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Abstract

Lacking robustness is a serious problem for Machine Read-
ing Comprehension (MRC) models. To alleviate this prob-
lem, one of the most promising ways is to augment the train-
ing dataset with sophisticated designed adversarial examples.
Generally, those examples are created by rules according to
the observed patterns of successful adversarial attacks. Since
the types of adversarial examples are innumerable, it is not
adequate to manually design and enrich training data to de-
fend against all types of adversarial attacks. In this paper, we
propose a novel robust adversarial training approach to im-
prove the robustness of MRC models in a more generic way.
Given an MRC model well-trained on the original dataset, our
approach dynamically generates adversarial examples based
on the parameters of current model and further trains the
model by using the generated examples in an iterative sched-
ule. When applied to the state-of-the-art MRC models, in-
cluding QANET, BERT and ERNIE2.0, our approach obtains
significant and comprehensive improvements on 5 adversarial
datasets constructed in different ways, without sacrificing the
performance on the original SQuAD development set. More-
over, when coupled with other data augmentation strategy,
our approach further boosts the overall performance on ad-
versarial datasets and outperforms the state-of-the-art meth-
ods.

Introduction

Machine Reading Comprehension (MRC) has become a
popular research topic in recent years. A lot of efforts have
been devoted to create better MRC models (Seo et al. 2016;
Wang et al. 2017; Yu et al. 2018; Devlin et al. 2018). Specif-
ically, recent advances suggest that several MRC models
can achieve human parity on several datasets. However, (Jia
and Liang 2017) revealed that, these advanced models are
vulnerable to specially designed adversarial attacks. The
model performance significantly decreases on the adversar-
ial examples which consist of the original answer passages
and the generated misleading texts. Similar problems have
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been observed in (Goodfellow, Shlens, and Szegedy 2014;
Zhang et al. 2017). As shown in Table 1, different types of
adversarial examples are all able to distract the MRC model.
Therefore, it is a critical problem to improve the robustness
of the existing MRC models.

To deal with the robustness issue mentioned above, re-
searchers have made several attempts. Currently, the most
straightforward and effective approach is to augment the
training dataset with adversarial examples. (Wang and
Bansal 2018) augmented the training datasets by incorporat-
ing adversarial examples that fit a certain type of attacks, and
trained an MRC model on the augmented dataset. This sig-
nificantly improves the model robustness under the known
certain types of attacks. However, such augmented datasets
are more capable of simulating the known types of adver-
sarial examples, while ignoring other unobserved types. Ac-
cording to our observation, the augmented training dataset
of (Wang and Bansal 2018) helps defense adversarial attacks
proposed in (Jia and Liang 2017) well, but still fails on other
types of adversarial attacks (shown in the experiment sec-
tion). Hence, we render that rule-based data augmentation
approach is not adequate since the types of adversarial ex-
amples are innumerable.

To deal with the above challenge, we propose a model-
driven approach to generate adversarial examples that can
attack given MRC model. Then, we retrain and strengthen
the MRC model by using the generated adversarial exam-
ples. The major benefit of our approach is that it does not
require any specification of adversarial attack types, and we
expect our model is more robust under general adversarial
attacks.

Specifically, our approach can be divided into three steps:
(1) We take an MRC model as a black-box and obtains a per-
turbation word embedding sequence for each instance sam-
pled from the original dataset. The perturbation word em-
bedding sequences are likely to cause the MRC model give
wrong predictions. (2) From each perturbation embedding
sequence, We sample a word sequence. Then, we take the
sampled sequence as a misleading text, and insert it into the
original instance to create an adversarial example. (3) We
retrain the MRC model on the original datasets with the ad-
versarial examples generated from step 2. Then, repeat step
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Question What distinct quality of combustion was absent from philogiston theory?
Passage Highly combustible materials that leave little residue, such as wood or coal, were thought to be made mostly

of phlogiston; whereas non-combustible substances that corrode, such as iron, contained very little. Air did
not play a role in phlogiston theory, nor were any initial quantitative experiments conducted to test the idea;
instead, it was based on observations of what happens when something burns, that most common objects appear
to become lighter and seem to lose something in the process. The fact that a substance like wood gains overall
weight in burning was hidden by the buoyancy of the gaseous combustion products......

Adv Types Adversarial Examples with Misleading Texts Predictions

AddSent {passage} + The distinct quality of combustion of a engine was present from philogiston
theory.

engine

AddAny {passage} + theory ? absent ? week ran we absent absent chief buoyancy
AddAnsCtx {passage} + did not play a role in phlogiston theory, nor were any initial quantitative experi-

ments conducted to test the idea;
buoyancy

Table 1: An example of attacking BERTbase(Devlin et al. 2018) by appending various forms of misleading texts to the ending of
passage. Without any misleading texts appended, the model predicts the correct answer ”Air” (in bold) as the result. However,
the model is distracted and predicts wrong answers when different types of misleading texts are added. The misleading texts are
created in different ways: AddSent:(Jia and Liang 2017) generates the misleading text by modifying the question according to
certain rules and proofreads manually; AddAny:(Jia and Liang 2017) automatically searches the misleading texts word by word
on various MRC models; AddAnsCtx: we generate the misleading text by removing the answer words in answer sentences.

1 with the retrained model until it converges. In this way, we
expect the well trained model is able to tackle more general
attacks rather than specific types of adversarial examples.

The experimental results show that our approach can
significantly improve the robustness of the MRC models
over five different types of adversarial examples. Based on
ERNIE2.0 (Sun et al. 2019), one of the state-of-the-art MRC
models, our approach gains a significant improvement of
8.4% F1 score averaged on all types of adversarial test sets.
The overall improvement on F1 score suggests that our train-
ing approach strengthens the model robustness in a more
general way. Moreover, coupled with manually designed
training data (Wang and Bansal 2018), our approach can fur-
ther boost the average F1 score and gains a 2.3% improve-
ment over different MRC models. Our contributions are con-
cluded as follows:

• We proposed a model-driven approach to improve the ro-
bustness of MRC models to defend against various types
of adversarial examples. Instead of specifying types of
adversarial examples, our approach does not hold any as-
sumption and it can generate the adversarial examples that
distract the MRC models. The experimental results show
that our approach is capable of tackling with more general
attacks rather than specific types of adversarial examples.

• Our approach is a good supplement to other data augmen-
tation methods. The robustness of MRC models can be
further improved by using our training approach.

Related Work

Researchers have devoted their efforts to robustness prob-
lems of MRC systems in many ways. Most of them can be
boiled down to two categories:

Data enrichment: A direct and effective way to defend
against adversarial examples is to generate corresponding
examples and train on them. (Jia and Liang 2017) designed

some types of adversarial examples and investigated them on
various MRC models. In order to defend those types of ad-
versarial examples, (Wang and Bansal 2018) automatically
created additional training samples based on rules, and en-
riched training data with those samples. Based on the spe-
cific designed training data, MRC models are able to achieve
state-of-the-art performance on AddSent task. Differ from
work mentioned above, our work is not designed for any
specific adversarial data set, and we attempt to seek a more
general way to strengthen model robustness.

Model improvement: Many researchers tried to better
design and train MRC models in order to improve model
robustness to defend against adversarial examples. (Salant
and Berant 2018) improved models’ robustness by using
pretrained language model embeddings as inputs in order
to collect rich contextualized information. (Min et al. 2018)
proposed a sentence selector to select minimal sentence sets
for further prediction so as to avoid many distractions. (Liu
et al. 2018) designed an output layer that averages multi-
predictions to improvement the model robustness. (Hu et
al. 2018b) trained robust single model based on ensem-
ble ones through distillation training approach. Instead of
adding heuristic design to MRC models, our training ap-
proach does not have to modify any model structures, it can
be applied to all derivable models.

Besides efforts devoted into MRC systems, many efforts
are also devoted into adversarial attacking methods on text.
(Behjati et al. 2019) tried to distract a text classifier by train-
ing perturbation embeddings. (Iyyer et al. 2018) proposed
a syntactically controlled paraphrase networks to generate
grammatically adversarial examples. (Gong et al. 2018) and
(Sato et al. 2018) generated misleading texts via training per-
turbation embeddings and searching the nearest tokens. And
(Jia and Liang 2017; Alzantot et al. 2018) generated mis-
leading text automatically by replacing tokens in text itera-
tively until get a success attack. Differ from attacking meth-

8393



ods mentioned above, our work not only finds more attack-
ing ways, but also tries to improve model robustness in an
effective way.

Adversarial Training Method

Similar to Generative Adversarial Networks (GAN), our ad-
versarial training method plays a min-max game between
an adversarial example generator and a corresponding MRC
model. Since the generation of discrete tokens is not a dif-
ferentiable process, instead of adopting reinforcement learn-
ing methods (Kusner and Hernández-Lobato 2016; Yu et
al. 2017), we select a sampling strategy to generate adver-
sarial examples. Our training process follows a three steps
algorithm: (1) Takes a well trained MRC model as the ad-
versarial generator, and trains perturbation embedding se-
quences to minimize output probabilities of real answers
under given questions and passages. (2) Greedily samples
word sequences from perturbation embeddings as mislead-
ing texts to create and enrich our adversarial example set.
(3) Trains the MRC model to maximize probabilities of real
answers to defend against those adversarial examples. Then
return to step 1 with retrained model as new generator until
convergence.

In order to fully cover potential types of adversarial ex-
amples, our approach attempts to generate two kinds of mis-
leading texts:

1. Misleading answer texts: misleading texts which try to
convince MRC models that correct answers are located
within the texts.

2. Misleading context texts: misleading texts that act as con-
texts and try to distract MRC models from correct answers
and guide them to wrong ones (not necessary within the
misleading texts).

where each type owns its own loss function in adversar-
ial training. Meanwhile, in order to increase the diversity,
our approach also tries to control misleading texts to be ei-
ther similar or dissimilar to questions, while most known
misleading texts are mainly question related (Jia and Liang
2017; Wang and Bansal 2018).

MRC Model Definition

We treat all derivable MRC models as black-boxes, leaving
network internal details alone and we focus on model inputs
and outputs. Given a pair of question q and passage p as in-
puts, most MRC models f(q, p; θ) attempt to search an an-
swer located in a span s=[ss, se] that maximizes the model
probability:

f(q, p; θ) = argmax
s

Pr(s |q, p; θ)
= argmax

ss,se
Pr(ss |q, p; θ)Pr(se |q, p; θ) (1)

where θ denotes the parameters of the MRC model and
ss, se denote the start and end positions of s respectively.
In detail, q and p denote token sequences of tq1tq2 ...tqm
and tp1

tp2
...tpn

respectively, where m and n denote the se-
quence lengths of question and passage respectively.

Since main stream MRC models usually adopt word em-
bedding layers as the bottom input blocks, we assume inputs
of MRC models are embeddings and simplify the model as:

f(eq, ep; θ) = argmax
s

Pr(s|e q, e p; θ) (2)

where eq denotes an embedding sequence eq1eq2 ...eqm of
question q, where eqi ∈ Rd denotes the i-th token embed-
ding of q with dimension size d. Similarly, ep means the
passage embedding sequence ep1

ep2
...epn

, and epi
∈ Rd

denotes the i-th token embedding of p. With a given vocab-
ulary embedding table V ∈ R|V |×d, both eqi and epi

are
lookup results of tqi and tpi

.

Perturbation Embedding Training

Similar to (Behjati et al. 2019; Gong et al. 2018; Sato et al.
2018), our perturbation adversarial training method aims to
train a perturbation embedding sequence for each instance
under the supervision of target model so as to distract it.
During the training, we treat the model as a generator and
all model parameters are fixed. With given inputs eq and ep,
the training method only tries to perturb each passage input
ep with an additional perturbation embedding sequence.

Based on the definition of MRC model, for each training
instance, we firstly insert a continuous perturbation embed-
ding sequence e′ into the passage embedding sequence ep.
Therefore, we replace the model input ep as in Formula (2):

ep′ = ep1
ep2

...epk
⊕ e′1e

′
2...e

′
l ⊕ epk+1

...epn
(3)

where ⊕ is the concatenation operator, k is the insert posi-
tion index, l is the length of the e′, and e′i ∈ Rd denotes the
i-th embedding vector of the e′.

To limit searching space of e′ and for the convenience of
further sampling, we define the i-th embedding of e′, e′i as
the weighted sum of vocabulary embeddings:

e′i =
|V |∑

j=0

wijvj (4)

where wij is the weight of j-th vocabulary token for i-th
position, while vj ∈ Rd is the embedding of the j-th token
in V . We define w ∈ Rl×|V | as the weight matrix of e′, and
wi ∈ R|V | is the weight vector of e′i. In order to have the
weight vector wi normalized in vocabulary space, we define
wij as the softmax result of trainable parameter α ∈ Rl×|V |:

wij =
exp(αij)∑
k

exp(αik)
(5)

where αij is a trainable parameter for wi. In this way, for
each instance, training a perturbation embedding sequence
is to finding a proper distribution of weight matrix w. We
train a w for later procedures individually for each instance.

Based on the settings above, we expect our training
method to be able to generate misleading answer or mis-
leading context texts. To generate misleading answer texts
and distract the MRC model, we design a cross entropy loss
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function aims to cheat the model and make the model believe
the answer is locating in perturbation embedding sequence:

La = −1

2

∑

y∈{ssd,sed}
log Pr(y|eq, e′p; θ) (6)

where sd=[ssd, sed] is the distract answer span located in per-
turbation embedding sequence. To generate misleading con-
text texts, we design a loss function aims to minimize the
model estimation on ground truth span sg=[ssg , seg] in order
to distract the MRC model:

Lc =
1

2

∑

y∈{ssg,seg}
log Pr(y|eq, e′p; θ) (7)

In this way, we define our training loss function as:

L = La + λcLc +Rs (8)

where λc is the weight of Lc. To increase the diversity of our
approach, we add a regularization term Rs to our loss func-
tion, which is defined as a similarity regularizer to control
the similarity between perturbation embeddings and ques-
tions & answers:

Rs = λqsim(e′, eq) + λasim(e′, ea) (9)

where ea denotes embedding sequence of the answer sen-
tence, which is a sub sequence of ep. Weights of both sim-
ilarity terms are denoted as λq and λa. And sim(·, ·) is de-
fined as a bag-of-words cosine similarity function:

sim(e1, e2) = cos(
∑

i

e1i,
∑

i

e2i) (10)

In this way, our training method trains a perturbation em-
bedding e′ defined by w that minimizes the loss L:

E′ = argmin
e′

L (11)

where E′ is our target perturbation embedding sequence.
The overview of perturbation embedding training process

is simply illustrated in Figure 1. With given distract span
sd and ground truth sg as supervised signals, gradients are
back-propagated through MRC model from top layer to the
bottom. α is turned to train weighted sum embeddings e′ in
order to distract model from ground truth. And we repeat
the training process for each instance until the loss L is con-
verged or lower than a certain threshold, then return the
weight matrix w for further sampling.

Greedy Sampling

To generate discrete misleading texts, for each position of
E′, we greedily sample the most representative token t′i who
has the shortest Euclidean distance between embedding vt′i
and e′i:

t′i = argmin
t′i

EUC(e′i, vt′i) (12)

where t′i means the sampled token of i-th embedding e′i.
Naturally, we can regard the weight wij in e′i =

∑
wijvj

as the importance of vj and simply sample the maximum

�

embedding lookup

vocabulary embeddings

MRC model

softmax

�

�
� �

�� �� ��

	


gradient back-propagation
predictions

	�

�

 +1

Figure 1: The overview of perturbation embedding training
method. Grids in greens are trainable variables, grids in yel-
lows are other variables determined by the trainable ones
and the MRC model.

weighted vj as the most representative embedding. As a re-
sult, our greedy sampling method can be simplified to sam-
ple the max weighted token: §

t′i = argmin
t′i

EUC(
∑

wijvj , vt′i)

≈ argmax
t′i

wit′i

(13)

where we also regard the t′i of wit′i as corresponding index
of the vocabulary since a unique token has unique index in
the vocabulary. Therefore, for each instance, generating a
misleading text is sampling a max weighted token sequence
A = t′1t

′
2...t

′
l from the well trained w.

Retraining with Adversarial Examples

To train a more robust MRC model, we enrich training data
with sampled adversarial examples and retrain our models
on the enriched data. Given a misleading text and its corre-
sponding triple data 〈q, p, sg〉, we insert the misleading text
A back into its position k of the passage. And we create an
adversarial example 〈q, p′, s′g〉 with the modified passage p′,
where s′g denotes the new ground truth span after the mis-
leading text was inserted. Augmenting with these adversar-
ial examples, we retrain the MRC model θ on the enriched
training data and get the new model θ′.

Training Strategy

As shown in Algorithm 1, our adversarial training strategy
can be divided into several steps. For each iteration, we
randomly sample a sub training set {〈q, p, sg〉}′ from full
training data set {〈q, p, sg〉} for adversarial training through
sampling function SubSample(·). With given sub training

§It is easy to prove that the equation can be established when
|v| = 1 and wit′i ≥ 0.5.
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Algorithm 1: Adversarial Training Strategy
Input: The training set of a triple {〈q, p, sg〉}; The

adversarial example length l; A well trained
MRC model θ; Max iteration time T ;

Output: Adversarially trained model θ
′
;

1 while trainloss < ε and t < T do
2 {〈q, p, sg〉}′ ←− SubSample({〈q, p, sg〉});
3 {w}, trainloss←− PertTrain({〈q, p, sg〉}′; θ);
4 {A} ←− Greedy({w});
5 {〈q, p′, s′g〉}′ ←− Create({〈q, p, sg〉}′, {A});
6 {〈q, p, sg〉}′′ ←− {〈q, p, sg〉} ∪ {〈q, p′, s′g〉}′ ;
7 θ

′ ←− Train({〈q, p, sg〉}′′);
8 θ, {〈q, p, sg〉} ←− θ

′
, {〈q, p, sg〉}′′

9 end

10 return θ
′

set and model θ, firstly we train the weight matrix w and
collect its average training loss (trainloss) through per-
turbation embedding training process PertTrain(·; ·). Sec-
ondly, we greedily sample misleading texts {A} from {w}
(Greedy(·)) and have them correspondingly inserted back
to the passages to create adversarial examples (Create(·, ·)).
Thirdly, with given enriched training data set {〈q, p, sg〉}′′,
we retrain model θ by Train(·). Then we replace the model
and training data with the enhanced ones for later iteration.
The algorithm starts again until trainloss is greater than a
threshold ε or the maximum iteration time T is reached.

Experiments

In this section, we evaluate the performances of our training
approach on different training and test sets based on four
different MRC models. Then we discuss why our approach
might be a more generic one by investigating the distribu-
tions of various adversarial example types. Besides, we fur-
ther investigate performance impacts of various model set-
tings.

Dataset and Systems

In the experiment, we train MRC models on SQuAD (Ra-
jpurkar et al. 2016) training set and its enhanced ver-
sion AddSentDiverse (Wang and Bansal 2018) respectively.
We test the models on six different test sets, i.e. standard
SQuAD development set and five different types of adver-
sarial test sets. All adversarial test sets are appended with
misleading texts as parts of their passages based on standard
SQuAD development set,

Training Datasets:

• SQuAD (Rajpurkar et al. 2016): One of the most popular
MRC datasets. The dataset consists of 87.5K question-
answer training pairs which documents are dumped from
Wikipedia and question-answer are annotated by crowd-
sourcing. And we select the SQuAD v1.0 as the training
dataset

• AddSentDiverse (ASD) (Wang and Bansal 2018): Based
on the observation of AddSent (Jia and Liang 2017),
they enriched SQuAD training data with correspondingly
designed adversarial examples. And the size of dataset
reaches 109.4K.

Test Sets:

• SQuAD (DEV) (Rajpurkar et al. 2016): The development
set of SQuAD v1.0 in which contains 10K triple 〈q, p, sg〉
instances for evaluation.

• AddSent (AS) (Jia and Liang 2017): Grammatical adver-
sarial test set in which misleading texts are converted from
questions through rules and crowdsourcing. The dataset
contains 1k question instances.

• AddAny (AA) (Jia and Liang 2017): Ungrammatical ad-
versarial test set which misleading texts are automati-
cally generated according to question words and common
words. The dataset contains 1k question instances.

• AddAnyExtend (AAE): This is our implementation of
AddAny with extended vocabulary which contains not
only question words but also high frequency words, pas-
sage words and random common words. The dataset con-
tains 2.6k question instances.

• AddAnsCtx (AAC): A test set that uses answer context as
misleading texts which includes 10k instances. The mis-
leading texts are answer sentences with answer tokens re-
moved.

• AddNegAns (ANA): A test set that uses negative ex-
pressions of fake answers as misleading texts, which in-
cludes 5k instances. We create misleading texts by chang-
ing answer sentence from “A is answer” to “A is not
fakeanswer” (e.g., “I like this book” −→ “I do not like
this movie”).

Based on datasets mentioned above, we test four differ-
ent MRC baseline systems: QANet (Yu et al. 2018), BERT
(Base & Large) (Devlin et al. 2018) and ERNIE2.0 (Sun et
al. 2019). We have them trained by our adversarial training
approach respectively. We adopt F1 score as the main evalu-
ation metric.

Experiment Settings

In perturbation embedding training phase, we randomly in-
sert perturbation embedding between sentences, and have
embeddings randomly initialized. During the embedding
training, we set the batch size of QANet to be 32, BERTbase

12, BERTlarge/ERNIE 2.0 to be 4. We limit the perturbation
sequence length l to be 10. For each batch, we randomly set
λq , λp to be -10 or 10, and set λc to be 0.5. And we set sd
with random length in the middle of each perturbation em-
bedding. To determine the convergence of the embedding
training process, we set the threshold as 1.5 and we set
the maximum training step as 200 because the most train-
ing losses tend to be stable (differences are lower than 1e-3)
around 200 steps.

In training iteration, we set maximum training time T to
be 5, trainloss’s stopping threshold ε to be 12.0. In order to
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Model DEV AS AA AAE AAC ANA average

Baseline systems

QANet 83.3 48.0 54.8 63.7 78.1 79.8 64.9
BERTbase 88.4 49.9 47.8 52.8 74.4 69.9 59.0
BERTlarge 90.6 60.2 60.4 64.1 81.1 80.1 69.2
ERNIE2.0 92.5 64.8 68.2 68.7 86.8 89.1 75.5

Related works

DCN+MINIMAL(Min et al. 2018) 80.6 59.7 - - - - -
R.M-Reader(Hu et al. 2018a) 86.3 58.5 - - - - -
RMR+A2D(Hu et al. 2018b) 87.9 61.3 - - - - -
QANet+AddSentDiverse 80.7 73.4 54.3 61.2 74.5 75.7 67.8 (+2.9)
BERTbase+AddSentDiverse 88.3 80.4 84.9 61.2 76.9 73.5 75.4 (+16.4)
BERTlarge+AddSentDiverse 90.4 86.3 87.3 70.5 82.2 82.4 81.7 (+12.5)
ERNIE2.0+AddSentDiverse 92.2 89.1 90.0 74.7 88.3 88.1 86.0 (+10.5)

Our approach

QANet+Ours 82.1 49.2 66.9 67.3 77.2 79.3 68.0 (+3.1)
QANet+AddSentDiverse+Ours 80.8 72.2 61.9 63.2 75.3 76.0 69.7 (+4.8)

BERTbase+Ours 87.9 57.2 83.5 70.7 76.9 76.9 73.0 (+14.0)
BERTbase+AddSentDiverse+Ours 87.8 81.7 85.2 70.0 79.2 79.2 79.1 (+20.1)

BERTlarge+Ours 90.4 63.1 88.3 76.6 81.6 81.7 78.3 (+9.1)
BERTlarge+AddSentDiverse+Ours 90.1 86.7 88.5 75.7 84.3 84.5 84.0 (+14.8)

ERNIE2.0+Ours 92.5 70.8 92.0 79.6 88.2 89.1 83.9(+8.4)
ERNIE2.0+AddSentDiverse+Ours 91.9 89.6 91.2 79.4 88.5 88.2 87.4(+11.9)

Table 2: Experiment results on SQuAD develop set and adversarial test sets. All scores are F1 scores in percentage.

seek a balance between effectiveness and efficiency, we ran-
domly sample 5% training data for adversarial training and
larger ratios will not provide satisfied performance within a
single iteration according to our early experiments. In sam-
pling phase, we save all successful embeddings for greedy
sampling. After sampling, we retrain MRC models follow
the early stopping strategy (Bassler et al. 2010).

In order to generate misleading texts effectively, for each
training instance, we utilize a local vocabulary V , in which
tokens are mainly related to questions and passages. We col-
lect the local vocabulary for each batch in different ways:
high-frequency words; top-10 similar words who have short-
est distance to tokens of the q & a in embedding space
(cosine similarity); synonyms and antonyms regrading to
questions and passages, gathered from WordNet (Miller
1995); hypernyms and hyponyms are similarly gathered
from WordNet. To make the model easier to converge, the
vocabulary size is limited to 200.

Results and Discussions

Experiment Results All baseline results are shown in Ta-
ble 2. The results indicate that baseline systems are all vul-
nerable when facing grammatical or ungrammatical adver-
sarial test sets. Although transformer based systems gain su-
perior performances on all test sets, great reductions have
been observed on all adversarial test sets. Comparing to
BERTbase, QANet has a weaker reading performance but
better robustness performances due to its simpler model de-
sign which usually leads to robuster performances.

Based on the same systems, our training approach has
shown its effectiveness on all adversarial test sets. It gains an

F1 improvement of 23.8% at most and an average of 8.4% on
ERNIE2.0. Moreover, it gains even better average improve-
ments of 14.0%/9.1% on BERTbase/BERTlarge. It is not so
consistent that QANet gains limited improvements due to
its simpler model design which might limit its model abil-
ity. However, our approach still promotes its average perfor-
mance by 3.1% in F1 score. The improvement on all adver-
sarial test sets and systems indicate that it is able to enhance
the robustness of MRC models.

The experimental results also suggest that the enhanced
training data ASD (Wang and Bansal 2018) gains great im-
provement on some of adversarial test sets. Since the train-
ing data is targeting on question related test sets (AS, AA), it
works very well on these test sets as expected. However, its
improvement on other test sets (AAE, AAC, ANA), which
are not in the form of questions , are not as great as it is
on question related test sets. For all baseline systems, it only
gains an average improvement of 1.7% in F1 on AAE, AAC,
ANA. Such difference suggests the rule-based method might
not be capable to handle all possible types of the adversarial
examples. By contrast, our approach shows better robustness
on unobserved types of adversarial examples and it gains an
average improvement of 4.7% in F1 score on AAE, AAC,
ANA test sets. Our approach does not set any strong as-
sumption on test sets, so we believe that our approach has
a stronger ability to strengthen model robustness in a more
general way.

Moreover, the performances shown in Table 2 suggest
that our approach, coupled with ASD dataset, can further
improve the performance with an average F1 improvement
of 3.7%/2.3%/1.4% on BERTbase/BERTlarge/ERNIE2.0 re-
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Figure 2: Misleading text distributions of different test sets
and training samples.

Figure 3: Performance on varying iterations.The solid line
denotes the average performance of adversarial test sets. The
dotted line denotes the average training loss during perturba-
tion embedding training phase.

spectively. Considering that the ceiling performance on de-
velopment set is about 92%, our training approach can boost
the average performance from 86.0% to 87.4% bringing an
over 20% decrease in error rate. These observations indicate
our general approach can be a good supplement to (Wang
and Bansal 2018) which is rule-based designed.

Adversarial Example Distribution Analysis To have a
deeper insight of different types of adversarial examples,
we investigate the misleading text distributions in a two-
dimensional coordinate system, where X-axis is the answer
sentence similarity and Y-axis is the question similarity.
Both similarities are bag-of-words embedding cosine sim-
ilarities between misleading texts and answers & questions.
The results are shown in Figure 2, and as expected, ASD
dataset has more overlaps with AS and AA. As a result, it
gains better improvement on these test sets. By contrast, our
data has a more extensive distribution in the space. Its ex-

tensiveness enable itself to cover more types of adversarial
examples, which can partly explain the general improvement
in Table 2 on various test sets.

Results of Different Iterations In order to investigate
how the number of training iteration influences the perfor-
mance, we test BERTbase model using iteration time in a
range of [1, 14], and it is the baseline performance when the
time is equal to 0. As results shown in Figure 3, the growing
performance curve suggest the effectiveness of our iterative
training algorithm, and a good performance can be achieved
at iteration around 4 or 5. But limited improvements can be
obtained in later iterations as the curve suggesting. There
is a probable explanation is that the perturbation embed-
dings are harder to cheat the model in later iterations due to
the growing perturbation embedding training loss. Since our
misleading texts are not “real” enough to confuse humans,
we believe our approach can be further improved by better
searching of perturbation embeddings and better sampling
of meaningful misleading texts.

Figure 4: Distance distribution (in character) between wrong
predictions and misleading texts. The distance is 0 if parts of
the wrong prediction are located in the misleading text.

Distance Distribution of Wrong Predictions In order to
investigate distance correlations between the wrong predic-
tion and the misleading text, we examine the distances be-
tween boundary of predictions and misleading texts based
on effective adversarial examples. As shown in Figure 4,
more than two thirds of wrong predictions locate in mislead-
ing texts. And act as misleading contexts, misleading texts
are more likely to guide the model to wrong answers nearby.
This observation suggests that it is much easier to generate
misleading answers than misleading contexts, and the local-
ization suggests that misleading texts are able to draw the
attention of mode to nearby deceptive “answers”.

Ablation Study To investigate the effectiveness of differ-
ent parts of our model, we test our approach on BERTbase

with corresponding parts removed, and results are shown in
Table 4. According to results, between two loss functions,
La plays a much more important role in perturbation embed-
ding training. It indicts that “answer” contained misleading
texts might be more effective in our approach. And simi-
lar observations in the experiment above can also support
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Models Generated Misleading Texts Predictions

QANet exactly player maybe are burnt tend think exactly off best burnt
BERTbase and distinct more combustion ##m no could theory common away combustion ##m no
BERTlarge burns of ##on , since absent theory quantitative ##t of quantitative
ERNIE2.0 something on not absent theory absent nor idea lighter quality lighter quality

Table 3: Generated misleading texts of different models. Corresponding question and passage are shown in Table 1. Examples
of transformer models are in subword units (Sennrich, Haddow, and Birch 2015).

Model average Δ
BERTbase 73.0
−answer loss La 64.1 -8.9
−context loss Lc 70.9 -2.1
−similarity regularizer Rs 69.7 -3.3

Table 4: Ablation experiment results.

this claim. For similarity regularizer Rs, the reduction sug-
gests that the extensiveness in token distribution enhances
the model robustness.

Misleading Text Analysis To investigate the quality of
misleading texts, we sample misleading text results of differ-
ent models and have them shown in Table 3. We can noticed
that all texts are ungrammatical and meaningless sequences
but they successfully distract baseline systems. It suggests
current models such like BERTlarge and ERNIE2.0 though
have excellent language modeling ability is still vulnerable
to unpredictable noises. As a result, there is still much room
for further improvement of our generation method so as to
generate much misleading texts.

Conclusion

Current state-of-the-art MRC models are vulnerable facing
different types of adversarial examples and the lack of ro-
bustness becomes a serious problem. Since it is not practical
to enumerate and investigate all possible types of adversar-
ial examples, improving robustness MRC models by inves-
tigating their weaknesses and strengthening them is a more
effective way. As a result, we proposed a simple but effective
adversarial training approach to enhance MRC model ro-
bustness via training these models on generated adversarial
examples. With a three step algorithm, our approach train a
robust MRC model by playing a min-max game between an
adversarial example generator and the model trainer, where
the generator is the model itself. Based on strong baselines,
experiments on various test sets show that our novel ap-
proach can substantially boost MRC model robustness per-
formance in a more general way. Further more, coupled with
augmented training data, which is rule-based designed, our
approach is able to further improve model robustnesses and
outperform start-of-the-art performances.
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