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Abstract

Taking an answer and its context as input, sequence-to-
sequence models have made considerable progress on ques-
tion generation. However, we observe that these approaches
often generate wrong question words or keywords and copy
answer-irrelevant words from the input. We believe that lack-
ing global question semantics and exploiting answer position-
awareness not well are the key root causes. In this paper, we
propose a neural question generation model with two general
modules: sentence-level semantic matching and answer po-
sition inferring. Further, we enhance the initial state of the
decoder by leveraging the answer-aware gated fusion mech-
anism. Experimental results demonstrate that our model out-
performs the state-of-the-art (SOTA) models on SQuAD and
MARCO datasets. Owing to its generality, our work also im-
proves the existing models significantly.

Introduction
Question Generation (QG), an inverse problem of Ques-
tion Answering (QA), aims to generate a semantically rel-
evant question given a context and a corresponding answer.
It has huge potential in education scenario (Du, Shao, and
Cardie 2017), dialogue system, and question answering (Du
and Cardie 2018). A bunch of models using sequence-to-
sequence (seq-to-seq) models (Sutskever, Vinyals, and Le
2014) with the attention mechanism (Bahdanau, Cho, and
Bengio 2014) have been proposed for neural question gen-
eration (Zhou et al. 2017; Du, Shao, and Cardie 2017).

Enriched linguistic features with Part-Of-Speech (POS)
tags, relative position information, and paragraph context
are incorporated in the embedding layers (Zhou et al. 2017;
Kim et al. 2018; Zhao et al. 2018). Copy mechanism (Gul-
cehre et al. 2016) is exploited to enhance the output quality
of decoders (Zhao et al. 2018; Sun et al. 2018).

However, checking the questions generated by the strong
baseline models NQG++ (Zhou et al. 2017) and Pointer-
generator (See, Liu, and Manning 2017) originally solving
text summarization, the modern question generation models
face the two main issues as follows: (1) Wrong keywords and
question words: The model may ask questions with wrong
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keywords and wrong question words, as shown in the exam-
ples in Table 1. (2) Poor copy mechanism: The model copies
the context words semantically irrelevant to the answer (Sun
et al. 2018), as illustrated in the examples in Table 2.

Generally, the decoder with parameters θd in seq-to-seq
models (Zhou et al. 2017; Sun et al. 2018; Zhao et al.
2018) is trained by maximizing the generation probability
p(yt|y<t, z; θd) of the reference question word yt, given the
previous generated words conditioned on the encoded con-
text z. However, the decoder may focus on local word se-
mantics while ignoring the global question semantics dur-
ing generation, resulting in above-mentioned issues. Mean-
while, the answer position-aware features are not exploited
well by the copy mechanism, resulting in copying answer-
irrelevant context words from input.

To alleviate these issues, we claim that learning the
sentence-level semantics and answer position-awareness in
a Multi-Task Learning (MTL) fashion results in a better per-
formance as shown in Table 1 and 2. To do so, we first
propose sentence-level semantic matching module for learn-
ing global semantics from both the encoder and decoder
simultaneously. Then, answer position inferring module is
introduced to enforce the model with the copy mechanism
(See, Liu, and Manning 2017) to emphasize the relevant
context words with the answer position-awareness. Further-
more, we propose answer-aware gated fusion mechanism for
improved answer-aware sentence vector for decoder.

We further conduct extensive experiments on SQuAD
(Rajpurkar et al. 2016) and MS MARCO (Nguyen et al.
2016) dataset to show the superiority of our proposed model.
The experimental results show that our model not only out-
performs the SOTA models on main metrics, auxiliary met-
rics, and human judgments, but also improves different mod-
els due to its generality. Our contributions are three-fold:

• We analyze the questions generated by strong baselines
and find two issues: wrong keywords and wrong question
words and copying answer-irrelevant context words. We
identify that lacking whole question semantics and expoit-
ing answer position-awareness not weel are the key root
causes.

• To address the issues, we propose neural question gener-
ation model with sentence-level semantic matching, an-
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Sentence: starting in 1965, donald davies at the national physical laboratory, uk, independently developed
the same message routing methodology as developed by baran.
Reference: what did donald davies develop?
NQG++: what is the national physical laboratory?
Pointer-generator: what did baran develop?
Our model: what did donald devies develop at the national physical laboratory?
Sentence: in 1979 , the soviet union deployed its 40th army into afghanistan , attempting to suppress
an islamic rebellion against an allied marxist regime in the afghan civil war.
Reference: who deployed its army into afghanistan in 1979?
NQG++: in what year did the soviet union invade afghanistan?
Pointer-generator: what deployed their army into afghanistan?
Our model: who deployed their army into afghanistan?

Table 1: Bad cases of the baselines: the models ask questions with wrong question words and wrong keywords. The answers
are shown with underline. The italicized text indicates the poor performance of existing models, while the gray highlighted text
shows the improved performance with our proposed model.

Sentence:as of 2012 , quality private schools in the united states charged substantial tuition , close to $ 40,000
annually for day schools in new york city , and nearly $ 50,000 for boarding schools.
Reference: what would a parent have to pay to send their child to a boarding school in 2012?
NQG++: how much money did quality private schools in the us have in 2012?
Pointer-generator: how much money is charged substantial tuition for boarding school?
Our model: how much money for boarding schools in new york city in 2012?
Sentence: during his second year of study at graz , tesla developed a passion for and became very proficient
at billiards , chess and card-playing , sometimes spending more than 48 hours in a stretch at a gaming table.
Reference: how long would tesla spend gambling sometimes?
NQG++: how long did the billiards of tesla get in a stretch?
Pointer-generator: how long did tesla become very proficient in a stretch at a gaming table ?
Our model: how many hours did tesla spend in a stretch at a gaming table ?

Table 2: Bad cases of the baselines: the models copy the answer-irrelevant context words from sentences.

swer position inferring, and gated fusion.

• We conduct extensive experiments to demonstrate the su-
periority of our proposed model for improving question
generation performance in terms of the main metrics, aux-
iliary machine comprehension metrics, and human judg-
ments. Besides, our work can improve current models sig-
nificantly due to its generality.

Proposed Model
In this section, we describe the details of our proposed mod-
els, starting with an overview of question generation prob-
lem. Then, we illustrate our backbone seq-to-seq model with
gated fusion for improved answer-aware sentence vector
for generation. Finally, we illustrate sentence-level seman-
tic matching and answer position inferring to alleviate the
issues we discussed in the previous section.

Problem Formulation

In a question generation problem, a sentence X = {xt}Mt=1
containing an answer A, a contiguous span of the sentence,
is given to generate a question Y = {yt}Nt=1 matching with
the sentence X and the answer A semantically.

Seq-to-seq model with Answer-aware Gated Fusion
Encoder: Following the baseline model (Zhou et al.
2017), we use an attention-based seq-to-seq model with
the same enriched semantic and lexical features (i.e., NER
features (Sang and De Meulder 2003), POS tag (Brill
1992), case, and answer position features) as input xi ∈
R

(dw+dn+dp+dc+dap) in the embedding layer.
With a bi-directional LSTM (Hochreiter and Schmidhu-

ber 1997) as the encoder, the sentence representation, a
sequence of D-dim hidden state H = [h1, h2, ..., hm] ∈
R

M∗D, is produced by concatenating a forward hidden state
and a backward hidden state given the input sentence X =
[x1, x2, ..., xm]:

hi = [
−→
hi ,
←−
hi ], (1)

−→
hi = LSTMEnc(xi,

−−→
hi−1), (2)

←−
hi = LSTMEnc(xi,

←−−
hi+1) (3)

Answer-aware Gated Fusion: Instead of passing the last
hidden state hm of the encoder to the decoder as the ini-
tial hidden state, we propose gated fusion to provide an im-
proved answer-aware sentence vector z for the decoder.
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Figure 1: Diagram for neural question generation model with sentence-level semantic matching, answer position inferring, and
gated fusion.

Similar to the gates in LSTM, we use two information
flow gates computed by Sigmoid functions to control the
information flow of sentence vector and answer vector:

gm = σ(WT
m ∗ [hm, ha] + bm), (4)

ga = σ(WT
a ∗ [hm, ha] + ba), (5)

z = gm · hm + ga · ha (6)

where Wm, Wa, bm, and ba are trainable weights and biases.
We take the hidden state at the answer starting position as the
answer vector ha ∈ R

D since it encodes the whole answer
semantics with the bi-directional LSTM.

Decoder: Taking the encoder hidden states H =
[h1, h2, ..., hn] ∈ R

N∗D as the context and the improved
answer-aware sentence vector z as the initial hidden state
s1, an one layer uni-directional LSTM updates its current
hidden state st with the previous decoded word as the input
wt:

st = LSTMDec([wt; ct−1], st−1) (7)

Meanwhile, the attention mechanism (Bahdanau, Cho,
and Bengio 2014) is exploited by attending the current de-
coder state st to the encoder context H = [h1, h2, ..., hn].

The context vector ct is computed with normalized attention
vector αt by weighted-sum:

et = HTWest, (8)
αt = Softmax(et), (9)

ct = HTαt (10)

Question word yt is generated from vocabulary V with
Softmax function:

pgenerate(yt) = Softmax(f(st, ct)) (11)

where f is realized by a two-layer feed-forward network.

Copy Mechanism / Pointer-generator: Copy Mecha-
nism (Gulcehre et al. 2016) and Pointer-generator network
(See, Liu, and Manning 2017) are introduced to enable the
model to generate words from the vocabulary V with size
|V| or copy words from the input sentence X with size |X|
by taking the ith word with the highest attention weight αt,i

computed in Equation 9.
Generally, when generating the question word yt, a copy

switch gcopy is computed to decide whether the generated
word is generated from vocab or copied from source sen-
tence, given the current decoder hidden state st and context
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vector ct:

gcopy = σ(W cst + U cct + bc) (12)

where W c, U c, and bc are learnable weights and biases.
The final word distribution is obtained by combining the

probability of generate mode and the probability of copy
mode:

pfinal (yt|y<t; θs2s) = gcopypcopy(yt, θ1)

+ (1− gcopy) pgenerate(yt, θ2)
(13)

where θ, θ1, and θ2 are the parameters of neural network.
We use the negative log likelihood for the seq-to-seq loss:

L (θs2s) = − 1

N

N∑
i

log pfinal (yt|y<t; θs2s) (14)

where θs2s is the parameters of the seq-to-seq model, and N
is the number of data in the train dataset.

Sentence-level Semantic Matching
Existing models, especially the decoders, generate ques-
tion words given the generated and partial question words
without considering the global whole question seman-
tic, prone to wrong question words or keywords. Mean-
while, we found that there exist different reference ques-
tions targeting the different answers in the same sen-
tence in SQuAD and MARCO datasets. For example,
we have < sentence, answer1, question1 > and <
sentence, answer2, question2 >. However, the baseline
model is prone to generating generic questions in this case.
To overcome this problem, we propose the sentence-level se-
mantic matching module to learn the sentence-level seman-
tics from both the encoder and decoder sides in a Multi-Task
Learning way.

Figure 2: Pipeline of Sentence-level Semantic Matching

Generally, we have the improved answer-aware sentence
vector z obtained by our gated fusion. Regarding the de-
coder, a uni-directional LSTM, as an encoder for question,
we take the last hidden state sn as the question vector.

Then, as illustrated in Figure 2, we train two classifiers to
distinguish the not semantic-matching pairs [z, s′n] (S,Q′)
and [z′, sn] (S′, Q) from the semantic-matching sq pair
[z, sn] (S,Q), respectively, where z′ and s′n are the vector of
randomly sampled mismatched sentence and question from
the same passage:

p = Softmax(Wc[z, sn] + bc) (15)

where [z, sn] is the concatenation of the sentence vector z
and the question vector sn.

We take the sum of the binary cross entropy of the two
classifiers as the sentence-level semantic matching loss:

L(θsm) = − 1

K

K∑
i

LBCE(p1, y1) + LBCE(p2, y2) (16)

LBCE(p, y) = y log(p) + (1− y) log(1− p) (17)

where θsm is the parameters of the two classifiers. p1 and p2
are the prediction probabilities of the two classifiers, and y1
and y2 refer to labels indicating the S,Q pair is matched or
not. K is the number of S,Q pairs.

Answer Position Inferring
Another issue of the baseline model is that it copies the
answer-irrelevant words from the input sentence. One po-
tential reason is that the model does not learn the answer
position features well, and the attention matrix is not sig-
nified by the context words relevant to the answer. To ad-
dress the issue, we leverage answer position inferring mod-
ule to enforce the model with answer position-awareness,
still in a Multi-Task Learning fashion. We borrow the bi-

Figure 3: Framework of Answer Position Inferring

directional Attention Flow network and output layer from
BiDAF model (Seo et al. 2016) to infer the answer posi-
tion as shown in Figure 3, taking the sentence representation
H ∈ R

M∗D and question representation S ∈ R
N∗D from

the encoder and the decoder as inputs.
Formally, we take Sentence-to-Question (S2Q) attention

and Question-to-Sentence (Q2S) attention to emphasize the
mutual semantic relevance between each sentence word and
each question word, and we obtain the question-aware sen-
tence representation H̃ and the sentence-aware question rep-
resentation S̃ by using similar attention mechanism to Equa-
tion 9:

H̃ = attn(H,S), (18)

S̃ = attn(S,H) (19)

Then, two two-layer bidirectional LSTMs are used to cap-
ture the interactions among the sentence words conditioned
on the question (Seo et al. 2016). The answer starting in-
dex and end index are predicted by the output layer with
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Table 3: Comparison of models performances in terms of the main metrics on SQuAD and MARCO dataset
SQuAD MARCO

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
NQG++ (Zhou et al. 2017) 42.13 25.98 18.24 13.29 17.59 40.75 46.62 32.67 22.98 16.13 20.22 46.35
Pointer-generator (See, Liu, and Manning 2017) 42.43 26.75 18.99 14.33 18.77 43.19 47.10 34.26 24.87 17.95 22.34 47.69
Answer-focused (Sun et al. 2018) 43.02 28.14 20.51 15.64 - - - - - - - -
Gated Self-attention (Zhao et al. 2018) 44.51 29.07 21.06 15.82 19.67 44.24 - - - - - -
Model with Sentence-level Semantic Matching 43.67 28.53 20.59 15.66 19.23 43.86 48.97 35.84 26.31 19.79 23.83 48.93
Model with Answer Position Inferring 43.88 28.55 28.87 15.77 19.55 43.98 49.73 36.77 26.46 20.14 24.22 49.33
Combined Model 44.71 29.89 21.77 16.32 20.84 44.79 50.33 37.10 27.23 20.46 24.69 49.89

Softmax function:

M1 = LSTM(f(H, H̃, S̃)), (20)

M2 = LSTM(f(H, H̃, S̃)), (21)

p1 = Softmax
(
W�

(p1)[H̃,M1]
)
, (22)

p2 = Softmax
(
W�

(p2)[H̃,M2]
)

(23)

where Wp1 and Wp2 are trainable weights, and f function is
a trainable multi-layer perception (MLP) network.

We compute the loss with the negative log likelihood of
the ground truth answer starting index y1i and ending index
y2i with the predicted distribution:

L(θap) = − 1

N

N∑
i

log
(
p1y1

i

)
+ log

(
p2y2

i

)
(24)

where θap is the parameters to be updated of the answer po-
sition inferring module.

To joint train the generation model with the proposed
modules in a Multi-Task Learning approach, we minimize
the total loss during the training:

L(θ) = L(θs2s) + α ∗ L(θsm) + β ∗ L(θap) (25)

where α and β control the magnitude of the sentence-level
semantic matching loss and the answer position inferring
loss. By minimizing the above loss function, our model is
expected to discover the sentence-level and answer position-
aware semantics of the question and sentence.

Experiments and Results
In this section, we conduct extensive experiments on the
SQuAD and MS MARCO dataset, demonstrating the supe-
riority of our proposed model compared with existing ap-
proaches.

Experiment Settings
Dataset SQuAD V1.1 dataset contains 536 Wikipedia ar-
ticles and more than 100K questions posed about the articles
(Rajpurkar et al. 2016). The answer is also given with cor-
responding questions as the sub-span of the sentence. Fol-
lowing the baseline (Zhou et al. 2017), we use the train-
ing dataset (86635) to train our model, and we split the dev
dataset into dev (8965) and test dataset (8964) with a ratio
of 50%-50% for evaluation.

MS MARCO contains more than one million queries
along with answers either generated by human or selected
from passages (Nguyen et al. 2016). We select a subset of

MS MARCO, where the answers are sub-spans of the pas-
sages. We split them into train set (86039), dev set (9480),
and test set (7921) for model training and evaluation pur-
pose.

We report automatic evaluation with BLEU-1, BLEU-
2, BLEU-3, BLEU-4 (Papineni et al. 2002), METEOR
(Denkowski and Lavie 2014), and ROUGE-L (Lin 2004) as
the main metrics.

Baselines In the experiments, we have several baselines
for comparisons:

• NQG++ (Zhou et al. 2017): It is a baseline for Neural
Question Generation task. It uses enriched semantic and
lexical features in the encoder embedding layer of the seq-
to-seq model. Attention mechanism and copy mechanis-
mare also used.

• Feature-enriched Pointer-generator (See, Liu, and Man-
ning 2017): It is a seq-to-seq model with attention mech-
anism and copy mechanism. The copy mechanism is real-
ized differently from NQG++. We add enriched features
used in NQG++ in the embedding layer.

• Answer-focused (Sun et al. 2018): It is a SOTA model on
QG that uses an additional vocabulary for question word
generation with relative answer position information in-
stead of BIO used in NQG++.

• Gated Self-attention (Zhao et al. 2018). It is also a SOTA
model on QG that leverages paragraph as input with gated
self-attention above RNN in the encoder. Meanwhile, an
improved maxout pointer is introduced.

Results and Analysis
Main Metrics We report the main metrics of different
models on SQuAD and MS MARCO dataset in Table 3.

Answer-focused model (Sun et al. 2018) improves the
performance by using separate vocabulary for question word
generation along with answer relative position. The Gated
Self-Attention model (Zhao et al. 2018) emphasizes the
intra-attention among the sentence with improved maxout
pointer.

Different from the models above, our work aims to im-
prove the model by learning the sentence-level semantic-
matching features on both the encoder and decoder sides.
The result shows that our model outperforms the two SOTA
models on the main metrics.

Auxiliary Metrics Although the main metrics can reflect
the similarity between the generated question and the refer-
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Table 4: Machine Comprehension Performance in terms of
Exact Match (EM) and F1on SQUAD dataset

Questions EM (%) F1 (%)
Reference Questions 49.68 65.97
NQG++ (Zhou et al. 2017) 35.26 50.88
Pointer-generator (See, Liu, and Manning 2017) 38.89 54.06
Our model 42.70 57.68

ences, it has its limits on reflecting the semantics of gener-
ated question (Xu et al. 2018).

Alternatively, considering that machine comprehension
takes the article and the corresponding question as the in-
put to find the answer in the passages, we adopt the machine
comprehension metrics (Rajpurkar et al. 2016) to evaluate
the quality of the questions generated by different models
(Wang et al. 2017).

We show the performances of BiDAF (Seo et al. 2016)
pre-trained by AllenNLP (Gardner et al. 2017) in terms of
Exact Match (EM) and F1 metrics on reference questions,
questions generated by baseline, and questions generated by
our model in Table 4.

Our model outperforms NQG++ and Pointer-generator on
EM and F1 significantly, since our model generates more
answer-relevant questions by discovering sentence-level se-
mantics and answer position features.

Sentence-level Semantic Matching Analysis To analyze
the quality of our model on generating the right question
words and keywords, we randomly sample 200 questions
generated by NQG++, Pointer-generator, and our model, re-
spectively. Generally, the generated question is claimed to
have the right question words if it has the same question
words to the reference question. For example, we have a
generated question ”what place ...” and a reference question
”where ...”, and we claim that the model generate a ques-
tion with the right question words. In addition, we choose
the words with most semantics importance as the keywords,
which indicate the sentence topic and content. We report the
number of the questions with right question words and key-
words by different models in Table 5.

Table 5: Question words and keywords generation perfor-
mance by different models on SQuAD dataset

Models # right question words # right keywords
NQG++ (Zhou et al. 2017) 134 143
Pointer-generator (See, Liu, and Manning 2017) 140 148
Model with Sentence-level Semantic Matching 150 156

The main reason that our model outperforms the existing
model is that learning the sentence-level semantics helps to
capture the key semantics and results in better performance
on generating the semantic-matching keywords.

Answer Position Inferring Analysis We also conduct the
similar experiment on evaluating the copy mechanisms in
different models in terms of precision and recall used in (Sun
et al. 2018). Given one generated question G and reference
question R, we definite precision and recall as:

Precision =

∑N
i # OOV words in both Gi and Ri∑N

i # OOV words in Ri

(26)

Recall =
∑N

i # OOV words in both Gi and Ri∑N
i # OOV words in Ri

(27)

Table 6: Copy mechanism performance by different models
Models Precision Recall
NQG++ (Zhou et al. 2017) 46.28% 32.13%
Pointer-generator (See, Liu, and Manning 2017) 47.21% 38.38%
Model with Answer Position Inferring 48.35% 40.27%

As reported in Table 6, the improvement of Precision and
Recall indicates that answer position inferring can help copy
OOV words from the input sentence.

Model Generality To show the effectiveness and general-
ity of our work, we evaluate the validness of our work by
applying it to current representative models without revis-
ing the models. As shown in Table 7, our work can improve
existing models by more than 2% on QG tasks due to its
effectiveness and generality.

Table 7: Performance Improvement on existing models on
SQuAD dataset

Models BLEU-4
NQG++ (Zhou et al. 2017) 13.29
NQG++ (Zhou et al. 2017) + our work 14.97
Pointer-generator model (See, Liu, and Manning 2017) 14.33
Pointer-generator model (See, Liu, and Manning 2017) + our work 16.32

Human Evaluation
We also conduct human evaluation to examine the qual-
ity of the questions generated by the models and reference
questions by scoring them on a scale of 1 to 5 in terms
of semantics matching, fluency, and syntactically correct-
ness. As reported in Table 8, our model generates questions
with higher scores on the three metrics than the two baseline
models, indicating the superiority of our proposed model by
utilizing the sentence-level semantics and answer position-
awareness.

Table 8: Human evaluation on questions generated by the
models

Models Semantic Matching Fluency Syntactically Correctness
NQG++ 1.88 2.70 3.26
Pointer-generator 2.34 3.2 3.5
Our model 2.87 3.46 3.89

Case Study
In this section, we present some examples of questions gen-
erated by our model.

Furthermore, we present a pair of examples, which have
the same input sentence in Table 9. Different from that
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Sentence: another example was the insignificance of the ministry of war compared with native chinese
dynasties , as the real military authority in yuan times resided in the privy council.
Reference: who had no real military power during the yuan?
NQG++: the insignificance of what war was compared to native chinese dynasties?
Pointer-generator: what was the insignificance?
Our model: what was insignificance compared with native Chinese dynasties?
Sentence: another example was the insignificance of the ministry of war compared with native chinese
dynasties , as the real military authority in yuan times resided in the privy council.
Reference: who had military control during the yuan?
NQG++: what did the chinese dynasties call the insignificance of the ministry of war?
Pointer-generator: in where the insignificance as the real military authority in yuan times?
Our model: the real military authority in yuan times resided where?

Table 9: Examples of questions with asking about the right keywords generated by our model.

NQG++ generate similar and non-semantic-matching ques-
tions, our model can ask different and more semantic-
matching questions than baselines, targeting the different an-
swers.

Implementation Details
Followed NQG++ (Zhou et al. 2017), we conduct our ex-
periments on the preprocessed data provided by (Zhou et al.
2017). We use 1 layer LSTM as the RNN cell for both the
encoder and the decoder, and a bidirectional LSTM is used
for the encoder. The hidden size of the encoder and decoder
are 512. We use a 300-dimension pre-trained Glove vector
as the word embedding (Pennington, Socher, and Manning
2014). As same as NQG++ (Zhou et al. 2017), the dimen-
sions of lexical features and answer position are 16. We use
Adam (Kingma and Ba 2014) Optimizer for model training
with an initial learning rate as 0.001, and we halve it when
the validation score does not improve. During the training of
Sentence-level Semantic Matching module, we sample the
negative sentences and questions from nearby data samples
in the same batch, due to the preprocessed data (Zhou et al.
2017) lacking of the information about which data samples
are from the same passage. We compute our total loss func-
tion with α of 1 and β of 2. Models are trained for 20 epochs
with mini-batch of size 32. We choose model achieving the
best performance on the dev dataset.

Related Work
Question generation tasks can be categorized into two
classes: one is the rule-based method, meaning manually de-
sign lexical rules or templates to convert context into ques-
tions without deep understanding on the context semantic
(Mazidi and Nielsen 2014; Labutov, Basu, and Vanderwende
2015). The other one is neural network based methods,
which adopt seq-to-seq (Sutskever, Vinyals, and Le 2014) or
an encoder-decoder (Cho et al. 2014) framework to generate
question words from scratches (Du, Shao, and Cardie 2017;
Zhou et al. 2017). Our work focuses on the second category.

(Du, Shao, and Cardie 2017) firstly proposes to generate
question with a seq-to-seq model given a context automat-
ically. However, the model does not take the answer into
consideration. Then (Zhou et al. 2017) proposes to use a

feature-enriched encoder to encode the input sentence by
concatenating word embedding with lexical features as the
encoder input, and answer position are involved in informing
the model where the answer is. It is shown that it brings con-
siderable improvements to the model. With the success of re-
inforcement learning, (Yuan et al. 2017) propose to combine
supervised learning and reinforcement learning together for
question generation by using policy gradient after training
the model in supervised learning way. The reward term in
the policy gradient loss function can be perplexity and the
BLEU scores (Papineni et al. 2002). To tackle the issue that
question words do not match with the answer type, (Sun et
al. 2018) introduce a vocabulary only to generate question
words. (Zhao et al. 2018) propose to use paragraph as the
input for providing more semantic information with an im-
proved maxout pointer for copying words from the input.

Different from existing methods focusing on utilizing
more informative features and improving the copy mecha-
nism, we point out that incapability of capturing sentence-
level semantics and exploiting answer-aware features are the
main reasons, and we alleviate the problem by proposing
two modules which can be integrated with any base models
named sentence-level semantic matching and answer posi-
tion inferring in Multi-Task Learning fashion.

Conclusion
In this paper, we observe two issues with the widely used
baseline model on question generation. We point out the
root cause is that existing models neither consider the whole
question semantics nor exploit the answer position-aware
features well. To address the issue, we propose the neu-
ral question generation model with sentence-level semantic
matching, answer position inferring, and gated fusion. Ex-
tensive experimental results show that our work improves
existing models significantly and outperforms the SOTA
models on SQuAD and MARCO datasets.
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