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Abstract

Credit attribution is the task of associating individual parts in
a document with their most appropriate class labels. It is an
important task with applications to information retrieval and
text summarization. When labeled training data is available,
traditional approaches for sequence tagging can be used for
credit attribution. However, generating such labeled datasets
is expensive and time-consuming. In this paper, we present
Credit Attribution With Attention (CAWA), a neural-network-
based approach, that instead of using sentence-level labeled
data, uses the set of class labels that are associated with an
entire document as a source of distant-supervision. CAWA
combines an attention mechanism with a multilabel classi-
fier into an end-to-end learning framework to perform credit
attribution. CAWA labels the individual sentences from the
input document using the resultant attention-weights. CAWA
improves upon the state-of-the-art credit attribution approach
by not constraining a sentence to belong to just one class,
but modeling each sentence as a distribution over all classes,
leading to better modeling of semantically-similar classes.
Experiments on the credit attribution task on a variety of
datasets show that the sentence class labels generated by
CAWA outperform the competing approaches. Additionally,
on the multilabel text classification task, CAWA performs bet-
ter than the competing credit attribution approaches1.

Introduction
A document can be considered as a union of segments
(text-pieces), where each segment tends to talk about a sin-
gle topic (class). In multilabel documents, each of the seg-
ments can be associated with one or more of the document’s
classes. Credit attribution (Ramage et al. 2009) refers to the
task of associating these individual segments in a document
with their most appropriate class labels. For example, Fig.
1 shows the IMDB plot summary of the movie The Hate U
Give. The movie belongs to the crime and drama genres. As
shown, each sentence in the plot summary can be mapped
individually to the crime genre and drama genre. Credit at-
tribution finds its application in many natural language pro-

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Our code and data are available at https://github.com/
gurdaspuriya/cawa.

Figure 1: Plot summary of the movie The Hate U Give from
the IMDB, belonging to the crime/drama genre. The blue
text depicts crime and the orange text depicts drama genre.

cessing and information retrieval tasks (Hearst 1997): it can
improve information retrieval (by indexing documents more
precisely or by giving the specific part of a document in re-
sponse to a query); and text summarization (by including
information from each of the document’s topics).

A straightforward way to solve credit attribution is to for-
mulate it as a text-segment-level classification problem and
collect the corresponding labeled datasets. However, man-
ually annotating these segments (words, sentences, para-
graphs, etc.) with the corresponding class labels is a tedious
and expensive task. In order to reduce the need for such la-
beling, many methods have been developed that work in a
distant-supervised fashion, such as Labeled Latent Dirichlet
Allocation (LLDA) (Ramage et al. 2009), Partially Labeled
Dirichlet Allocation (PLDA) (Ramage, Manning, and Du-
mais 2011) Multi-Label Topic Model (MLTM) (Soleimani
and Miller 2017), SEG-NOISY and SEG-REFINE (Man-
chanda and Karypis 2018). Among them, the current state-
of-the-arts are the dynamic programming based approaches
SEG-NOISY and SEG-REFINE, that penalize the number
of topic-switches, therefore constraining neighboring sen-
tences to belong to the same topic. However, these ap-
proaches cannot model case where sentences can belong to
multiple classes; thus, they cannot correctly model semanti-
cally similar classes.

To deal with this limitation, we developed Credit At-
tribution With Attention (CAWA), a neural-network based
approach that models multi-topic segments. CAWA uses
the class labels of a multilabel document as the source of
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distant-supervision, to assign class labels to the individual
sentences of the document. CAWA leverages the attention
mechanism to compute weights that establish the relevance
of a sentence for each of the classes. The attention weights,
which can be interpreted as a probability distribution over
the classes, allows CAWA to capture the semantically simi-
lar classes by modeling each sentence as a distribution over
the classes, instead of mapping to just one class. In addition,
CAWA leverages a simple average pooling layer to constrain
the neighboring sentences to belong to the same class by
smoothing their class distributions. CAWA uses an end-to-
end learning framework to combine the attention mechanism
with the multilabel classifier.

We evaluate the performance of CAWA on five datasets
that were derived from different domains. On the credit at-
tribution task, CAWA performs better than both MLTM and
SEG-REFINE with respect to the sentence-labeling accu-
racy, with an average performance gain of 6.2% and 9.8%
compared to MLTM and SEG-REFINE, respectively. On the
multilabel classification task, CAWA also performs better
than MLTM and SEG-REFINE. Its performance with re-
spect to the F1 score between the predicted and the actual
classes is on an average 4.1% and 1.6% better than MLTM
and SEG-REFINE, respectively.

Related Work
Various unsupervised, supervised and distant-supervised
methods have been developed to deal with the credit attri-
bution problem. Popular examples of the unsupervised ap-
proaches include TextTiling (Hearst 1997), C99 (Choi 2000)
and GraphSeg (Glavaš, Nanni, and Ponzetto 2016). Super-
vised approaches for text classification include the ones us-
ing decision trees (Grosz and Hirschberg 1992), multiple re-
gression analysis (Hajime, Takeo, and Manabu 1998), expo-
nential model (Beeferman, Berger, and Lafferty 1999), prob-
abilistic modeling (Tür et al. 2001) and more recently, deep
neural network based approaches (Badjatiya et al. 2018;
Koshorek et al. 2018).

The methods proposed in this paper belong to the broad
category of distant-supervised methods for text segmenta-
tion. Our methods use the set of labels that are associated
with a document as a source of supervision, instead of using
explicit segment-level ground truth information. Prior ap-
proaches proposed for distant-supervised text segmentation
include Labeled Latent Dirichlet Allocation (LLDA) (Ra-
mage et al. 2009), Partially Labeled Dirichlet Allocation
(PLDA) (Ramage, Manning, and Dumais 2011) Multi-Label
Topic Model (MLTM) (Soleimani and Miller 2017), SEG-
NOISY and SEG-REFINE (Manchanda and Karypis 2018).
We review these prior approaches below.

Labeled Latent Dirichlet Allocation (LLDA) (Ramage et
al. 2009) is a probabilistic graphical model for credit attribu-
tion. It assumes a one-to-one mapping between the class la-
bels and the topics. Like Latent Dirichlet Allocation, LLDA
models each document as a mixture of underlying topics and
generates each word from one topic. Unlike LDA, LLDA
incorporates supervision by simply constraining the topic
model to use only those topics that correspond to a docu-

ment’s (observed) label set. LLDA assigns each word in a
document to one of the document’s labels.

Partially Labeled Dirichlet Allocation (PLDA) (Ramage,
Manning, and Dumais 2011) is an extension of the LLDA
that allows more than one topic for every class label, and
some general topics that are not associated with any class.

Multi-Label Topic Model (MLTM) (Soleimani and Miller
2017) improves upon PLDA by allowing each topic to be-
long to multiple, one, or even zero classes probabilistically.
MLTM also assigns a label to each sentence, based on the
assigned topics of the constituent words. The labels of the
documents are generated from the labels of its sentences.

A common problem with the above-mentioned ap-
proaches is that they model the document as a bag of
word/sentences and do not take into consideration the struc-
ture within a document, i.e., neighboring sentences tend to
talk about the same topic. Recently, we proposed dynamic
programming based approaches SEG-NOISY and SEG-
REFINE (Manchanda and Karypis 2018) to segment the
documents, that penalizes the number of segments, there-
fore constraining neighboring sentences to belong to the
same topic. However, SEG-NOISY and SEG-REFINE ap-
proaches model each sentence as belonging to a single class,
thus facing the problem of correctly modeling the semanti-
cally similar classes, in which case, each sentence can be-
long to multiple classes.

Another line of work related to the problem addressed in
this paper is Rationalizing Neural Predictions (Lei, Barzi-
lay, and Jaakkola 2016). The previous work selects a subset
of the words in a document as a rationale for the predic-
tions made by a neural network, where a rationale must be
short. As such, this assumption makes sense for some do-
mains, such as sentiment analysis, as a few words are suffi-
cient to describe the sentiment. However, in our work, we do
not make this assumption and develop methods for any gen-
eral multilabel document. Another similar work for distant-
supervised sentiment analysis (Angelidis and Lapata 2018)
uses attention-mechanism to identifying positive and neg-
ative text snippets, only using the overall sentiment rating
as supervision. As we explain later, in the case of multil-
abel documents (such as multi-aspect ratings), the vanilla-
attention mechanism can assign high attention-weights to
the sentences that provide negative evidence for a class.
The proposed approach addresses this limitation and is well-
suited for credit-attribution in multilabel documents.

Definitions and Notations
Let C be a set of classes and D be a set of multilabel doc-
uments. For each document d ∈ D, let Ld ⊆ C be its set of
classes and let |d| be the number of sentences that it contains.
The approach developed in this paper assumes that in mul-
tilabel documents, each sentence can be labeled with class
label(s) from that document. In particular, given a document
d we assume that each sentence d[i] can be labeled with a
class y(d, i) ∈ Ld. We seek to find these sentence-level class
labels, the training data being the multilabel documents and
their class labels, i.e., we do not have access to the sentence-
level class labels for training.
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Figure 2: Example of the attention weights. Each sentence
contributes towards the class-specific document representa-
tion, the extent of contribution, and hence to relevance for a
class, is decided by the attention weights.

Credit Attribution With Attention (CAWA)
As discussed earlier, the existing approaches for credit at-
tribution suffer from the limitations of either not modeling
semantically similar classes or not exploiting the local struc-
ture within the documents. In order to address these limita-
tions, we present a neural-network based approach Credit
Attribution With Attention (CAWA). CAWA addresses these
limitations by (i) capturing the semantically similar classes
by modeling each sentence as a distribution over the classes,
instead of mapping to just one class; and (ii) leveraging a
simple average pooling layer to constrain the neighboring
sentences to have similar class distribution; thus, leveraging
the local structure within the documents.

To this end, CAWA combines an attention mechanism
with a multilabel classifier and uses this multilabel classifier
to predict the classes of an input document. For each pre-
dicted class, the attention mechanism allows CAWA to pre-
cisely identify the sentences of the input document which are
relevant towards predicting that class. Using these relevant
sentences, CAWA estimates a class-specific document rep-
resentation for each class. Finally, each sentence is assigned
the class, for which it is most relevant, i.e., has the highest
attention weight. Figure 2 shown an example of sentence-
labeling using the attention weights. Additionally, CAWA
uses a simple average pooling layer to constrain the neigh-
boring sentences to have similar attention weights (class dis-
tribution). We explain CAWA in detail in this section.

Architecture
CAWA consists of three components: (i) a sentence repre-
sentation generator, which is responsible for generating a
representation of the sentences in the input document; (ii)
an attention module, which is responsible for generating
a class-specific document representation from the sentence
representations, and (iii) a multilabel classifier, which is re-
sponsible for predicting the classes of the document using
the class-specific document representations as input. These
three components form an end-to-end learning framework as
shown in Figure 3. We explain each of these components in

detail in this section.

Sentence-representation generator (SRG): The SRG
takes the document as an input and generates two different
representations for each sentence in the document. The two
representations correspond to the keys and the values that
will be taken as input by the attention mechanism, as ex-
plained in next section. For both keys and values, SRG gen-
erates the representation of a sentence as the average of the
representations of the constituent words of the sentence, i.e.,

kd(i) =
1

|d[i]|
∑

x∈d[i]

kw(x); vd(i) =
1

|d[i]|
∑

x∈d[i]

vw(x),

where d[i] is the ith sentence of document d, kd(i) is the
key-representation of d[i], kw(x) is the key-representation of
word x, vd(i) is the value-representation of d[i] and vw(x)
is the value-representation of word x. These representations
for the words are estimated during the training.

Attention module: The attention module takes the sen-
tence representations (keys and values) as input and out-
puts the class-specific representation of the document, one
document-representation for each class. Since the different
sentences have difference relevance for each class, we esti-
mate the class-specific representations as a weighted average
of the value-representations of the sentences. We calculate
the attention weights for this weighted average using a feed-
forward network. Specifically, we estimate the class-specific
representations as, rd(c) =

∑|d|
i=1 a(d, i, c) × vd(i), where

rd(c) is the class-specific representation of document d for
class c, a(d, i, c) is the attention-weight for of the ith sentence
of d for class c. The feed-forward network to calculate the
attention weights takes as input the key representation of a
sentence and outputs the attention weight of the sentence for
each class. This feed-forward network plays the role of the
sentence classifier and outputs the probability of the input
sentence belonging to each of the classes, on its output layer.
We implement this feed-forward network with two hidden-
layers, and we use softmax on the output layer to calculate
the attention-weights. To leverage the local structure within
the document, i.e., to constrain the neighboring sentences
to have similar class distributions, we apply average pool-
ing before the softmax layer. Average pooling smooths out
the neighboring class distributions and cancels the effect due
to random variation. Note that, we can also use more flexi-
ble sequence modeling approaches, such as Recurrent Neu-
ral Networks (RNNs) to leverage the local structure. But, we
choose to use a simple average pooling layer, due to its sim-
plicity. We also add a residual connection between the first
hidden layer and the output layer, which eases the optimiza-
tion of the model (He et al. 2016). The architecture for the
attention mechanism is shown in Figure 4.

Multilabel classifier: Several architectures and loss-
functions have been proposed for multilabel classification,
such as Backpropagation for Multi-Label Learning (BP-
MLL) (Zhang and Zhou 2007). However, as the focus of
this paper is credit attribution and not multilabel classifica-
tion, we simply implement the multilabel classifier as a sep-
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Figure 3: CAWA architecture with an example. The input document consists of two sentences, having class labels 1 and 2 re-
spectively. The Sentence-representation generator generates the key and value representation for these sentences. The attention
module generates class-specific document representations using the key and value representations of the sentences. Finally, the
multilabel classifier, uses these class-specific representations, to predict the correct classes of the document. Although we don’t
have direct supervision about the sentence-level class labels, the attention mechanism allows us to find how much each sentence
is relevant to a class, that can be used to predict the sentence-level class labels.

Figure 4: Architecture of the attention mechanism.

Figure 5: Architecture of the per-class binary classifier.

arate binary classifier for each class. Therefore, each binary
classifier predicts whether a particular class is present in the
document or not. The input to each of these binary classi-
fiers is the class-specific representation, which is the output
of the attention module. We implement each of these binary
classifiers as a feed-forward network with two hidden layers
and use sigmoid on the output layer to predict the probabil-
ity of the document belonging to that class. The architecture
for the class-specific binary classifiers is shown in Figure 5.

Model estimation
To quantify the loss for predicting the classes of a document,
we minimize the weighted binary cross-entropy loss (Nam
et al. 2014), which is a widely used loss function for multi-
label classification. The weighted binary cross-entropy loss
associated with all the documents in collection D is given
by:

LC(D) = − 1

|D|
∑

d∈D

∑

c∈C

wc(y(d, c) log(s(d, c))

+ (1− y(d, c)) log(1− s(d, c))),

where y(d, c) = 1 if the class c is present in document d,
and y(d, c) = 0 otherwise, s(d, c) is the prediction probabil-

ity of document d belonging to class c, and wc is the class-
specific weight for class c. This weight wc is used to han-
dle the class imbalance by increasing the importance of in-
frequent classes (upsampling), and we empirically set it to
wc =

√|D|/nc, where nc is the number of documents be-
longing to the class c. Note that we require the sentences to
be labeled with the class which they describe. However, the
attention mechanism can also assign high attention-weights
to the sentences that provide a negative-signal for a class.
For example, if a document can exclusively belong to only
one class A and B, the text describing one of the classes (say
A) will also provide a negative signal for the other class (B),
and hence, will get high attention-weight for both classes A
and B. To constraint that the attention is only focused on
the classes that are actually present in the document, we in-
troduce attention loss, which penalizes the attention on the
absent classes, and is given by

LS(D) = − 1

|D|
∑

d∈D

1

|d|
|d|∑

i=1

∑

c∈C

(1−y(d, c)) log(1−a(d, i, c)),

where a(d, i, c) is the attention weight for class c on the ith
sentence of the document d. To estimate the CAWA, we min-
imize the weighted sum of both LC(D) and LS(D), given by
L(D) = αLC(D)+ (1−α)LS(D), where α is a hyperparam-
eter to control the relative contribution of LC(D) and LS(D)
towards the final loss.

Segment inference
We can directly use the estimated attention-weights to assign
a class to each sentence, corresponding to the class with the
maximum attention-weight. However, to ensure the consen-
sus between the predicted sentence-level classes and docu-
ment’s classes, we use a linear combination of the attention-
weights and document’s predicted class-probabilities to as-
sign a class to each sentence, i.e.,

l(d, i) = argmax
c

(β × a(d, i, c) + (1− β)× y(d, c)), (1)
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where l(d, i) is the predicted class for the ith sentence of d
and β is a hyperparameter to control the relative contribution
of attention-weights and document’s classification probabil-
ity. Additionally, y(d, c) acts as a global bias term, and makes
the sentence-level predictions less prone to random variation
in the attention weights.

Experimental methodology
Datasets
We performed experiments on five multilabel text datasets
from different domains: Movies (Bamman, O’Connor, and
Smith 2014), Ohsumed (Hersh et al. 1994), TMC20072,
Patents3, Delicious (Zubiaga et al. 2009). For both the credit
attribution and multilabel classification tasks, we used the
same training and test dataset split as used in (Manchanda
and Karypis 2018). For the credit attribution, the test dataset
is synthetic, and each test document corresponds to multiple
single-label documents concatenated together (thus, giving
us ground truth segment labels for a document). Addition-
ally, we also use a validation dataset, created in a similar
manner to this test dataset, for the hyperparameter selection.

Baselines
Although the number of methods that have been specifically
developed to solve the credit attribution problem is small,
any multilabel classifier can be used to perform credit at-
tribution, by training on the multilabel documents and pre-
dicting the classes of the individual sentences. Thus, apart
from the credit attribution specific approaches, we compare
CAWA against several multilabel classification approaches.
Specifically, we chose our baselines from diverse domains
such as graphical models, deep neural networks, dynamic
programming, etc., as described below:

• SEGmentation with REFINEment (SEG-REFINE) (Man-
chanda and Karypis 2018): A dynamic programming
based approach that constrains neighboring sentences to
belong to the same topic.

• Multi-Label Topic Model (MLTM) (Soleimani and Miller
2017): A generative approach, that generates the classes
of a document from the classes of its sentences, which are
further generated from the classes of its words.

• Deep Neural Network with Attention (DNN+A): As men-
tioned earlier, any multilabel classifier can be used to
perform credit attribution. DNN+A is a neural network
based multilabel classifier. For a fair comparison, we use
the same architecture as CAWA for DNN+A, except the
components specific to CAWA (attention loss and average
pooling layer).

• Deep Neural Network without Attention (DNN-A): Same
as DNN+A, except the attention, i.e., each class gives
equal emphasis on all the sentences.

• Multi-Label k-Nearest Neighbor (ML-KNN) (Zhang and
Zhou 2007): ML-KNN is a popular method for multilabel

2https://c3.nasa.gov/dashlink/resources/138/
3http://www.patentsview.org/download/

classification. It uses the k nearest neighbors and Bayesian
inference to assign classes to the text example.

• Binary Relevance - Multinomial Naive Bayes (BR-MNB):
Binary relevance amounts to independently training a bi-
nary classifier for each class. We use Multinomial Naive
Bayes as the per class binary classifier, which is a popular
classical approach for text classification.

Performance Assessment Metrics
Credit attribution: For evaluation on the credit attribu-
tion task, we look into two different metrics. The first is per-
point prediction accuracy (PPPA) and the second is Seg-
ment OVerlap score (SOV) (Rost, Sander, and Schneider
1994). PPPA corresponds to the fraction of sentences that
are predicted correctly. As a single-point measure, PPPA
does not take into account the correlation between the neigh-
boring sentences. On the other hand, SOV measures how
well the observed and the predicted segments align with
each other. It takes several factors into consideration includ-
ing the number of segments in a document, the averaged
segment length, and the distribution of the length values. As
a result, it allows some variations at the boundaries of the
segments by assigning some allowance and can handle ex-
treme cases (e.g., penalizing wrong predictions) reasonably
by providing a sliding scale of segment overlap.

Multilabel classification: To evaluate CAWA on the mul-
tilabel classification task, we looked into three metrics: F1,
AUCμ and AUCM . For a given document, F1 score is the
harmonic mean of the precision and recall based on the pre-
dicted classes and the observed classes. We report the mean
of F1 score over all the test documents. Area Under the
Receiver Operating Characteristic Curve (AUC) (Bradley
1997) gives the probability that a randomly chosen posi-
tive example ranks above a randomly chosen negative ex-
ample. We report AUC both under the micro (AUCμ) and
macro (AUCM ) settings. AUCM computes the metric inde-
pendently for each class and then takes the average (hence
treating all classes equally), whereas AUCμ aggregates the
contributions of all classes to compute the metric.

Parameter selection
We chose the values of α and β individually for all the
datasets, using grid search in the range {0.0, 0.1, . . . , 1.0},
based on the best validation SOV score. For CAWA,
DNN+A, and DNN-A, the number of nodes in the each of
the hidden layer, all representations’ length, as well as the
batch size for training the CAWA was set to 256. For reg-
ularization, we used a dropout (Srivastava et al. 2014) of
0.5 between all layers, except the output layer. For opti-
mization, we used the ADAM (Kingma and Ba 2014) op-
timizer. We trained all the models for 100 epochs, with
the learning-rate set to 0.001. The keys and values em-
beddings are initialized randomly. For average pooling in
CAWA, we fixed the kernel-size to three. For ML-KNN,
we used cosine similarity measure to find the nearest neigh-
bors which is a commonly used similarity measure for
text documents. We chose the number of neighbors (k) for
ML-KNN based on the best SOV score of the validation
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Table 1: Performance comparison results.

Dataset Model* SOV PPPA F1 AUCμ AUCM

Movies CAWA 0.50 0.38 0.65 0.81 0.78
SEG-REF 0.49 0.36 0.63 0.81 0.80
MLTM 0.50 0.40 0.65 0.82 0.80
DNN+A 0.33 0.27 0.62 0.84 0.82
DNN-A 0.33 0.27 0.61 0.85 0.83
ML-KNN 0.38 0.30 0.63 0.83 0.81
BR-MNB 0.39 0.31 0.53 0.82 0.84

Ohsumed CAWA 0.65 0.55 0.64 0.93 0.89
SEG-REF 0.63 0.47 0.65 0.94 0.92
MLTM 0.56 0.47 0.60 0.93 0.91
DNN+A 0.44 0.37 0.67 0.94 0.92
DNN-A 0.33 0.31 0.58 0.94 0.92
ML-KNN 0.48 0.38 0.59 0.90 0.87
BR-MNB 0.29 0.30 0.31 0.82 0.71

TMC2007 CAWA 0.56 0.47 0.68 0.95 0.91
SEG-REF 0.59 0.44 0.68 0.95 0.90
MLTM 0.49 0.43 0.64 0.96 0.92
DNN+A 0.43 0.37 0.68 0.96 0.92
DNN-A 0.35 0.34 0.59 0.96 0.92
ML-KNN 0.45 0.35 0.71 0.95 0.89
BR-MNB 0.30 0.33 0.62 0.89 0.72

Patents CAWA 0.58 0.50 0.61 0.88 0.86
SEG-REF 0.56 0.45 0.61 0.86 0.85
MLTM 0.55 0.48 0.59 0.85 0.84
DNN+A 0.53 0.43 0.64 0.89 0.87
DNN-A 0.51 0.42 0.63 0.89 0.88
ML-KNN 0.45 0.37 0.51 0.82 0.80
BR-MNB 0.50 0.43 0.50 0.87 0.86

Delicious CAWA 0.50 0.39 0.52 0.85 0.84
SEG-REF 0.48 0.36 0.49 0.85 0.85
MLTM 0.49 0.37 0.50 0.84 0.83
DNN+A 0.22 0.18 0.38 0.87 0.86
DNN-A 0.21 0.17 0.36 0.88 0.87
ML-KNN 0.24 0.19 0.35 0.82 0.80
BR-MNB 0.25 0.19 0.05 0.76 0.73

* The models CAWA, SEG-REFINE (abbreviated SEG-
REF above) and MLTM have been specifically designed
to solve the credit attribution problem, while the models
DNN+A, DNN-A, ML-KNN and BR-MNB are multilabel
classification approaches.

set. For ML-KNN and BR-MNB, we used the implemen-
tation as provided by scikit-multilearn4. For MLTM and
SEG-REFINE, we find the hyperparameters based on the
best validation SOV score. Further details are available at
https://github.com/gurdaspuriya/cawa.

Results and Discussion
Credit attribution
The metrics SOV and PPPA in Table 1 show the perfor-
mance for various methods on the credit attribution task.
The credit attribution specific approaches (CAWA, SEG-
REFINE, and MLTM) perform considerably better than
the other multilabel approaches (DNN+A, DNN-A, ML-
KNN, and BR-MNB). CAWA performs better than the SEG-
REFINE and MLTM on the PPPA metric for the Ohsumed,
TMC2007, Patents and Delicious datasets. The average per-
formance gain for the CAWA on the PPPA is 6.2% compared
to MLTM and 9.8% compared to SEG-REFINE. Addition-

4http://scikit.ml/

Table 2: Sentence classification performance on similar
classes.

Dataset Class Model F1
Ohsumed Nutritional/ CAWA 0.68

metabolic SEG-REFINE 0.64
Endocrine CAWA 0.39
disease SEG-REFINE 0.26

Patents Electricity CAWA 0.53
SEG-REFINE 0.48

Physics CAWA 0.41
SEG-REFINE 0.33

Delicious Health CAWA 0.50
SEG-REFINE 0.47

Recipes CAWA 0.62
SEG-REFINE 0.58

ally, CAWA also performs at par, if not better, than the SEG-
REFINE and MLTM on the SOV metric. This shows that
CAWA is able to find contiguous segments, without com-
promising on the sentence-level accuracy.

To validate our hypotheses that CAWA can accurately
model the semantically similar classes as compared to the
SEG-REFINE, we looked into the performance of both
CAWA and SEG-REFINE on the two most similar classes
for each of the Ohsumed, Patents and Delicious datasets. To
measure the similarity between the two classes, we calcu-
lated the Jaccard similarity (Jaccard 1901) between these
classes, based on the number of documents in which they
occur. For each of these selected classes, we calculated the
F1 score based on the predicted and actual classes of the sen-
tences in the segmentation dataset. Table 2 shows the results
for this analysis. For the Ohsumed dataset, the two selected
classes are Nutritional/Metabolic disease and Endocrine dis-
ease, which are very similar. Likewise, the selected classes
for the Patents and Delicious dataset are also similar. We
see that, for all the selected classes, CAWA performs better
than SEG-REFINE, illustrating the effectiveness of CAWA
on modeling semantically similar classes. We further inves-
tigate the effect of various parameters of CAWA on the credit
attribution task later in the Ablation study section.

In addition, DNN+A also performs considerably better
than the DNN-A on both SOV and PPPA metrics for all the
datasets. This shows the effectiveness of the proposed atten-
tion architecture on modeling the multilabel documents.

Multilabel classification
The metrics F1, AUCμ and AUCM in Table 1 show the
performance of different methods on the classification task.
Similar to the credit attribution task, CAWA, in general,
performs better than the competing credit attribution ap-
proaches (SEG-REFINE and MLTM) on the F1 metric, with
an average performance gain of 4.1% over MLTM and 1.6%
over SEG-REFINE. This shows that the classes predicted
for the sentences by CAWA correlate better with the doc-
ument classes as compared to the classes predicted by the
competing credit attribution approaches. This can be at-
tributed to the way we calculate the sentence classes (Equa-
tion (1)), which ensures the consensus between the pre-

8477



Figure 6: Change in the SOV with β as it is increased from 0 to 1 for the two cases (i) average-pooling layer is used, and (ii)
average-pooling layer is not used. The plots correspond the values of α corresponding to the best validation performance.

dicted sentence-level and document-level classes. Addition-
ally, CAWA performs at par with the competing credit attri-
bution approaches on the AUCμ and AUCM metrics, further
illustrating the effectiveness of CAWA.

Compared to the approaches specific to the multilabel
classification task, either CAWA or DNN+A achieve the
best performance on the F1 metric on all but the TMC2007
dataset, where ML-KNN achieves the best performance.
This further verifies the effectiveness of the proposed atten-
tion architecture on correctly modeling the multilabel docu-
ments. On the AUC metrics, we see that DNN+A outper-
forms CAWA. This is the result of attention loss, which
while helping the network to perform credit attribution,
damages its ability to perform global document classifica-
tion. As discussed earlier, the vanilla attention mechanism
(as used in the DNN+A) can assign high attention-weights
to the sentences that provide a negative-signal for a class. At-
tention loss constrains that the attention is only focused on
the classes that are actually present in the document. Thus,
while DNN+A also leverages the negative signals for the
classes to make its predictions, CAWA, by design, ignores
these negative signals, which adversely affects its multi-
label classification performance. We further investigate the
effect of attention loss on the multilabel classification task
later in the Ablation study section.

Ablation study
Effect of average pooling and β: Figure 6 shows the
change in SOV metric with change in β for all the datasets.
For each dataset, we plot the SOV metric as β is increased
from 0.0 to 1.0 for the two cases (i) average-pooling layer
is used, and (ii) average-pooling layer is not used. For both
the cases, when β = 0, each sentence gets the same class,
which is the class with the maximum prediction probability
for the complete document. As β increases, the effect of the
attention-weights starts pitching in, leading to each sentence
getting its own class, thus a sharp jump in the performance
on the SOV metric. However, as the β increases, the con-
tribution of attention weights outpowers the overall docu-
ment class probabilities, and the predicted sentence-classes
become more prone to noise in the attention weights, thus
leading to performance degradation for large β.

Comparing the performance curves of the case when the
average-pooling layer is used to the one when it is not used,
the average pooling leads to better performance for all values

Figure 7: Sub-figure (a) shows the change in SOV with
change in α. Sub-figure (b) shows the β values for which
the maximum SOV is obtained for each α.

of β. Thus, average pooling effectively constrains the nearby
sentences to have similar attention weights, leading to better
performance on the SOV metric.

Effect of α: Figure 7 shows the change in performance
on the SOV metric with change in α for all the datasets.
Figure 7(a) reports the maximum value of SOV for each α
over all the β values. Figure 7(b) reports the correspond-
ing value of β for each α that gives the maximum perfor-
mance on the SOV metric. For all the cases, as the α in-
creases from 0.0 to 0.1, SOV shows a sharp increase, which
can be attributed to the effect of classification loss (LC(D))
pitching in. Additionally, we see that as the α increases, the
corresponding value of β giving the maximum performance
also increases in general. As the α increases, the contribu-
tion of attention loss decreases, thus requiring more contri-
bution from the attention weights to accurately predict the
sentence classes. This explains the increase in the values
of β values, as the value of α increases. The exceptionally
high value of β when α = 0 can be explained as follows:
α = 0 corresponds to the case when we are only minimizing
the attention loss (LS(D)), and ignoring the loss for predict-
ing the document’s classes (LC(D)). The multilabel classi-
fier does not get trained at all in this case, leading to y(d, c)
getting random values. Therefore, β takes large values to ig-
nore the contribution of y(d, c) (which is random) towards
the sentence-level labels, so as to make correct predictions.

Figures 8(a) and 8(b) show the change in performance on
the AUCmu and AUCM metrics with change in α, respec-
tively. For both the metrics, the performance increases with
an increase in α, i.e.., the performance on the AUC metrics
is negatively impacted by the attention loss. As explained
earlier, attention loss ignores the sentences that provide the
negative signals for the classes to make its predictions, thus,
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Figure 8: Sub-figures (a) and (b) shows the change in AUCμ

and AUCM , with change in α, respectively.

adversely affects the multi-label classification performance.
The average pooling, α and β have the same effect on the

PPPA metric too.

Conclusion
In this paper, we proposed Credit Attribution With Atten-
tion (CAWA), an end-to-end attention-based network to per-
form credit attribution on documents. CAWA addresses the
limitations of the prior approaches by (i) modeling the se-
mantically similar classes by modeling each sentence as a
distribution over the classes, instead of mapping to a sin-
gle class; and (ii) leveraging a simple average pooling layer
to constrain the neighboring sentences to have similar class
distribution. A loss function is proposed to constrain that
the attention is only focused on the classes present in the
document. The experiments demonstrate the superior per-
formance of CAWA over the competing approaches. Our
work makes a step towards leveraging distant-supervision
for credit attribution and envision that our work will serve
as a motivation for other applications that rely on the labeled
training data, which is expensive and time-consuming.

Acknowledgment
This work was supported in part by NSF (1447788,
1704074, 1757916, 1834251), Army Research Office
(W911NF1810344), Intel Corp, and the Digital Technology
Center at the University of Minnesota. Access to research
and computing facilities was provided by the Digital Tech-
nology Center and the Minnesota Supercomputing Institute.

References
Angelidis, S., and Lapata, M. 2018. Multiple instance learning
networks for fine-grained sentiment analysis. TACL.
Badjatiya, P.; Kurisinkel, L. J.; Gupta, M.; and Varma, V. 2018.
Attention-based neural text segmentation. In ECIR.
Bamman, D.; O’Connor, B.; and Smith, N. A. 2014. Learning
latent personas of film characters. In ACL, 352.
Beeferman, D.; Berger, A.; and Lafferty, J. 1999. Statistical models
for text segmentation. Machine learning 34(1-3).
Bradley, A. P. 1997. The use of the area under the roc curve in
the evaluation of machine learning algorithms. Pattern recognition
30(7):1145–1159.
Choi, F. Y. 2000. Advances in domain independent linear text
segmentation. In NAACL, 26–33.
Glavaš, G.; Nanni, F.; and Ponzetto, S. P. 2016. Unsupervised text
segmentation using semantic relatedness graphs. In Association for
Computational Linguistics.

Grosz, B., and Hirschberg, J. 1992. Some intonational characteris-
tics of discourse structure. In Second international conference on
spoken language processing.
Hajime, M.; Takeo, H.; and Manabu, O. 1998. Text segmentation
with multiple surface linguistic cues. In ACL.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learn-
ing for image recognition. In IEEE CVPR.
Hearst, M. A. 1997. Texttiling: Segmenting text into multi-
paragraph subtopic passages. Computational linguistics.
Hersh, W.; Buckley, C.; Leone, T.; and Hickam, D. 1994.
Ohsumed: an interactive retrieval evaluation and new large test col-
lection for research. In SIGIR’94.
Jaccard, P. 1901. Étude comparative de la distribution florale dans
une portion des alpes et des jura. Bull Soc Vaudoise Sci Nat 37:547–
579.
Kingma, D. P., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.
Koshorek, O.; Cohen, A.; Mor, N.; Rotman, M.; and Berant, J.
2018. Text segmentation as a supervised learning task. In NAACL,
469–473.
Lei, T.; Barzilay, R.; and Jaakkola, T. 2016. Rationalizing neural
predictions. In EMNLP, 107–117.
Manchanda, S., and Karypis, G. 2018. Text segmentation on multi-
label documents: A distant-supervised approach. In ICDM, 1170–
1175. IEEE.
Nam, J.; Kim, J.; Mencı́a, E. L.; Gurevych, I.; and Fürnkranz, J.
2014. Large-scale multi-label text classification–revisiting neural
networks. In ECML PKDD.
Ramage, D.; Hall, D.; Nallapati, R.; and Manning, C. D. 2009. La-
beled lda: A supervised topic model for credit attribution in multi-
labeled corpora. In EMNLP, 248–256.
Ramage, D.; Manning, C. D.; and Dumais, S. 2011. Partially la-
beled topic models for interpretable text mining. In Proceedings of
the 17th SIGKDD. ACM.
Rost, B.; Sander, C.; and Schneider, R. 1994. Redefining the goals
of protein secondary structure prediction. Journal of molecular
biology 235(1):13–26.
Soleimani, H., and Miller, D. J. 2017. Semisupervised, multilabel,
multi-instance learning for structured data. Neural computation
29(4):1053–1102.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: A simple way to prevent neural
networks from overfitting. JMLR 15(1):1929–1958.
Tür, G.; Hakkani-Tür, D.; Stolcke, A.; and Shriberg, E. 2001. Inte-
grating prosodic and lexical cues for automatic topic segmentation.
Computational linguistics 27(1):31–57.
Zhang, M.-L., and Zhou, Z.-H. 2007. Ml-knn: A lazy learning
approach to multi-label learning. Pattern recognition.
Zubiaga, A.; Garcı́a-Plaza, A. P.; Fresno, V.; and Martı́nez, R.
2009. Content-based clustering for tag cloud visualization. In
ASONAM, 316–319. IEEE.

8479


