our
model are comparable to the baseline Transformer (base).
Considering the parameter scale, we took a shared encoder
to learn source representation, which makes it easy to verify
the effectiveness of the additional translation knowledge,
such as our backbone knowledge.

Evaluating Compression Ratio In order to verify the
impact of different compression ratios on translation quality,
we conducted experiments on EN-DE translation task with
semi-supervised sentence compression in BBFNMT model.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

27.5

28

Compression Ratio

B
L

E
U

sc
or

e

Figure 3: Performances on EN-DE newstest2014 with
different sentence compression ratios.

We controled the compression ratio γ from 0 to 1.0.
Consider two boundary conditions, when the compression
ratio γ = 0, it means no compression sequence generated,
which is the same as the vanilla Transformer. When
the compression ratio γ = 1.0, it is equivalent to
re-paraphrasing the source sentence using the sentence
compression model (maintaining the same length) as the
additional input for BBFNMT.

The experimental results are shown in Fig. 3. As can
be seen from the results, in our experiments, sentence
compression (re-paraphrasing) can bring performance
improvement, even when the compression ratio γ = 1.0 and
the sentence length is not shortened, re-paraphrasing can still
bring slight improvement of translation quality.

5 Related Work

To let the translation have more focus over the source
sentence information, efforts have been initiated on ex-
ploiting sentence segmentation, sentence simplification, and
sentence compression for machine translation. Mellebeek
et al. (2006) described an early method of skeleton-
based translation that breaks down input sentences into
grammatically meaningful chunks. The central part of the
sentence is identified and remains unaltered, while the
rest of the sentence is simplified. Sudoh et al. (2010)
described the “divide and translate” approach to deal with
complex input sentences. They parsed the input sentences,
replaced the clauses with placeholders, and replaced them
with the separately translated clauses. Xiao et al. (2014;
2016) built on the work by Mellebeek et al. (2006) but
proposed a simpler approach based on source skeletons
used in a single decoding step. Pouget-Abadie et al. (2014)
experimented with automatically segmenting the source
sentence to overcome problems with overly long sentences.
Hasler et al. (2017) showed that the spaces of original and
simplified translations can be effectively combined using
translation lattices.

Different from these work, our proposed sentence
compression model does not rely on any known linguistics
motivated (such as syntax) skeleton simplification, but
directly trains a computation motivated sentence com-
pression model to learn to compress sentences and re-
paraphrase them directly in seq2seq model. Though with a
pure computation source, our sentence compression model
can surprisingly generate more grammatically correct and
refined sentences, and the words in the compressed sentence
do not have to be the same as the original sentence. In
the meantime, our sentence compression model can stably
give source backbone representation exempt from unstable
performance of a syntactic parser which is essential for
syntactic skeleton simplification. Our sentence compression
model can perform unsupervised training on large-scale data
sets, and then use the supervised data for finetune, which is
more promising from the results.

6 Conclusion

To give a more focused source representation, this
paper makes the first attempt to propose an explicit
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sentence compression method to enhance state-of-the-
art Transformer-based NMT. The experimental results on
WMT14 EN-DE and EN-FR translation tasks show that
our proposed NMT model can yield significantly improved
results over strong baseline translation systems.
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