
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Revision in Continuous Space: Unsupervised
Text Style Transfer without Adversarial Learning

Dayiheng Liu,† Jie Fu,‡ Yidan Zhang,† Chris Pal,‡ Jiancheng Lv†∗
†College of Computer Science, Sichuan University
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Abstract

Typical methods for unsupervised text style transfer often rely
on two key ingredients: 1) seeking the explicit disentangle-
ment of the content and the attributes, and 2) troublesome
adversarial learning. In this paper, we show that neither of
these components is indispensable. We propose a new frame-
work that utilizes the gradients to revise the sentence in a
continuous space during inference to achieve text style trans-
fer. Our method consists of three key components: a varia-
tional auto-encoder (VAE), some attribute predictors (one for
each attribute), and a content predictor. The VAE and the two
types of predictors enable us to perform gradient-based op-
timization in the continuous space, which is mapped from
sentences in a discrete space, to find the representation of a tar-
get sentence with the desired attributes and preserved content.
Moreover, the proposed method naturally has the ability to si-
multaneously manipulate multiple fine-grained attributes, such
as sentence length and the presence of specific words, when
performing text style transfer tasks. Compared with previous
adversarial learning based methods, the proposed method is
more interpretable, controllable and easier to train. Extensive
experimental studies on three popular text style transfer tasks
show that the proposed method significantly outperforms five
state-of-the-art methods.

1 Introduction

Text style transfer, which is an under-explored challenging
task in the field of text generation, aims to convert some
attributes of a sentence (e.g., negative sentiment) to other
attributes (e.g., positive sentiment) while preserving attribute-
independent content. In other words, text style transfer can
generate sentences with desired attributes in a controlled
manner. Due to the difficulty in obtaining training sentence
pairs with the same content and differing styles, this task
usually works in an unsupervised manner where the model
can only access non-parallel, but style labeled sentences.

Most existing methods (Hu et al. 2017; Shen et al. 2017;
Fu et al. 2018; Li et al. 2018) for text style transfer usu-
ally first explicitly disentangle the content and the attribute
through an adversarial learning paradigm (Goodfellow et
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al. 2014). The attribute-independent content and the desired
attribute vector are then fed into the decoder to generate
the target sentence. However, some recent evidence sug-
gests that using adversarial learning may not be able to
learn representations that are disentangled (Li et al. 2018;
Guillaume Lample 2019). Moreover, vanilla adversarial
learning is designed for generating real-valued and con-
tinuous data but has difficulties in generating sequences
of discrete tokens directly . As a result, algorithms such
as REINFORCE (Sutton et al. 2000) or those that ap-
proximate the discrete tokens with temperature-softmax
probability vectors (Kusner and Hernández-Lobato 2016;
Zhang et al. 2017) are used. Unfortunately, these methods
tend to be unstable, slow, and hard-to-tune in practice (Guil-
laume Lample 2019).

Is it really a necessity to explicitly disentangle the con-
tent and the attributes? Also, do we have to use adversarial
learning to achieve text style transfer? Recently, the idea of
mapping the discrete input into a continuous space and then
performing gradient-based optimization with a predictor to
find the representation of a new discrete output with desired
property has been applied for sentence revision (Mueller, Gif-
ford, and Jaakkola 2017) and neural architecture search (Luo
et al. 2018). Motivated by the success of these works, we
propose a new solution to the task of content-preserving text
style transfer.

The proposed approach contains three key components: (a)
A variational auto-encoder (VAE) (Kingma and Welling
2013), whose encoder maps sentences into a smooth continu-
ous space and its decoder can map a continuous representa-
tion back to the sentence. (b) Some attribute predictors that
take the continuous representation of a sentence as input and
predict the attributes of its decoder output sentence, respec-
tively. These attribute predictors enable us to find the target
sentence with the desired attributes in the continuous space.
(c) A content predictor that takes the continuous represen-
tation of a sentence as input and predicts the Bag-of-Word
(BoW) feature of its decoder output sentence. The purpose
of component (c) is threefold: First, it could enhance the con-
tent preservation during style transfer; Second, it enables the
target sentence to contain some specific words; Third, it can
tackle the vanishing latent variable problem of VAE (Zhao,
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Zhao, and Eskenazi 2017). With the gradients obtained from
these predictors, we can revise the continuous representation
of the original sentence by gradient-based optimization to
find a target sentence with the desired fine-grained attributes,
and achieve the content-preserving text style transfer.

The method we propose has three major advantages com-
pared to previous methods:

• The method can be easily trained on the non-parallel
dataset, avoiding the problem of training difficulties caused
by adversarial learning and achieving higher performance.

• Unlike previous methods directly generate the target-style
sentence through once feed-forward in the inference stage,
our method revises the original sentence with gradient
information for several steps during inference, which ex-
plicitly presents the process of the style transfer and can
easily provide us multiple results with tuning the gradients.
Therefore, the proposed method has higher interpretability
and is more controllable.

• Most previous text style transfer methods that only control
a single binary attribute (e.g., positive and negative senti-
ments). In contrast, our approach is more generic in the
sense that it naturally has the ability to control multiple
fine-grained attributes, such as sentence length and the
existence of specific words.

Extensive experimental comparisons on three popular
text style transfer tasks show that the proposed method
significantly outperforms five state-of-the-art methods. The
source code is available at https://github.com/dayihengliu/
Fine-Grained-Style-Transfer.

2 Methodology

Let D = {(x1, s1), ..., (xn, sn)} denotes a dataset which
contains n sentences xi paired with a set of attributes si.
Each s has k attributes of interest s = {s1, ..., sk}. Unlike
most previous methods (Shen et al. 2017; Fu et al. 2018;
Prabhumoye et al. 2018; Li et al. 2018; Yang et al. 2018)
that only consider a single binary attribute (e.g., positive or
negative sentiments), our approach naturally has the abil-
ity to control multiple fine-grained attributes during style
transfer. Here we take two fine-grained attributes, sentence
length and the presence of specific words (e.g., a pre-defined
subject noun), as the case study. For example, given a orig-
inal sentence x =“the salads are fresh and delicious.”, its
attribute set can be s={sentiment=positive, length=7, sub-
ject noun=salads}. Our task is to learn a generative model
G that can generate a new sentence x∗ with the required at-
tributes s∗, and retain the attribute-independent content of x
as much as possible.

2.1 Model Structure

The proposed model consists of three components: a varia-
tional auto-encoder (VAE), attribute predictors, and a content
predictor.
Variational auto-encoder G. The VAE integrates stochastic
latent representation z into the auto-encoder architecture. Its
RNN encoder maps a sentence x into a continuous latent

representation z:

z ∼ Genc(θenc;x) = qE(z|x), (1)

and its RNN decoder maps the representation back to recon-
struct the sentence x:

x ∼ Gdec(θdec; z) = pG(x|z), (2)

where θenc and θdec denote the parameters of the encoder
and decoder. The VAE is then optimized to minimize the
reconstruction error Lrec of input sentences, and meanwhile
minimize the KL term LKL to encourages the qE(z|x) to
match the prior p(z):

LVAE(θenc, θdec) = Lrec + LKL

= −EqE(z|x) [log pG(x|z)] +DKL(qE(z|x)‖p(z)), (3)

where DKL(·‖·) is the KL-divergence. Compared with tradi-
tional deterministic auto-encoder, the VAE offers two main
advantages in our approach:

(1) Deterministic auto-encoders often have “holes” in their
latent space, where the latent representations may not able
to generate anything realistic (Roberts et al. 2018). In con-
trast, by imposing a prior standardized normal distribution
N (z; 0, I) on the latent representations, the VAE learns latent
representations not as single isolated points, but as soft dense
regions in continuous latent space which makes it be able to
generate plausible examples from every point in the latent
space (Bowman et al. 2016). This characteristic avoids the
problem that the representation z∗ revised (optimized) by the
gradient not being able to generate a plausible sentence.

(2) This continuous and smooth latent space learned by
the VAE enables the sentences generated by adjacent la-
tent representation to be similar in content and semantics
(Bowman et al. 2016; Semeniuta, Severyn, and Barth 2017;
Goyal et al. 2017; Yang et al. 2017; Shen et al. 2018). There-
fore, if we revise the representation z within a reasonable
range (i.e., small enough), the resulting new sentence would
not differ much in content from the original sentence.
Attribute predictors f1, ..., fk. Each of them takes the repre-
sentation z as input and predict one attribute sj of the decoder
output sentence x̂ generated by z. For example, the attribute
predictor can be a binary classifier for positive-negative sen-
timent prediction or a regression model for sentence length
prediction. With the gradients provided by the predictors,
we can revise the continuous representation z of the original
sentence x by gradient-based optimization to find a target
sentence x∗ with the desired attributes s∗.

The attribute predictors f1, ..., fk are jointly trained with
VAE. For M-classification predictors, we have

LAttr,sj (θsj , θenc) = −EqE(z|x) log [fj(z)] , (4)

where fj(z) = MLPj(z) = p(sj |z) ∈ R
M. And for the

regression predictors, we have

LAttr,sj (θsj , θenc) = EqE(z|x)
[
(sj − fj(z))

2
]
, (5)

where fj(z) = MLPj(z) ∈ R
1. In this joint training, we

take the attributes of the input sentence x as the label of
predictors. Since the predictor are designed to predict the

8377



�������	
�	����	��
��������	����	������
�����������������
����� ��� ����� ����
���	����� ����

�������	
�	����	�����	�
��������� ���������
����	������

������� 	������

���������� 	
���� ��
��

�� ���
���� ��� �������

�
�


Figure 1: There is an example of content-preserving text sentiment transfer, and we hope to further increase the length
of the target sentence compared with the original sentence. The original sentence x with negative sentiment is mapped to
continuous representation z via encoder. Then z is revised into z∗ by minimizing the error LAttr,s1(θs1 ; s1 = {sentiment =
positive}) + LAttr,s2(θs2 ; s2 = {length = 20}) + λbowLBOW(θbow;xbow = [burgers,meat]) with the sentiment predictor f1,
length predictor f2, and the content predictor fbow. Afterwards the target sentence x∗ is generated by decoding z∗ with beam
search via decoder [best viewed in color].

attribute of the sentence x̂ generated by z, we further train
each predictor individually after joint training. We sample
z from N (z; 0, I) and feed it into the decoder to generate
a new sentence x̂. Afterwards we feed x̂ into the CNN text
classifiers (Kim 2014) which are trained on the training set
to predict its attributes1 as the label of the predictors:

L′
Attr,sj (θsj ) = −Ep(z)pG(x̂|z) log [p(CNN(x̂)|z)] ,

L′
Attr,sj (θsj ) = Ep(z)pG(x̂|z)

[
(ŝj − fj(z))

2
]
.

(6)

Content predictor fbow. It is a multi-label classifier that
takes z as input and predicts the Bag-of-Word feature xbow
of its decoder output sentence:

fbow(z) = MLPbow(z) = p(xbow|z). (7)

We assume p(xbow|z) as |x|-trial multimodal distribution:

log p(xbow|z) = log

|x|∏

t=1

ef
(xt)
bow

∑V
j ef

(xj)

bow

, (8)

where V is the size of vocabulary, |x| is the length of x, and
f
(xj)
bow is the output value of j-th word in fbow ∈ R

V .
The training of content predictor fbow is similar to attribute

predictors. It is jointly trained with VAE:

LBOW(θbow, θenc) = −EqE(z|x) log [p(xbow|z)] . (9)

After joint training, it is trained separately through:

L′
BOW(θbow) = −Ep(z)pG(x̂|z) log [p(x̂bow|z)] . (10)

During text style transfer, we can similarly revise the rep-
resentation z with the gradient provided by the content pre-
dictor fbow to enhance content preservation. Here we con-
sider two ways to enhance content preservation during style

1Some attributes can be obtained directly without using classi-
fiers, such as the length ŝj of x̂.

transfer. We can set xbow to contain all the words in the orig-
inal sentence x, which means that we try to find a sentence
x∗ with the desired attributes s∗ and keep all the words of
the original sentence as much as possible to achieve con-
tent preservation. However, retaining all the words is often
not what we want. For example, x∗ should not contain the
original emotional words in the task of text sentiment trans-
fer. Instead, the noun in the original sentence should be re-
tained in such a task (Melnyk et al. 2017; Li et al. 2018;
John et al. 2019). Therefore, we can set xbow to contain only
all nouns in x. Furthermore, we can set xbow to contain some
desired specific words to achieve finer-grained control of
target sentences.
Putting them together, the final joint training loss L is as
follows:

L = LVAE + λbLBOW + λs

k∑

j=1

LAttr,sj , (11)

where λb and λs are balancing hyper-parameters. It should
be noted that LBOW and LAttr,sj also act as regularizers that
prevent the encoder from being trapped into a KL vanishing
state (Bowman et al. 2016; Kingma et al. 2016; Yang et al.
2017; Shen et al. 2018; Alemi et al. 2018).

2.2 Text Style Transfer

Given the original sentence x, the inference process of style
transfer is performed in the continuous space. We revise its
representation z by gradient-based optimization as follows:

ẑ = z − η(
k∑

j=1

∇zLAttr,sj + λc∇zLBOW), (12)

where η is the step size and λc is the trade-off parameter to
balance the content preservation and style transfer strength.
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We iterate such optimization to find the z∗ until the output
confidence score of attribute predictors p(sj |z) is greater
than a threshold β or reach the maximum number of rounds
T . The target x∗ is obtained by decoding z∗ with a beam
search (Och and Ney 2004). An example procedure is shown
in Figure 1.

3 Experiments

In this section, we evaluate the proposed method on three
publicly available datasets of sentiment transfer and gender
style transfer tasks. Then we conduct several experiments on
text sentiment transfer tasks and simultaneously control other
fine-grained attributes such as length and keyword presence.

3.1 Text Sentiment Transfer

Data We use two datasets, Yelp restaurant reviews and
Amazon product reviews (He and McAuley 2016)2, which
are commonly used in prior works too (Shen et al. 2017; Fu et
al. 2018; Li et al. 2018; Prabhumoye et al. 2018). Following
their experimental settings, we use the same pre-processing
steps and similar experimental configurations.

Metrics There are three criteria for a good style transfer
(Li et al. 2018; Prabhumoye et al. 2018). Concretely, the gen-
erated sentences should: 1) have the desired attributes; 2) be
fluent; 3) preserve the attribute-independent content of the
original sentence as much as possible. For the first and sec-
ond criteria, we follow previous works (Shen et al. 2017;
Fu et al. 2018; Li et al. 2018; Prabhumoye et al. 2018)
in using model-based evaluation. We measure whether the
style is successfully transferred according to the predic-
tion of a pre-trained bidirectional LSTM classifier (Schus-
ter and Paliwal 1997), and measure the language quality
by the perplexity (PPL) of the generated sentences with
a pre-trained language model. Following previous works,
we use the trigram Kneser-Ney smoothed language model
(Kneser and Ney 1995) trained on the respective dataset.
Since it is hard to measure the content preservation, we
follow previous works and report two metrics: 1) Word
overlap, which counts the unigram word overlap rate of
the original sentence x and the generated sentence x̂, com-
puted by count(wx∩wx̂)

count(wx∪wx̂)
; 2) As argued in (Melnyk et al. 2017;

Li et al. 2018), almost all of the nouns in sentences are
attribute-independent content and should be kept in style
transfer task, we also calculate the percentage of nouns (e.g.,
as detected by a POS tagger) in the original sentence appear-
ing in the generated sentence (denoted as Noun%). There are
1000 human annotated sentences as the ground truth of the
transferred sentences in (Li et al. 2018). We also take them
as references and report the bi-gram BLEU scores (Papineni
et al. 2002).

Baselines We compare our method with several previous
state-of-the-art methods (Shen et al. 2017; Fu et al. 2018;
Li et al. 2018; Prabhumoye et al. 2018). We report the results
of the human-written sentences as a strong baseline. The

2These datasets can be download at http://bit.ly/2LHMUsl.

results of not making any changes to the original sentences
(denoted as Original) are also reported.

Results Table 1 shows the evaluation results on two
datasets. It should be noted that a good style transfer method
should perform well on all metrics as we discussed above. If
we only use the original sentence as the output without any
modifications, we can still get good performance on both lan-
guage fluency (PPL) and content retention (Overlap, Noun%)
as shown in the first row of Table 1. Therefore, we highlight
the metrics where the performances of the models are poor
with underline. We find that StyleEmbedding and MultiDe-
coder achieve high content retention (Overlap, BLEU, and
Noun%), but their fluency (PPL) and transfer accuracy are
significantly worse than our method. Though the fluency of
CrossAligned is better than StyleEmbedding and MultiDe-
coder, it does not perform well in both content preservation
and sentiment transfer. On the contrary, BST achieves high
fluency and transfer accuracy, while the content is poorly
preserved. Ours (style-strengthen) performs better than BST
and CrossAligned on all metrics for these two tasks.

Because the methods proposed in (Li et al. 2018) (ex-
cept for RetrievalOnly) are based on prior knowledge, which
directly revises few words in the original sentence in the dis-
crete space, they can easily achieve high content retention
but do not guarantee fluency and accuracy. As shown in the
results, their fluency and the transfer accuracy are bad com-
pared to our method. The method RetrievalOnly retrieves
the human-written sentence as output, thus this method can
achieve high transfer accuracy and fluency, but its content
retention is worse than our method. Our methods revise the
original sentence in a continuous space, which does well in
fluency, content preservation, and transfer accuracy. In ad-
dition, our methods can control the trade-off between the
transfer accuracy and content preservation.

Human Evaluation We conduct human evaluations to
further verify the performance of our methods on two
datasets further. Following previous works (Li et al. 2018;
Fu et al. 2018), we randomly select 50 original sentences
and ask 7 evaluators3 to evaluate the sentences generated by
different methods. Each generated sentence is rated on the
scale of 1 to 5 in terms of transfer accuracy, preservation of
content, and language fluency. The results are shown in Table
3. It can be seen that our models perform well on all metrics
and significantly outperform all baselines on the percentage
success rate (Suc%) for two datasets.

3.2 Text Gender Style Transfer

We use the same dataset4 as in (Prabhumoye et al. 2018),
which contains reviews from Yelp annotated with two sexes
(they only consider male or female due to the absence of
corpora with other gender annotations). Following (Prabhu-
moye et al. 2018), we use the same pre-processing steps and

3All evaluators have Bachelor or higher degree. They are inde-
pendent of the authors’ research group.

4This dataset can be download at http://tts.speech.cs.cmu.edu/
style models/gender classifier.tar.
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Methods Accuracy↑ PPL↓ Overlap↑ Noun%↑ BLEU↑
Original 0.1 22.9 100.0 100.0 42.4
Human 91.8 76.9 47.2 78.5 100.0
Delete, Retrieve, & Generate (Li et al. 2018):
TemplateBased 81.3 183.6 55.6 83.3 28.9
DeleteOnly 85.8 81.4 49.5 74.9 24.7
DeleteAndRetrieve 89.5 96.1 49.4 74.0 24.9
RetrievalOnly 98.4 25.7 15.8 39.6 4.7
StyleEmbedding (Fu et al. 2018) 7.2 93.9 75.4 74.2 31.9
MultiDecoder (Fu et al. 2018) 48.8 166.5 51.5 52.2 23.1
BTS (Prabhumoye et al. 2018) 94.8 32.8 21.5 23.5 6.8
CrossAligned (Shen et al. 2017) 73.6 72.0 41.1 42.9 18.4
Ours (content-strengthen) 88.2 26.5 46.6 77.4 21.8
Ours (style-content balance) 92.3 18.3 38.9 69.3 18.8
Ours (style-strengthen) 95.7 20.6 39.7 61.5 17.9
Methods Accuracy↑ PPL↓ Overlap↑ Noun%↑ BLEU↑
Original 23.4 24.4 100.0 100.0 57.2
Human 88.1 62.9 60.5 85.0 100.0
Delete, Retrieve, & Generate (Li et al. 2018):
TemplateBased 69.6 108.9 73.3 87.9 42.8
DeleteOnly 51.6 49.3 74.4 95.1 44.7
DeleteAndRetrieve 55.2 48.2 69.1 92.6 41.8
RetrievalOnly 87.2 28.7 21.0 44.5 6.7
StyleEmbedding (Fu et al. 2018) 40.5 87.7 42.2 41.8 22.1
MultiDecoder (Fu et al. 2018) 66.5 80.8 30.6 30.4 14.3
BTS (Prabhumoye et al. 2018) 82.6 25.3 24.7 22.5 9.2
CrossAligned (Shen et al. 2017) 69.6 18.3 19.3 20.4 5.0
Ours (content-strengthen) 81.9 35.0 37.7 76.0 11.5
Ours (style-content balance) 85.1 21.8 49.3 49.8 21.5
Ours (style-strengthen) 90.0 15.9 39.5 41.4 16.3

Table 1: Evaluation results of the sentiment transfer tasks on Yelp (Top) and Amazon (Bottom). The notation ↑ means the higher
the better, while ↓ means the lower the better. For our models, we report different results (denoted as Ours (content-strengthen),
Ours (style-content balance), and Ours (style-strengthen)) corresponding to different choices of hyper-parameters (λc and β),
which demonstrates our models’ ability to control the trade-off between attribute transfer and content preservation. For each
evaluation criterion, we bold the best values (except for Human and Original). The accuracies of the classifier on the test set of
Yelp and Amazon are 98.2% and 84.0%. Note that a good model should perform well on all metrics, we further highlight the
metrics where the performances of the models are poor with underline.

similar experimental configurations. We directly compare our
method against BST (Prabhumoye et al. 2018) which has
been shown to outperform the previous approach (Shen et
al. 2017) on this task. We use the same metrics described
in Section Text Sentiment Transfer except for the BLEU
score because this dataset does not provide the human anno-
tated sentences. The implementation of BST is based on their
source code5. The results are shown in Table 4. We can see
that our methods outperform BST (Prabhumoye et al. 2018)
on all metrics.

3.3 Multiple Fine-Grained Attributes Control

To verify our method can also achieve multiple fine-grained
attributes control, we take the attributes length, keyword pres-
ence, and sentiment as the case study in this experiment. We
use the same dataset, Yelp, and the same metrics used in Sec-

5https://github.com/shrimai/Style-Transfer-Through-Back-
Translation

tion Text Sentiment Transfer. For the attribute of length, we
design two tasks: 1) We hope that the target sentence can add
some relevant content to the original sentence, and increase
its length by twice (denoted as Length⇑); 2) We hope that
the target sentence can compress the content of the original
sentence and reduce its length by half (denoted as Length⇓).
For evaluation, we measure the percentage of the length of
the generated sentences to the length of the original sentences
(denoted as Len%). For the attribute of keyword presence,
we hope that the target sentence can contain a pre-defined
keyword and retain the content of the original sentence as
much as possible (denoted as Keywords). In our experiments,
we define a keyword as a noun that is semantically most rel-
evant (computed by the cosine distance of pre-trained word
embeddings) to the original sentence but do not appear in
the original sentence. The percentage of the generated sen-
tences contain the pre-defined keyword (denoted as Key%)
is reported.
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Sentiment transfer from negative to positive (Yelp)
Original we sit down and we got some really slow and lazy service .
Human the service was quick and responsive .
CrossAligned we went down and we were a good , friendly food .
MultiDecoder we sit down and we got some really and fast food .
DeleteAndRetrieve we got very nice place to sit down and we got some service .
BackTranslation we got and i and it is very nice and friendly staff .
Ours (content-strengthen) we sat down and got some really good service and friendly people .
Ours (style-content balance) we sat down the street and had some really nice and fast service .
Ours (style-strengthen) we really sit down and the service and food were great .

Sentiment transfer from positive to negative (Yelp)
Original i love this place , the service is always great !
Human hate this place , service was bad .
CrossAligned i know this place , the food is just a horrible !
MultiDecoder i love this place , the service is always great !
DeleteAndRetrieve i did not like the homework of lasagna , not like it , .
BackTranslation i wish i have been back , this place is a empty !
Ours (content-strengthen) however , this place is the worst i have ever been to .
Ours (style-content balance) i do n’t know why i love this place , but the service is horrible .
Ours (style-strengthen) i do n’t know why this place has the worst customer service ever .

Table 2: Samples of the sentiment transfer task from ours and baselines on Yelp. The Original denotes the input sentence, and the
Human denotes the human annotated sentence. The samples of the sentiment transfer from negative to positive and positive to
negative are shown in top and bottom, respectively.

Yelp Amazon
Acc Gra Con Suc% Acc Gra Con Suc%

Human 4.1 4.4 3.6 78 3.5 4.3 3.9 60
CrossAligned (Shen et al. 2017) 3.3 2.9 2.6 22 3.0 3.3 1.6 6
MultiDecoder (Fu et al. 2018) 2.4 3.0 3.1 12 2.3 2.7 2.5 6
BTS (Prabhumoye et al. 2018) 3.9 3.7 1.8 26 2.8 3.3 1.8 8
DeleteAndRetrieve (Li et al. 2018) 3.8 3.6 3.5 54 2.4 3.5 3.8 28
Ours (content-strengthen) 3.6 4.1 3.1 66 3.4 4.0 2.8 42
Ours (style-content balance) 3.7 4.3 3.2 72 3.7 4.0 2.4 40
Ours (style-strengthen) 3.8 4.1 3.0 60 3.8 4.5 2.5 50

Table 3: Human evaluation results of the sentiment transfer tasks on Yelp and Amazon. We show average human ratings for
transfer accuracy (Acc), preservation of content (Con), and fluency of sentences (Gra) on 1 to 5 score. “Suc%” denotes the
overall percentage success rate. Similar to previous works, we consider a generated output “successful” if it is rated no less than
3 on all three criteria (Att, Con, Gra).

Methods Accuracy↑ PPL↓ Overlap↑ Noun%↑
Orginal 21.9 183.4 100.0 100.0
BTS (Prabhumoye et al. 2018) 60.3 145.0 37.9 35.3
Ours (content-strengthen) 70.6 98.2 46.8 69.6
Ours (style-content balance) 71.3 87.8 51.8 57.5
Ours (style-strengthen) 79.9 78.9 46.4 53.8

Table 4: Evaluation results of the gender transfer task on Yelp. For our models, we report different results corresponding to
different choices of hyper-parameters (λc and β) to demonstrate our models’ ability to control the trade-off between attribute
transfer and content preservation. The accuracy of the classifier on the test set is 83.1%.

The results are shown in Table 5. For a single fine-grained
attribute, it can be observed that Keywords achieves 92.3
Key% score, Length⇑ and Length⇓ achieve 208.8 and 40.8
Len% scores respectively. At the same time, the fluency and

content retention scores are still high. These results demon-
strate the proposed method can control such fine-grained at-
tributes. When we further control the sentiment attribute, we
can see that Sentiment + Keywords achieves 91.6% accuracy,
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Methods Accuracy↑ PPL↓ Overlap↑ Noun%↑ Len% Key%↑
Original 0.1 22.9 100.0 100.0 100.0 7.8
Keywords 16.7 43.9 39.2 56.0 98.1 92.3
Sentiment + Keywords 91.6 52.6 24.5 42.4 106.0 78.3
Length⇑ 0.2 29.8 25.0 48.3 208.8 5.9
Sentiment + Length⇑ 97.7 25.4 21.4 51.7 189.5 9.2
Keywords + Length⇑ 25.6 44.5 29.8 61.8 165.0 83.2
Sentiment + Keywords + Length⇑ 93.0 51.8 18.8 50.0 183.7 66.6
Length⇓ 0.2 31.3 30.7 25.2 40.8 6.3
Sentiment + Length⇓ 95.1 23.0 29.1 38.1 66.9 6.7
Keywords + Length⇓ 21.4 87.0 28.4 38.9 61.6 83.7
Sentiment + Keywords + Length⇓ 87.6 123.8 16.3 23.7 60.9 63.0

Table 5: Results of fine-grained Attributes control on the Yelp. Different rows correspond to the set of attributes being controlled
by the model.

while the accuracy of Sentiment + Length⇑ and Sentiment +
Length⇓ is 97.7% and 95.1% respectively. Meanwhile, their
rest scores have not declined significantly. When simultane-
ously controlling all these attributes, Sentiment + Keywords
+ Length⇑ achieves 93.0% accuracy, 183.7 Len% score, and
66.6 Key% score, while Sentiment + Keywords + Length⇓
achieves 87.6% accuracy, 60.9 Len% score, and 63.0 Key%
score. Since it is more difficult to reduce sentence length than
to increase sentence length while controlling other attributes,
the fluency of Sentiment + Keywords + Length⇓ is worse
than Sentiment + Keywords + Length⇑. These results indi-
cate that our proposed method can control multiple attributes
simultaneously.

4 Related Works

We have witnessed an increasing interest in text style transfer
under the setting of non-parallel data. Most such methods
explicitly disentangle the content and the attribute. One line
of research leverages the auto-encoder framework to encode
the original sentence into an attribute-independent content
representation with adversarial learning, which is then fed
into the decoder with a style vector to output the transferred
sentence. In (Hu et al. 2017; Shen et al. 2017; Prabhumoye
et al. 2018), adversarial learning is utilized to ensure that the
output sentence has the desired style. In order to disentangle
the content and the attribute, (Hu et al. 2017) enforces the
output sentence to reconstruct the content representation,
while (Fu et al. 2018; Zhao, Zhao, and Eskenazi 2017; John
et al. 2019) apply adversarial learning to discourage encoding
style information into the content representation. (Shen et
al. 2017) utilizes adversarial learning to align the generated
sentences from one style to the data domain of the other
style. In (Yang et al. 2018), the authors extend the cross-align
method (Shen et al. 2017) by employing a language model as
the discriminator, which can provide a more stable and more
informative training signal for adversarial learning.

However, as argued in (Li et al. 2018; Guillaume Lample
2019), it is often easy to fool the discriminator without actu-
ally learning the representations that are disentangled. Unlike
the methods mentioned above that disentangle the content and
the attribute with adversarial learning, another line of research
(Prabhumoye et al. 2018; Logeswaran, Lee, and Bengio 2018;

Guillaume Lample 2019) applies back-translation (Wintner
et al. 2016) to rephrase a sentence while reducing the stylis-
tic properties and encourage content compatibility. Besides,
the authors in (Li et al. 2018) directly mask out the words
associated with the original style of the sentence to obtain
the attribute-independent content text. Instead of revising the
sentence in the discrete space with prior knowledge as in (Li
et al. 2018), our method maps the discrete sentence into a con-
tinuous representation space and revises the continuous rep-
resentation with the gradient provided by the predictors. This
method does not explicitly disentangle the content and the
attribute and avoids the training difficulties caused by the use
of adversarial learning in the previous methods. Similar ideas
have been proposed in (Mueller, Gifford, and Jaakkola 2017;
Luo et al. 2018) for sentence revision and neural archi-
tecture search. As pointed out in (Shen et al. 2017), the
model proposed in (Mueller, Gifford, and Jaakkola 2017)
does not necessarily enforce content preservation, while
our method employs a content predictor to enhance con-
tent preservation. Furthermore, unlike most previous meth-
ods that only control a single binary attribute (e.g., pos-
itive and negative sentiments), our approach can further
control multiple fine-grained attributes such as sentence
length and the existence of specific words. Note that con-
trolling such fine-grained attributes has already been studied
in the previous works for other tasks (Post and Vilar 2018;
Makino et al. 2019), which only serves as a case study to
demonstrate the generality of our method.

5 Conclusion and Future Work

In this paper, we propose a new framework for unsupervised
text style transfer which revises the original sentences in a
continuous space based on gradient optimization in the in-
ference stage. Compared with previous adversarial learning
based methods, our method is easy to train, interpretable, and
more controllable. Extensive experiments on three popular
text style transfer tasks show that our approach outperforms
five previous state-of-the-art methods. Furthermore, exper-
imental results demonstrate that the proposed method can
simultaneously manipulate multiple fine-grained attributes
such as sentence length and the presence of specific words.

In future work, we plan to explore control over other fine-
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grained attributes. In addition, it would be interesting to ex-
tend the proposed approach to other natural language genera-
tion tasks, such as dialogue and headline generation.
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