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Abstract

Paraphrase generation aims to rewrite a text with different
words while keeping the same meaning. Previous work per-
forms the task based solely on the given dataset while ignor-
ing the availability of external linguistic knowledge. How-
ever, it is intuitive that a model can generate more expres-
sive and diverse paraphrase with the help of such knowledge.
To fill this gap, we propose Knowledge-Enhanced Paraphrase
Network (KEPN), a transformer-based framework that can
leverage external linguistic knowledge to facilitate paraphrase
generation. (1) The model integrates synonym information
from the external linguistic knowledge into the paraphrase
generator, which is used to guide the decision on whether to
generate a new word or replace it with a synonym. (2) To
locate the synonym pairs more accurately, we adopt an in-
cremental encoding scheme to incorporate position informa-
tion of each synonym. Besides, a multi-task architecture is
designed to help the framework jointly learn the selection of
synonym pairs and the generation of expressive paraphrase.
Experimental results on both English and Chinese datasets
show that our method significantly outperforms the state-of-
the-art approaches in terms of both automatic and human
evaluation.

Introduction

Paraphrase generation is a fundamental task in natural lan-
guage processing, which aims to restate a text with differ-
ent words while keeping the meaning approximately the
same as the original. Automatic paraphrase generation can
be applied to many scenarios to promote the study of nat-
ural language processing. For example, questions answer-
ing systems are often sensitive to the way questions are
asked, rephrasing questions can help people get better an-
swers in many real-world question answering applications
(Fader, Zettlemoyer, and Etzioni 2014). Additionally, para-
phrases can also help diversify responses of dialogue assis-
tants (Shah et al. 2018), augment training data (Yang et al.
2019b) and extend coverage of semantic parsers (Berant and
Liang 2014).
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Figure 1: An example of paraphrase generation guided by
linguistic knowledge.

Recently, various neural models have been put forward for
automatic paraphrase generation, which modeled the task as
a Seq2Seq learning problem from the original sentence to
the target paraphrase (Prakash et al. 2016; Gupta et al. 2018;
Li et al. 2019a). Although these methods generate fluent and
grammatically correct restatements, the performances are far
from perfect. Because this kind of data-driven methods can
only make limited modifications to the original text such as
changing word order or part of speech, which are lack of
lexical and phrasal diversity.

If a model can be guided by external linguistic knowledge
like thesauri, it can replace a word (especially a rare word)
in the sentence with a corresponding synonym and thus gen-
erate a more complete and expressive paraphrase. For in-
stance, as shown in Figure 1, to rewrite the input sentence
“What causes impoverishment in this region?” to the target
sentence “What are the causes of poverty in this area?”, we
need synonym pairs provided by thesauri such as (impover-
ishment, poverty) and (region, area). And it is worth noting
that the word “impoverishment” in the original sentence is
a low-frequent word. Without the guidance of external lin-
guistic knowledge, this word is likely to be masked as an
unknown tag in restatement.

Some prior works have been conducted to introduce exter-
nal linguistic knowledge in paraphrase generation. Specif-
ically, Cao et al. (2017) propose a Seq2Seq model with a
copying decoder and equips the decoder with a paraphrase
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collocation table to regulate the generated words. Huang et
al. (2019) adopts an extra synonym dictionary to guide the
paraphrase decoder, in which a soft attention mechanism is
used to learn the semantic vectors of both the original words
and the synonyms. However, such models face with the fol-
lowing two issues. First, they pay little attention to the lo-
cation of each paraphrase pair, which makes it difficult for
decoder to make accurate use of the introduced knowledge.
Second, they tend to copy the low-frequent words in the
original sentence to alleviate the issue of out-of-vocabulary
(OOV) words. This kind of copy mechanism is not in line
with the intention of paraphrase generation, because the task
prefers to use different words to rewrite the original text.

To address the issues mentioned above, we pro-
pose Knowledge-Enhanced Paraphrase Network (KEPN), a
transformer-based framework that can leverage synonym in-
formation provided by external linguistic knowledge to fa-
cilitate paraphrase generation. (1) The model retrieves a set
of synonyms of words in source sentence from external the-
sauri and uses a soft attention mechanism to compute the
weighted sum of the synset embeddings. Then the weighted
synonym representation is combined with the hidden vector
of the decoder to guide the decision on whether to generate
a new word or replace it with a synonym. (2) To locate syn-
onym pairs more accurately, we adopt an incremental encod-
ing scheme to incorporate position information of each syn-
onym into the decoder. What’s more, we design a multi-task
architecture with synonym labeling as an auxiliary task. The
synonym labeling task aims to identify the position of each
synonym in the input sentence, which can help the model
jointly learn the selection of synonym pairs and the genera-
tion of expressive paraphrase.

We conduct sets of experiments on both English and
Chinese benchmark datasets for paraphrase generation. In
addition, because most of the existing paraphrase datasets
are derived from question matching corpus, in which sen-
tences are all short questions, we construct a new Chinese
paraphrase dataset named TCNP (Translation-based Chi-
nese News Paraphrase) for more diversity in test domains.
Experimental results on all datasets show that our model sig-
nificantly outperforms state-of-the-art methods on automatic
evaluation metrics with improvements of 1.0-1.9 points in
BLEU. We also perform the qualitative human evaluation to
show the quality of paraphrase sentence. The result indicates
that the generated paraphrases are well-formed, diverse, and
relevant to the input sentence. 1

Related Work

Paraphrase generation is approached as using different
words to rewrite a semantically equivalent sentence (Mad-
nani and Dorr 2010). Feature-based methods (McKeown
1983; Bolshakov and Gelbukh 2004; Carl, Schmidt, and
Schütz 2005) are widely used in paraphrase generation, but
they heavily rely on the hand-crafted rules and are hard
to scale up. Recent efforts involve neural methods have
achieved great success, which model the task as a Seq2Seq

1Code of our model is publicly available at https://github.com/
LINMouMouZiBo/KEPN

(Sutskever, Vinyals, and Le 2014) learning problem from
the original sentence to the target paraphrase. As a pioneer,
Prakash et al. (2016) first explore deep learning models for
paraphrase generation through a stacked LSTM network.
Following by Prakash’s work, Gupta et al. (2018) combine
LSTM and Variational AutoEncoder (VAE) to generate mul-
tiple paraphrases. Further, Li et al. (2019a) propose a multi-
ple encoders and decoders network to generate paraphrases
at different granularity levels. However, these methods per-
form the task based solely on the given dataset, which ignore
the availability of external linguistic knowledge.

Recently, introducing external structured knowledge into
designed models has achieved great success in many studies
of natural language processing (Zhou et al. 2018; Yang et
al. 2019a; Li et al. 2019b). Inspired by this, various meth-
ods are proposed to use extra knowledge to improve para-
phrase generation. Specifically, Cao et al. (2017) introduce
a Seq2Seq model that fuses two decoders, in which the gen-
erated words are restricted in the paraphrase table of current
sentence. Huang et al. (2019) propose a method to generate
paraphrase in the guide of an extra dictionary and use a soft
attention to learn synonym semantic vector. Moreover, Wang
et al. (2019) first exploit the multi-head attention mechanism
(Vaswani et al. 2017) for paraphrase generation and utilize
external resources (PropBank labels) for further improve-
ment. However, these studies pay little attention to the loca-
tion of each paraphrase pair, which make it difficult to make
accurate use of the introduced knowledge. By contrast, our
model applies external thesauri to facilitate paraphrase gen-
eration, with an incremental encoding scheme and a multi-
task architecture for better locating of synonym pairs.

Methodology

The overall architecture of the proposed KEPN is shown in
Figure 2, which will be introduced from three parts: (1) Sen-
tence Encoder, which captures contextual features of each
word in the input sentence. (2) Paraphrase Decoder, which
generates paraphrase with the guidance of linguistic knowl-
edge by a soft attention mechanism. (3) Synonym Labeling,
which plays as an auxiliary task in our designed multi-task
architecture to help the decoder make better use of synonym
information.

In the following subsections, we first give the definition
of the task of paraphrase generation, and then introduce the
three parts mentioned above in detail.

Paraphrase Definition

Given a sentence x = {x1, ..., xn}, sentence paraphrase
aims to generate another sentence y = {y1, ..., ym} from
x. Here, the lengths of x and y may not be equal. But the
sentence x and y are required to have the same semantic
meanings. In our work, we assume that there is an access to
a corpus of linguistic knowledge D = {(wi, si)}Ni=1, which
is specifically referring to the synonym table. In table D, wi

is treated as a raw word and si is the synonym of wi. Our
goal is to learn a paraphrase generator with the use of D to
generate a paraphrase y for a sentence x.
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Figure 2: The overall framework of Knowledge-Enhanced Paraphrase Network (KEPN). The source sequence is fed into a
Sentence Encoder, then read by a raw Transformer decoder. Finally, the output of basic decoder is combined with the context
representation of synonyms to generate the target sequence.

Sentence Encoder

The Sentence Encoder first converts the input word sequence
into embedding vectors and then encodes the input via multi-
head attention.

Input Representation At the begin of the Sentence En-
coder, the input sentence x = {x1, ..., xn} is represented
as a sequence of embedding vectors e = {e1, ..., en} by
looking up a word embedding matrix. The matrix is initial-
ized with pretrained embedding and optimized as parame-
ters during training. Apart from the word embedding, a po-
sition embedding vector vi is introduced to encode position
information of the i-th token in the sentence (Vaswani et al.
2017). The position embedding has the same dimension as
the word embedding, and is formulated as:

vi[j] = sin(i/100002j/d model), (1)

vi[2j + 1] = cos(i/100002j/d model), (2)

where i is the position where the word is indexed in sentence
x, j is the index of dimension and d model is the number of
dimensions.

The input vector k of our Sentence Encoder is the sum of
the word embedding e and the position embedding v:

k = e+ v. (3)

Encoder With sequence embedding as input, the Sentence
Encoder circumvents token-by-token encoding with a paral-
lel encoding step that uses token position information. The

encoder is composed of a stack of 6 identical blocks which
are formulated as:

Block(Q,K,V ) = LNorm(FFNN(m)) +m, (4)

m = LNorm(MultiAttn(Q,K,V )) +Q, (5)
where FFNN means a fully connected feed-forward
network, and LNorm stands for layer normalization.
MultiAttn is the crucial building part of the encoder, which
allows the model to jointly attend to information from dif-
ferent representation subspaces at different positions. It op-
erates on queries Q, keys K, and values V , as follows:

MultiAttn(Q,K,V ) = (h1⊕, ...,⊕hi)W , (6)

hi = Attention(QWQ
i ;KWK

i ;V W V
i ), (7)

Attention(Q,K,V ) = Softmax(
QKT

√
dk

)V , (8)

where W , WQ
i , WK

i and WV
i are trainable parameters.

Following the above calculating procedures, the output of
the Sentence Encoder z inferring from the embedding k can
be shorted as:

z =

{
hi = Blocki(hi−1,hi−1,hi−1) i ≥ 1

h0 = k i = 0
. (9)

The output of encoder z is the semantic representation
and fed into the decoder to drive word generation step-by-
step. Furthermore, we treat the encoder as a shared module
in our multi-task architecture. The output z is trained in not
only the decoder but also the Synonym Labeling (More de-
tails are listed in following subsections).
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Paraphrase Decoder

The input of Paraphrase Decoder is the representation vector
from the Sentence Encoder, along with synonym-position
pairs provided by external linguistic knowledge. Paraphrase
Decoder first acts as a basic decoder of Transformer to gen-
erate a draft vector. Then a set of synonyms are retrieved and
represented through a soft attention mechanism. Finally the
synonym information is used to revise the draft by replacing
some words with synonyms, which adds more diversity in
lexical and phrasal level.

The basic decoder of Transformer is almost identical to
the encoding block, with the addition of one more multi-
attention layer before the feed-forward layer. The final out-
put of the decoder y∗

t is formulated as:

y∗
t =

{
hi = Blocki(m, z, z) i ≥ 1

h0 = yt−1 i = 0
, (10)

where m is calculated by Eq. 5, in which Q, K and V are
all replaced by hi−1.

Synonym Retrieval In our work, synonym-position pairs
are retrieved from a thesaurus and act as the linguistic
knowledge to improve the diversity of paraphrase results.
Given a sentence x, we first retrieve a set of synonyms
P = {si}Mi=1 from the synonym set D. To locate each syn-
onym accurately, we also add pi, the index of si which num-
bers the position of si in the sentence x, to each synonym
in P . Finally, we obtain a set of synonym-position pairs
P = {(si, pi)}Mi=1.

Two public thesauri are used in experiment: Tongyici
Cilin (Extended) and WordNet. The Extended Tongyici
Cilin is a Chinese synonym table that collected by HIT-
SCIR, and contains 9,995 different pairs of synonyms. The
WordNet, released by (Miller 1995), is a well-known lexical
database of English, in which nouns, verbs, adjectives, and
adverbs are grouped into sets of cognitive synonyms.

Synonym Pairs Representation The input synonyms-
position pairs P = {(si, pi)}Mi=1 need to be converted into
vector representation before feeding into the Paraphrase De-
coder. Specifically, the synonym is represented by looking
up the word embedding matrix shared with the Sentence En-
coder. If the synonym is a phrase, we sum the embedding of
each word to get a phrase vector. For the position, we cal-
culate the position vector pi by Eq. 1 and Eq. 2, following
the positional encoding layer of Transformer. The position
vector makes a link between the synonyms and words in the
input sentence, which guides the decoder to pay more atten-
tion to the location of each paraphrase pairs.

The initial output of the basic decoder is a draft vector,
which is not able to generate a expressive paraphrase. Thus,
we further use a soft attention mechanism to integrate the
synonym-position pairs representation into the decoder. The
synonym information ct is calculated as follows:

ct =
∑M

i=1
ai,t·si⊕

∑M

i=1
a∗
i,t·pi, (11)

ai,t =
exp(g(y∗

t , si))∑M
i=1 exp(g(y

∗
t , si))

, (12)

g(y∗
t , si) = V �tanh(W [y∗

t⊕si]), (13)

where V � and W are parameters and ⊕ denotes concate-
nation. y∗

t is the output of the basic decoder from Eq. 10.
a∗
i,t is calculated in the same way as ai,t but replacing the

synonym si by the position pi.
Finally, a softmax layer is introduced to compute proba-

bility distribution of the t-th time word:

yt = softmax(Wy[y
∗
t⊕ct]). (14)

Wy is a parameter matrix projecting the vector to match
the dimension of output vocabulary. For each step of de-
coder, the generation probability yt is calculated until meet-
ing an end symbol or reaching the maximum length of gen-
erated sentence.

The loss function of paraphrase generation is chosen to
minimize the negative log-likelihood of the output genera-
tive words as:

loss1 = −
∑

t
ln(p(yt|y<t, x, θ)). (15)

Synonym Labeling

It’s a clear intuition that paraphrase generation benefits from
locating the position where the synonyms come from in the
input sentences. To utilize this feature, we propose a multi-
task architecture to jointly train our network to perform syn-
onym labeling task and sequence generation task.

The synonym labeling is a token-wise binary classifica-
tion task, which aims to identify whether there are corre-
sponding synonyms for each token in the sentence. In our
work, synonym labeling and paraphrase generation share
the same encoder. An incremental feed-forword network is
added after the sentence encoder, which converts the output
contextual vector z in Eq. 9 to the synonym labeling output
f :

f = σ(Wfz + bf ), (16)

where Wf and bf are learnable parameters and σ is the sig-
moid function.

With the help of the external synonym knowledge, we au-
tomatically tag each token in the input sentence with a bi-
nary label as the ground truth, which make it possible to
conduct a supervised learning for synonym labeling. The
cost function of sequence labeling is chosen to minimize the
negative log-likelihood of the as:

loss2 = −
N∑
i=1

n∑
j=1

ŷi,j log fi,j+(1− ŷi,j) log (1− fi,j), (17)

where N is the size of dataset, n is the length of sentences
and ŷ is the ground truth labels.

Multi-Task Learning Synonym labeling is an auxiliary
task that helps to better locate the position of synonyms
and bind the linguistic relationship between phrase and syn-
onyms in the original sentence. Therefore, we first indepen-
dently train the encoder of our network as a synonym label-
ing task. Then we fine-tune the encoder with the parameters
from the labeling task and jointly train the entire network
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Dataset WikiAnswers Quora LCQMC TCNP

Train
Size 1.8M 140K 138K 743K

Avg Len 7.27 9.85 6.01 22.92

Test
Size 23.6K 4K 6K 15K

Avg Len 6.73 9.85 5.76 23.32

Table 1: Statistics of datasets.

with both labeling and generation loss. The total loss func-
tion we minimize is a linear combination of two task-specific
loss functions:

L = α ∗ loss1 + (1− α) ∗ loss2, (18)

where the weighting coefficient α is a hyper-parameter for
trade-off between loss1 and loss2. Given the cost function
L, we use the Adam (Kingma and Ba 2015) optimizer with
mini-batches to train the model parameters with warmup
mechanism (Vaswani et al. 2017).

Experiment

Datasets

We carry out our experiments on three benchmark datasets,
including English datasets WikiAnswers (Fader, Zettle-
moyer, and Etzioni 2013) and Quora, as well as Chinese
dataset LCQMC (Liu et al. 2018). These three datasets are
collected from question matching corpus, in which sen-
tences are all short questions.

For more diversity in test domains, we construct a
new Chinese paraphrase dataset named TCNP (Translation-
based Chinese News Paraphrase). TCNP is built by translat-
ing the English sentences in WMT2018 dataset into Chinese
via Baidu and Google translation API. Compared with other
three datasets, sentences in TCNP are longer and more di-
verse. Statistics of the datasets is shown in Table 1.

Benchmark

We compare KEPN with several approaches:
S2S-A (Bahdanau, Cho, and Bengio 2015) is a Seq2Seq

baseline with the attention mechanism.
P-GEN (See, Liu, and Manning 2017) uses a hybrid

Pointer-generator which alleviates the issue of OOV words
by a copy mechanism.

VAE-SVG (Gupta et al. 2018) uses the Variational Au-
toEncoder(VAE) to generate paraphrases.

Transformer (Vaswani et al. 2017) has obtained the state-
of-the-art performance on machine translation, which gener-
ates sentences by multi-head attention mechanism.

DGEN (Huang et al. 2019) is a RNN-based network
which retrieves knowledge from PPDB (Pavlick et al. 2015)
datasets to generate paraphrase.

Transformer-PB (Wang et al. 2019) is a Transformer-
based network with a multi-encoder to integrate PropBank
labels.

Setting

Hyper-parameters are tuned on the validation dataset. We set
the trade-off parameter α to 0.9, the dropout rate to 0.3 and

the learning rate of the optimizer to 1e-5. All word embed-
dings are initialized with 300D GloVe (Pennington, Socher,
and Manning 2014) vectors. For other parameters, we fol-
low the setting of the basic Transformer defined in (Vaswani
et al. 2017).

For better comparison, we follow the data preprocessing
method in previous work (Prakash et al. 2016), which trun-
cated all sentences to 15 words for the WikiAnswers and
Quora dataset, 30 words for LCQMC and TCNP.

Automatic Evaluation

For quantitative evaluation of our network, we calculate
scores on widely used evaluations metrics in paraphrase gen-
eration: METEOR (Lavie and Agarwal 2007) and BLEU
(Papineni et al. 2002). These scores have been shown to cor-
relate well with human judgment.

Overall Results

Experimental results on all datasets are listed in Table 2,
from which we can observe that:

(1) Our network KEPN consistently achieves the best
results on all the datasets in terms of all the evaluation
measures. Both Transform-PB and DGEN utilize external
knowledge to generate paraphrase and have been reported
the state-of-the-art results in WikiAnswers and Quora. Our
network still gets obvious higher scores comparing with
them. This indicates that the position encoding scheme and
synonym labeling task we introduce help the network make
more efficient use of the linguistic knowledge.

(2) Removing either the position vector of synonym or
multi-task training results in worse performance. Specifi-
cally, after removing the position vector of synonym and
only reserve the synonym embedding (i.e., KEPNsub pos),
performance becomes obviously worse. This indicates that
integrating the synonyms embedding independently into the
network helps nothing because the network can not locate
the synonyms in the sentence accurately. Besides, after train-
ing the KEPN in the scheme of multi-task with synonym la-
beling as an auxiliary task (i.e., KEPNadd SL), our network
makes further improvement and achieves the best result in
our experiments.

(3) In most cases, Transformer-based models (KEPN and
Transformer-PB) outperform RNN-based models (S2S-A,
P-GEN and VAE-SVG). The reason might be that multi-
head attention captures semantic information in the whole
sentence at a time while RNN models sentence step-by-step.

Ablation study

We perform an ablation study on KEPN for better under-
standing the contributions of the main parts of our model.
Although results in the last four lines of Table 2 illustrate the
effect of each component of KEPN, both the BLEU and ME-
TEOR scores can only evaluate the similarity between para-
phrase sentences and given references. To further evaluate
the diversity among the input and paraphrase sentences, two
other automatic metrics are added: the average numbers of
generated synonyms (denoted as Ns) and OOV words (de-
noted as No) in the output sentences. We split the TCNP
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Model
WikiAnswers Quora TCNP LCQMC

BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR
S2S-A (2015) 37.0 32.2 25.9 25.8 32.8 31.7 35.6 33.5
P-GEN (2017) 39.4 35.9 26.8 26.5 33.0 31.8 32.5 33.3
VAE-SVG (2018) 39.2 36.1 26.2 25.7 32.1 31.2 36.9 35.7
DGEN (2018) 39.7 36.2 27.6 29.9 – – – –
Transformer-PB (2019) 42.6 36.4 26.4 29.3 – – – –

Transformer 41.9 35.8 25.3 27.0 33.5 32.2 39.5 35.4
KEPNsub pos 42.1 35.6 26.5 28.1 33.7 32.0 39.1 35.4
KEPN 43.1 36.6 28.6 29.5 34.5 32.7 41.4 36.5
KEPNadd SL 44.3 37.1 29.2 30.4 35.6 34.4 43.1 38.0

Table 2: Automatic evaluation with BLEU and METEOR on all datasets.

Methods
0 < L ≤ 5 5 < L ≤ 15 L > 15

Ns No Ns No Ns No

Transformer 0.03 0.15 0.28 0.21 0.34 0.29
KEPNsub pos 0.05 0.14 0.27 0.19 0.87 0.24
KEPN 0.06 0.16 0.31 0.19 1.18 0.21
KEPNadd SL 0.06 0.14 0.39 0.14 1.42 0.15

Ground Truth 0.13 0.0 0.43 0.0 1.40 0.0

Table 3: The average numbers of synonyms (Ns) and OOV
words (No) which appear in the output sentences of different
ablated version of KEPN on the TCNP dataset.

dataset according to the sentence length L and report the re-
sults of various versions of our model in these two metrics.

From the results in Table 3, we can find that adding ei-
ther position encoding scheme or synonym labeling task im-
proves the performance of the model in both metrics. This
indicates that both components can not only bring more di-
versity to the generated results, but also alleviate the OOV is-
sue by replacing a rare word with a corresponding synonym.
What’s more, we can also observe that as the sentence length
grows, the advantages of our model become more obvious.
One possible reason is that the longer the sentence, the more
synonyms can be utilized.

Influence of sentence length

To explore the ability of learning the long-term dependency,
we evaluate all model in TCNP dataset which is split into
five parts according the length of sentence. The curve of our
network (KEPNadd SL) is always above others in Figure 3
and descends more smoothly when the sentence length is
longer than 16. More interestingly, when the length of sen-
tences ranges from 1 to 5, the RNN-based models outper-
form the Transformer models. This is caused by the differ-
ence of network structures between RNN-based models and
Transformer models. RNN-based models is adept at captur-
ing the semantics of short sentences with the help of internal
memory units. While, Transformer models can capture de-
pendencies of words without regard to their distance in se-

Figure 3: BLEU scores of sentences in different lengths on
TCNP. The sentences are split into six groups. The length of
sentences in each group falls into the same range. ‘16-20’
means that length ranges from 16 to 20.

quences which makes Transformer more powerful to model
the long sentences than RNN.

Human Evaluation

Though quantitative results show that our network outper-
forms other approaches, we also conduct a human evalua-
tion to present the real quality of generated paraphrase. We
randomly select 200 groups of source sentences from the
test set of both English and Chinese datasets. Five well-
educated university students are asked to score each sen-
tence according to the following three criteria: 1) Relevance
(the paraphrase sentence is semantically close to the source
sentence); 2) Fluency (the paraphrase sentence is fluent as
a natural language sentence, and the grammar is correct);
3) Diversity (the paraphrase sentence has more expressions
compared with the source sentence).

Results in Table 4 show that the generated sentences of
our network have the highest relevance to the source sen-
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Methods
Quora LCQMC

Rel. Flu. Div. Rel. Flu. Div.
VAE-SVG 3.04 3.57 2.87 3.05 3.46 2.72
Transformer 3.76 4.23 3.08 4.28 4.50 2.88
KEPN 4.03 4.36 3.38 4.49 4.66 3.01

Ground Truth 4.26 4.44 3.84 4.73 4.88 3.58

Table 4: Human evaluation results of our network. Each as-
sessor gives three scores (Relevance, Fluency and Diversity,
shorted correspondingly as Rel., Flu. and Div.) to each para-
phrase, both ranking from 0 to 5, where 0 is the worst and 5
is the best.

Figure 4: Some cases generated by different model. The
texts in same color are synonym pairs.

tence. Besides, the scores of both Transformer and KEPN
are high in fluency, indicating that the generated paraphrases
are well-formed and grammatically correct. In terms of the
Diversity, most of the methods don’t perform well while
the KEPN has an improvement of 0.2-0.3 points compared
with others. This result demonstrates that by introducing
synonym information from thesauri, the model can replace
words in the original sentence with synonyms and thus gen-
erate a more expressive and diverse paraphrase.

Case Study

Some cases are listed in Figure 4. For the first Chinese ex-
ample from TCNP, we can find that the VAE-SVG generates
an unreadable sentence. A possible reason is that the train-
ing set contains few sentences about illness and the VAE-
SVG fails in a unfamiliar field without the help of external
knowledge. The Transformer meets an “unk” word, because
the word “species of disease” is a low-frequency word in

Figure 5: A visualization of synonym-output attention. Each
column is an attention weight distribution over synonym.
Darker colors correspond to higher weights.

Chinese and thus replaced by an “unk” tag. By contrast, our
network replaces the rare word with corresponding synonym
“disease” thanks to the synonym pairs provided by thesauri,
successfully alleviating the issue of OOV words. Besides,
unlike the Transformer, more words are replaced by syn-
onyms in the output of our network, making the paraphrase
more diverse and expressive. For the second English case
from Quora, we find that both the generations of the Trans-
former and the VAE-SVG do not convey the same meanings
as the original sentence. Instead, our network not only match
the input, but also generate a new word “faster” rather than
copy the word “quickly” from the input sentence.

Moreover, we also examine the soft attention mechanism
of our network for indirect evidence of the contribution of
synonym. For instance, the output sentence in Figure 5 is
rewritten from “The medicine has widespread usage in high-
income countries due to less side effects”. When replacing
the word “medicine” of the input sentence, there are three
synonyms (i.e. “drug”, “pill”, “remedy”) to be chosen. Three
candidates in Figure 5 receive the certain degrees of atten-
tion, and the attention weight of “drug” is the highest and
wins the vote. This illustrates that the dynamic interaction
between the weight attention and the generated text helps
our network to choose correct synonyms, improving the di-
versity of the output.

Conclusion

In this paper, we present a Knowledge-Enhanced Paraphrase
Network for paraphrase generation through editing the origi-
nal sentence with synonym information provided by external
linguistic knowledge. To further locate the synonym pairs
more accurately, a multi-task architecture with synonym la-
beling as an auxiliary task is also designed. Experiments
on both Chinese and English datasets demonstrate that our
network significantly outperforms the existing methods on
paraphrase generation task.
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