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Abstract

Named entity recognition (NER) models are typically based
on the architecture of Bi-directional LSTM (BiLSTM). The
constraints of sequential nature and the modeling of single
input prevent the full utilization of global information from
larger scope, not only in the entire sentence, but also in the
entire document (dataset). In this paper, we address these
two deficiencies and propose a model augmented with hi-
erarchical contextualized representation: sentence-level rep-
resentation and document-level representation. In sentence-
level, we take different contributions of words in a single sen-
tence into consideration to enhance the sentence representa-
tion learned from an independent BiLSTM via label embed-
ding attention mechanism. In document-level, the key-value
memory network is adopted to record the document-aware
information for each unique word which is sensitive to simi-
larity of context information. Our two-level hierarchical con-
textualized representations are fused with each input token
embedding and corresponding hidden state of BiLSTM, re-
spectively. The experimental results on three benchmark NER
datasets (CoNLL-2003 and Ontonotes 5.0 English datasets,
CoNLL-2002 Spanish dataset) show that we establish new
state-of-the-art results.

Introduction

Named Entity Recognition (NER) is one of the funda-
mental tasks in natural language processing (NLP) that in-
tends to identify words or phrases as the proper names of
PER (Person), ORG (Organization), LOC (Location), etc.
Currently, most state-of-the-art NER systems (Huang, Xu,
and Yu 2015; Lample et al. 2016; Ma and Hovy 2016;
Chiu and Nichols 2016) employ BiRNNs, specially BiL-
STM (Hochreiter and Schmidhuber 1997) as the encoder to
extract the sequential information.

BiLSTM architectures exist limitations in making full use
of global information. First, at each time step, BiLSTM
takes current word embedding and past summary states as
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Figure 1: Incorporating hierarchical contextualized repre-
sentation for NER. The sentence-level representation is as-
signed to each token and fed to the sequence labeling BiL-
STM encoder. The document-level representation is fused
with the hidden state of the BiLSTM and fed to the decoder.

inputs, making it difficult to capture sentence-level informa-
tion. (Zhang, Liu, and Song 2018) simultaneously model the
sub-states for individual words and an overall sentence-level
state. (Liu et al. 2019b) use a global contextual encoder and
mean pooling strategy to capture sentence-level features,
though they ignore the different importance of words in the
same sentence. Second, though BiLSTM updates the param-
eters with the iteration of all training instances, it only con-
sumes one instance during both training and predicting. This
nature prevents the model from effectively capturing docu-
ment (dataset)-level information, e.g. for a unique token, its
representations in training instances are indicative for rec-
ognizing the concerned token. (Akbik, Bergmann, and Voll-
graf 2019) use a pooling operation on different contextual-
ized embeddings to generate global word representations.
While they only consider the changes of embeddings for
each unique word.

In this paper, we propose a hierarchical contextual-
ized representation architecture to enhance NER modeling.
For sentence-level representation, inspired by (Wang et al.
2018), we embed labels in the same space with word em-
beddings, and label embeddings are learned from attention
mechanism computed with word embeddings to ensure that,
each word embedding is much closer to their correspond-
ing label embedding, and farther to other label embeddings.
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Then, the similarity between a word embedding and its near-
est label embedding is regarded as a confidence score for
this word. Hence, words with higher confidence scores con-
tribute more to sentence-level representation. The sentence-
level representations are then assigned to each token and fed
to the encoder as shown in Figure 1. For document-level
representation, we adopt a key-value memory component
(Miller et al. 2016) which memorizes all the word embed-
dings of training instances and their corresponding represen-
tations. The attention mechanism is adopted to compute the
output of the memory component. The retrieved document-
level representation is fused with the original hidden state
and fed to the decoder as shown in Figure 1. In this case,
the training instances are not only used to train the model
parameters, but also involved in inference.

To verify the effectiveness our model, we conduct exten-
sive experiments on three benchmark NER datasets. Exper-
imental results on these benchmarks suggest that our model
can achieve state-of-the-art performance on CoNLL-2003
(91.96 F1 without external knowledge and 93.37 F1 with
BERT), OntoNotes 5.0 (87.98 F1 without external knowl-
edge and 90.30 F1 with BERT), 87.08 F1 on CoNLL-2002,
meaning that our model truly learns and benefits from useful
contextualized representations.

Our contributions in this paper are summarized as fol-
lows.
• We are the first to introduce hierarchical contextualized

representations, namely sentence-level and document-
level representation, for NER to take full advantage of
non-local information.
• We introduce the label embedding attention mechanism

for sentence-level representation and propose an effective
approach to distill document-level information using key-
value memory network.
• The evaluation results on three benchmark NER datasets

show that our model outperforms all previously reported
results without external knowledge. Furthermore, with
pre-trained language model BERT, we establish new
state-of-the-art results on CoNLL-2003 and ontonotes 5.0
datasets.

Related work

Neural Named Entity Recognition Recently, with the de-
velopment of deep neural network in a wide range of NLP
tasks (He et al. 2018; He, Li, and Zhao 2019; Zhou and Zhao
2019; Xiao et al. 2019; Zhang et al. 2020a; 2020b), neural
network based models build reliable NER systems without
hand-crafted features or task-specific knowledge. (Huang,
Xu, and Yu 2015) firstly proposed the BiLSTM-CRF archi-
tecture, which is used by most state-of-the-art models. Later,
character-level embeddings are concatenated to enhance the
representation of rare and out-of-vocabulary words, these
embeddings are generated with LSTM (Lample et al. 2016),
CNN (Ma and Hovy 2016), and recently IntNet (Xin et al.
2018). (Tran, MacKinlay, and Jimeno Yepes 2017) stack
BiLSTMs with residual connections between different lay-
ers of BiLSTM to add more representational power. More
recently, pre-trained language models from huge corpus are

adopted to enhance the representation of words (Peters et
al. 2018; Akbik, Bergmann, and Vollgraf 2019; Devlin et al.
2019).
Sentence-level Representation has been adopted to elim-
inate the limitations of RNNs due to their sequential na-
ture. (Yang, Zhang, and Dong 2017) leverage RNN models
to learn sentence-level patterns for NER reranking. (Zhang,
Liu, and Song 2018) model the sub-states for individual
words and an overall sentence-level state simultaneously to
capture local and non-local contexts. (Chen et al. 2019) use
contextual layer and relation layer to model the relations be-
tween words in sentences, and then use gates to fuse local
context features into global ones. (Liu et al. 2019b) sim-
plify sentence-level state to average of the hidden states of
each individual word from an independent global contex-
tual encoder. Inspired by (Wang et al. 2018) which use label
information to construct text-sequence representations, we
adopt label embedding attention to enhance the sentence-
level representation learned from an independent BiLSTM.
The use of sentence-level information in (Liu et al. 2019b)
can be seen as a special case of our model where the at-
tention weight vector is a uniform distribution that assigns
equal probabilities to all the words in the sentence.
Document-level Representation (Qian et al. 2019) con-
siders the dependency structure of word sequence as the
global information. (Akbik, Bergmann, and Vollgraf 2019)
dynamically aggregates contextualized embeddings for each
unique string and then use a pooling operation to generate
a global word representation from these contextualized in-
stances for NER. Different from their work which only uses
the contextual word embeddings, our memory component
uses the key-value memory networks to memorize the word
representations (key) and the hidden states (value) from the
sequence labeling encoder. The attention mechanism is then
called to calculate the document-level representation.

Model

This section presents our NER model in detail. The overall
model architecture is shown in Figure 2, which consists of
four components: a decoder (top part), a sequence labeling
encoder (upper right part), a sentence-level encoder (bottom
right part), and a document-level encoder (left part).

Baseline Model

We adopt the IntNet-LSTM-CRF model proposed by (Xin et
al. 2018) as our baseline, which consists of three parts: rep-
resentation module, sequence labeling encoder and decoder
module.
Token Representation Given a sequence of N tokens X =
{x1, x2, ..., xN}, for each word xi, we concatenate the
word-level and character-level embedding as the joint word
representation xi = [wi; ci]. wi is the pre-trained word em-
bedding. The character-level embedding ci is learned from
IntNet, which is a funnel-shaped wide convolutional neu-
ral architecture for learning representations of the internal
structure of words. The network comprises of L convolu-
tions, which implies (L−1)/2 convolutional blocks. In each
convolutional block, the first layer is the N × 1 convolution
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Figure 2: The main architecture of our NER model. The sequence labeling encoder (upper right) generates representations for
the decoder and updates the memory component. The sentence-level encoder (bottom right part) generates the sentence-level
representation, and the memory network (left part) computes the document-level contextualized information, in which the same
color represents the memory slots for the unique word.

which transforms the input, then the concatenation of con-
volutions with different kernel sizes in the second layer is
fed to the next convolutional block. Direct connections from
every other layer to all subsequent layers are used like dense
connections.
Sequence Labeling Encoder The concatenation of word-
level and character-level embeddings xi = [wi; ci] is then
fed into the sequence labeling BiLSTM, which represents
the sequential information at each step.

hi = [
−→
hi ;
←−
hi ]

−→
hi = LSTM(xi,

−→
h i−1;

−→
θ )

←−
hi = LSTM(xi,

←−
h i−1;

←−
θ )

(1)

where
−→
θ and

←−
θ are trainable parameters, respectively.

Decoder Conditional random field (CRF) (Lafferty, Mccal-
lum, and Pereira 2001) has been widely used in state-of-the-
art NER models (Lample et al. 2016; Ma and Hovy 2016) to
help make decisions when considering strong connections
between output tags. During decoding, the Viterbi algorithm

is applied to search the label sequence with the highest prob-
ability. For y = {y1, ..., yN} being a predicted sequence of
labels with same length as x. We define its score as:

sc(x, y) =

N−1∑
i=0

Tryi,yi+1
+

N∑
i=1

Pi,yi
(2)

where Tryi,yi+1 represents the transmission score from the
yi to yi+1, Pi,yi

is the score of the jth tag of the ith word
from the sequence labeling encoder.

The CRF model defines a family of conditional probabil-
ity p(y|x) over all possible tag sequences y:

p(y|x) = expsc(x,y)∑
ỹ∈y exp

sc(x,ỹ)
(3)

during training, we consider the maximum log probability
of the correct sequence of tags. While decoding, we search
the label sequence with maximum score:

y∗ = argmax
ỹ∈y

sc(x, ỹ) (4)
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Sentence-level Representation

Sentence-level information has been shown highly useful
for model sequence (Zhang, Liu, and Song 2018; Liu et
al. 2019b). We adopt an independent BiLSTM to gener-
ate contextualized features, which takes word representation
xi = [wi; ci] as the input, we denote the hidden states of
this BiLSTM as v ∈ R

N×ds , where N is the length of the
sequence and ds is the hidden size. Considering that words
may contribute differently to the sentence-level representa-
tion, we adopt label embedding attention (Wang et al. 2018)
to get an attention score for the entire sentence and then
transform the hidden states v ∈ R

N×ds into a fixed-sized
sentence-level representation s ∈ R

ds .
As shown in Figure 2, we embed all the label types (e.g.

LOC, PER, etc.) in the same space as the word embeddings.
We denote the label embeddings as l = [l1, l2, ...lP ], l ∈
R

P×dw , where P is the number of labels, dw is the dimen-
sion of the word embeddings. We train on the training in-
stances to ensure that, each word embedding is more closer
to their corresponding label embedding, and farther to other
label embeddings. For example, the token Italy is labeled as
LOC type in the example of Figure 1, we attempt to make it
closer to the label embedding of LOC, and farther to other
label embeddings (e.g. the label embedding of PER). The
cosine similarity 1 e(xi, lj) between the word embeddings
xi and the label embedding lj can be taken to measure the
confidence score of this word-label pair:

e(xi, lj) =
xT
i lj

‖xi‖‖lj‖ (5)

We use convolutional neural network (CNN) to capture
the relative spatial information among consecutive words in
the sentence. Further, the largest confidence score mi ∈ R

P

between the i-th word and all labels is obtained by a max-
pooling operation:

mi = max(WT

⎡
⎣

e(i− k−1
2 , :)

· · ·
e(i+ k−1

2 , :)

⎤
⎦+ b) (6)

where W ∈ R
k and b ∈ R

P are trainable parameters, k is
the kernel size, max denotes max pooling.

The attention (confidence) score β ∈ R
N for the entire

sentence is:

β = softmax(m) (7)
The sentence-level representation s ∈ R

ds can be sim-
ply obtained via averaging the hidden states v ∈ R

N×ds ,
weighted by the attention score calculated above:

s =
N∑
i=1

βivi (8)

The sentence-level representation s ∈ R
ds is then con-

catenated with the word representation x′
i = [xi; s] and

fed to the sequence labeling encoder. Note that the training
1The reason for using cosine similarity is the same as the next

subsection, and will be analyzed later.

and test process are the same. We use the label embeddings
l ∈ R

P×dw of all labels, not the ground-truth label embed-
ding. The intuition for using the label embedding attention
is that each word in the sentence contributes differently to
sentence-aware representation. The similarity between each
word embedding and its nearest label embedding can be re-
garded as the confidence score of this word-label pair. Words
with higher confidence score should contribute more to the
sentence-level contextualized representation.

Document-level Representation

In terms of memory network, we introduce document-aware
representations of the unique word in training instances as
an extra knowledge source to help the prediction. Memory
network was originally proposed by (Weston, Chopra, and
Bordes 2014) in the domain of question answering (QA) for
prediction, where the long-term memory acts as a dynamic
knowledge base. (Miller et al. 2016) further introduces a
key-value memory networks, which utilize different encod-
ings in the addressing and output stages. The keys are de-
signed to help match the question, while the values are to
generate the response.

We adopt the key-value memory component M to memo-
rize document-level contextualized representation. Memory
slots are defined as pairs of vectors (k1, v1), ..., (km, vm). In
each single slot, the key represents the word embedding wi,
and the value is the corresponding hidden states hi from se-
quence labeling encoder for each token in training instances.
So the same word may occupy in many different slots be-
cause of changing embeddings and representations under
different contexts. Table 1 shows an example of using train-
ing instances to help indicate the NE type of queried token.
Memory Update The word embeddings are fine-tuned dur-
ing training and used to update the key part of the memory.
The sequence labeling encoder generates the hidden states to
update the value part. Supposing the states of the i-th token
is changed after computation, the i-th slot in the memory M
will be rewritten. Each memory slot will be updated once in
one epoch.
Memory Query For the i-th word in the sentence, we dis-
till all the contextualized representations for this word in
the memory M through an inverted index that finds a sub-
set (ksub1 , vsub1), ..., (ksubT , vsubT ) of size T , where the in-
verted index records the positions of the unique word in the
memory M as shown in Table 1. T represents the number of
occurrences of this word among the training instances.

The attention operation is called to compute the weight
of document-level representation. For the unique word, the
memory key kj ∈ [ksub1 ; ...; ksubT ] is used as the attention
key, the memory value vj ∈ [vsub1 ; ...; vsubT ] is used as the
attention value. Then the embedding wqiof the queried word
serves as the attention query qi. Here, we consider three
compatibility functions uij = o(qi, kj):
(1) dot-product attention

o1(qi, kj) = qik
T
j (9)

(2) scaled dot-product attention (Vaswani et al. 2017)

o2(qi, kj) =
qik

T
j√
dw

(10)
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Test instance

Italy recalled Marcello Cuttitt.

Training instances

1. ORVIETO (0), Italy (1) 1996-08-24 (2).
2. Rohrabacher (3) had (4) recently (5) visited (6) Italy (7)
3. Andrea (8) Ferrigato (9) of (10) Italy (11) sprinted (12)...

Inverted index

Italy: [1, 7, 11, ...]

Table 1: Query operation for the word Italy. The numbers in
parentheses indicate slot index of tokens in memory M . The
memory slots of these bold tokens in training instances are
retrieved according to the inverted index for Italy.

and (3) cosine similarity

o3(qi, kj) =
qik

T
j

‖qi‖‖kj‖ (11)

where dw represents the dimension of word embeddings.
Memory Response The document-level representation is
computed as:

αij =
exp(uij)∑T
z=1 exp(uiz)

ri =

T∑
j=1

αijvj

(12)

Then the fusion representation gi ∈ R
dh of the original

hidden representation and this document-level representa-
tion are fed to the CRF layer, where dh is the hidden size
of the sequence labeling encoder.

gi = λhi + (1− λ)ri (13)

where λ is a hyperparameter, indicating how much
document-aware information is adopted, 0 for document-
level representation only and 1 for discarding all document-
level information at all.

Experiment

Dataset

Our proposed representations are evaluated on three bench-
mark NER datasets: CoNLL-2003 (Sang and De Meulder
2003) and OntoNotes 5.0 (Pradhan et al. 2013) English
NER datasets, CoNLL-2002 Spanish NER (Tjong Kim Sang
2002) dataset.

• CoNLL-2003 English NER consists of 22,137 sentences
totally and is split into 14,987, 3,466 and 3,684 sentences
for the training, development set and test sets, respec-
tively. It is tagged with four linguistic entity types (PER,
LOC, ORG, MISC).
• CoNLL-2002 Spanish NER consists of 11,752 sentences

totally and is split into 8,322, 1,914 and 1,516 sentences
for the training, development and test sets, respectively. It

Models F1

(Lample et al. 2016) 90.94
(Ma and Hovy 2016) 91.21
(Yang, Zhang, and Dong 2017) 91.62
(Liu et al. 2018) 91.24 ± 0.12
(Yang and Zhang 2018) 91.35
(Zhang, Liu, and Song 2018) 91.57
(Xin et al. 2018) 91.64 ± 0.17
(Liu et al. 2019a) 91.10
(Chen et al. 2019) 91.44 ± 0.10
(Qian et al. 2019) 91.74
(Liu et al. 2019b) 2 91.54
Ours 91.96 ± 0.03

+ Language Models / External knowledge

(Chiu and Nichols 2016)† 91.62 ± 0.33
(Liu et al. 2018) 91.71 ± 0.10
(Peters et al. 2018) (ELMo) 92.20
(Clark et al. 2018) 92.61
(Devlin et al. 2019) (BERT) 92.80
(Akbik, Blythe, and Vollgraf 2018)† 93.09
(Akbik, Bergmann, and Vollgraf 2019)† 93.18
(Liu et al. 2019b) (BERT) 2 93.23
Ours + BERT 93.37 ± 0.04

Table 2: F1 scores on CoNLL-2003. † refers to models
trained on both training and development datasets.

is also tagged with four linguistic entity types (PER, LOC,
ORG, MISC).

• OntoNotes 5.0 consists of 76,714 sentences from a
wide variety of sources (magazine, telephone conversa-
tion, newswire, etc.). Following (Chiu and Nichols 2016;
Chen et al. 2019), we use the portion of the dataset with
gold-standard named entity annotations, and thus exclude
the New Testaments portion. It is tagged with eighteen
entity types (PERSON, CARDINAL, LOC, PRODUCT,
etc.).

Metric We use the BIOES sequence labeling scheme in-
stead of BIO for these three datasets during training. As
for test, we convert the prediction results back to the BIO
scheme and use the standard conlleval script to compute the
F1 score.

Setup

Pre-trained Word Embeddings. For the CoNLL-2003 and
OntoNotes 5.0 English datasets, we use the publicly avail-
able pre-trained 100D GloVe (Pennington, Socher, and
Manning 2014) embeddings. For CoNLL-2002 Spanish
dataset, we train 64D GloVe embeddings with the minimum
frequency of occurrence as 3, and the window size of 5. The

2Through personal communication, the authors confirmed that
they directly tested the BIOES tagged results with the official con-
lleval script (which can only works for BIO tagged entities), giv-
ing the results reported in their paper 91.96 / 93.47, while our re-
evaluation results are 91.54 / 93.23 with strict BIO tag converting
from the released file by the authors.
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Models F1

(Gillick et al. 2015) 82.95
(Lample et al. 2016) 85.75
(Yang, Salakhutdinov, and Cohen 2017) 85.77
(Xin et al. 2018) 86.68 ± 0.35
Ours 87.08 ± 0.16

Table 3: F1 scores on CoNLL-2002.

Models F1

(Durrett and Klein 2014) 84.04
(Chiu and Nichols 2016) 86.28 ± 0.26
(Shen et al. 2018) 86.63 ± 0.49
(Strubell et al. 2017) 86.84 ± 0.19
(Ghaddar and Langlais 2018) 87.44
(Chen et al. 2019) 87.67 ± 0.17
Ours 87.98 ± 0.05

+ Language Models / External knowledge

(Ghaddar and Langlais 2018) 87.95
(Clark et al. 2018) 88.88
(Akbik, Bergmann, and Vollgraf 2019)3 89.71
Ours + BERT 90.30

Table 4: F1 scores on OntoNotes 5.0.

word embeddings are fine-tuned during training.
Character Embeddings. We train the IntNet character em-
beddings (Xin et al. 2018). The dimension of character em-
beddings is 32, which is randomly initialized, the filter size
of the initial convolution is 32 and that of other convolutions
is 16. Different from (Xin et al. 2018), we set filters as size
[3; 5] for all the kernels, and the number of convolutional
layers is 7.
Parameters. We follow the work of (Yang and Zhang 2018),
and conduct optimization with the stochastic gradient de-
scent 2. The batch size is set as 10, the initial learning rate
is set to 0.015 and will shrunk by 5% after each epoch. The
hidden size of sequence labeling encoder and the sentence-
level encoder are set as 256 and 128, respectively. We apply
dropout to embeddings and hidden states with a rate of 0.5.
The λ used to fuse original hidden state and document-level
representation is set as 0.3 empirically. For each type of NEs,
we randomly select hundreds of NEs, and calculate the av-
erage of the word embeddings as its label embedding.

Results and Comparisons

Tables 2, 3, 4 compare our model to existing state-of-the-
art approaches on the three benchmark datasets. Our model
surpasses previous state-of-the-art approaches on all the
three datasets. On CoNLL-2003 dataset, we compare our
model with the state-of-the-art models, including the mod-
els that use global information to enhance the representation
(Yang, Zhang, and Dong 2017; Zhang, Liu, and Song 2018;

2Code will be available at https://github.com/cslydia/Hire-
NER.

3The authors of (Akbik, Bergmann, and Vollgraf 2019) re-
leased the result of 89.3 in their github https://github.com/
zalandoresearch/flair, 89.71 is our re-implement result.

CoNLL03 CoNLL02 OntoNotes

base model 91.60 86.65 87.58
+ sentence-level 91.80 86.95 87.86
+ document-level 91.79 86.76 87.81
+ ALL 91.96 87.08 87.98

Table 5: Ablation study on the three benchmark datasets.

Strategy F1 ERR
base model - 91.60 -

sentence-level mean-pooling 91.65 0.60
label-embedding 91.80 2.23

document-level
dot-product 91.63 1.55

scaled dot-product 91.75 1.79
cosine similarity 91.79 2.38

ALL - 91.96 3.81

Table 6: Comparison of different strategies on CoNLL-2003
dataset. ERR is the relative error rate reduction of our model
compared to the baseline.

Qian et al. 2019; Liu et al. 2019b). We also incorporate
pre-trained language model BERT (Devlin et al. 2019) for
fair comparisons with the models which also use pre-trained
language models or other external knowledge. Some of the
results (Akbik, Blythe, and Vollgraf 2018; 2018) are not
comparable to our results directly, because their final mod-
els are trained on both training and development datasets.
On CoNLL-2002 Spanish dataset, our model achieves 87.08
F1 score without external knowledge, which surpasses pre-
vious best score by 0.4. Considering that the above two
datasets are relatively small, we further conduct experiment
on a much more large OntoNotes 5.0 dataset, which also has
more entity types. We compare our model with the previ-
ous model that also reported results on it (Chiu and Nichols
2016; Shen et al. 2018; Ghaddar and Langlais 2018). As
shown in Table 4, our model shows a significant advantage
on this dataset, which outperforms previous state-of-the-art
results substantially at 87.08 (+0.31) without BERT, and
90.30 (+0.59) with BERT. More notably, our model without
external knowledge surpasses the previous model (Ghaddar
and Langlais 2018), which use extra lexicon information of
120 entity types from Wikipedia. Overall, the comparisons
on these three benchmark datasets well demonstrate that our
model truly learns and benefits from useful sentence-level
and document-level representation without the support from
external knowledge.

Ablation Study

In this experiment, we individually adopt two hierarchical
contextualized representations to enhance the representation
of tokens: sentence-level representation for assigning the
sentence state to each token and document-level represen-
tation for inference. Table 5 shows the F1 score raise and
relative error reduction brought by each of the two hierar-
chical representation on the three benchmark datasets. We
discover that both sentence-level and document-level repre-
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Baseline Ours

P R F1 P R F1

IV 94.58 93.16 93.87 94.96 93.58 94.26
OOTV 93.46 91.57 92.51 94.07 91.85 92.95
OOEV 94.12 94.12 94.12 94.12 94.12 94.12
OOBV 88.42 84.81 86.58 88.51 85.56 87.01

Table 7: Detailed results on the CoNLL-2003 dataset for IV,
OOTV, OOEV, OOBV.

sentations enhance the baseline. By combing these two rep-
resentations together, we get a larger gain of 0.36 / 0.43 /
0.40, respectively.

We further analyze the two hierarchical representations
by adopting different strategies. (Liu et al. 2019b) perform
mean pooling over all the tokens to generate sentence-level
representation. We further conduct experiments to investi-
gate the three compatibility functions used to employ mem-
orized information. As shown in Table 6, compared with the
mean pooling strategy, our label-embedding attention mech-
anism raises the F1 score by 0.25. Among the three com-
patibility functions to compute the weight of query word
and memorized slots, cosine similarity performs best, while
dot-product performs worst. (Vaswani et al. 2017) use scaled
dot-product to counteract the dot products growth in magni-
tude, showing better than dot product. Cosine similarity cal-
culates the inner product of word vectors with unit length,
and can further solve the inconsistency between the embed-
dings and the similarity measurement. Thus, we eventually
adopt cosine similarity as the compatibility function.

Memory Size and Time Consuming

Figure 3 illustrates our model performance and time pro-
portion compared to the baseline with respect to the max
queried subset size T for each unique word in the mem-
ory query step. For words occurring more than T times in
the corpus (these words are more likely to be stop words
when T is large), we only randomly select T slots in the
subset to compute the document-level representation. For
fair comparisons, we keep the IntNet layer, sequence label-
ing layer and CRF layer the same for all the experiments.
The consumed time of our model is only 19% more than the
baseline on CoNLL-2003 dataset even with the max mem-
ory size as 500. Therefore, our model brings slight increase
on time consumption. When T is less than 500, the larger
T may incorporate more useful contextualized representa-
tion for practice words and improve the results accordingly,
when T is larger than 500, which may involve more stop
words, our model drops slightly.

Improvement Discussion

Table 7 presents the F1 score of in-both-vocabulary words
(IV), out-of-training-vocabulary words (OOTV), out-of-
embedding-vocabulary words (OOEV), and out-of-both-
vocabulary words (OOBV) on CoNLL-2003 datset. Accord-
ing to our statistic, 63.40% / 52.43% / 84.68% of the NEs in
the test set of CoNLL-2003, CoNLL-2002, and OntoNotes
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Figure 3: F1 score and time proportion with respect to the
max memory size. Time proportion represents the ratio of
our training time compared to baseline.

datasets are located in the IV part, respectively. Therefore,
it is of great importance to focus on this part. We adopt
memory network to memorize and retrieve the global repre-
sentations and use the memorized training instances directly
to participate in inference, which greatly improves both the
precision and recall of the NEs in IV part, in which our
model outperforms baseline by 0.39 in terms of F1 score.
For OOV NEs, sentence-level representation can help these
concerned tokens aware of the entire sentence, thus enhance
the performance. The improvement is 0.44 / 0.43 F1 score
for OOTV NEs and OOBV NEs, respectively.

Conclusions

In this paper, we adopt hierarchical contextualized rep-
resentations to enhance the performance of named entity
recognition (NER). Our model makes full use of the train-
ing instances and the spatial information of the embed-
ding space by incorporating sentence-level representation
and document-level representation. We consider the impor-
tance of words in the sentences and weight their contribu-
tions with the label embedding attention for the sentence-
level representation. For words shown in training instances,
we memorize the representations of these instances, and in-
volve these representations for inference during test. Em-
pirical results on three benchmark datasets (CoNLL-2003
and Ontonotes 5.0 English datasets, CoNLL-2002 Spanish
dataset) show that our model outperforms previous state-of-
the-art systems with or without pre-trained language models
respectively.
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