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Abstract

Although modern named entity recognition (NER) systems
show impressive performance on standard datasets, they per-
form poorly when presented with noisy data. In particular,
capitalization is a strong signal for entities in many lan-
guages, and even state of the art models overfit to this feature,
with drastically lower performance on uncapitalized text. In
this work, we address the problem of robustness of NER sys-
tems in data with noisy or uncertain casing, using a pretrain-
ing objective that predicts casing in text, or a truecaser, lever-
aging unlabeled data. The pretrained truecaser is combined
with a standard BiLSTM-CRF model for NER by appending
output distributions to character embeddings. In experiments
over several datasets of varying domain and casing quality,
we show that our new model improves performance in un-
cased text, even adding value to uncased BERT embeddings.
Our method achieves a new state of the art on the WNUT17
shared task dataset.

Introduction

Modern named entity recognition (NER) models perform re-
markably well on standard English datasets, with F1 scores
over 90% (Lample et al. 2016). But performance on these
standard datasets drops by over 40 points F1 when cas-
ing information is missing, showing that these models rely
strongly on the convention of marking proper nouns with
capitals, rather than on contextual clues. Since text in the
wild is not guaranteed to have conventional casing, it is im-
portant to build models that are robust to test data case.

One possible solution to keep NER systems from over-
fitting to capitalization is to omit casing information. This
would potentially lead to better performance on uncased
text, but fails to take advantage of an important signal.

We build on prior work in truecasing (Susanto, Chieu, and
Lu 2016) by proposing to use a truecaser to predict miss-
ing case labels for words or characters (as shown in Figure
1). Intuitively, since named entities are marked with capi-
tals, a trained truecaser should improve an NER system. We
design an architecture in which the truecaser output is fed
into a standard BiLSTM-CRF model for NER. We experi-
ment with pretraining the truecaser, and fine-tuning on the
NER train set. When designing the truecaser, we suggest a
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eliud kipchoge has won in london again.

Eliud Kipchoge has won in London again.

Truecaser

Figure 1: This figure shows the same sentence in two cas-
ing scenarios: on the top, uncased, on the bottom, truecased.
Notice that the words marked as uppercase are also named
entities. This paper explores how truecasing can be used in
named entity recognition.

preprocessing regimen that biases the data towards named
entity mentions.

In our experiments, we show that truecasing remains a
difficult task, and further that although a perfect truecaser
gives high NER scores, the quality of the truecaser does not
necessarily correlate with NER performance. Even so, in-
corporating predicted casing information from the right true-
caser improves performance in both cased and uncased data,
even when used in conjunction with uncased BERT (Devlin
et al. 2019). We evaluate on three NER datasets (CoNLL,
Ontonotes, WNUT17) in both cased and uncased scenarios,
and achieve a new state of the art on WNUT17.

Truecaser Model

A truecaser model takes a sentence as input and predicts case
values (upper vs. lower) for all characters in the sentence.
We model truecasing as a character-level binary classifica-
tion task, similar to Susanto, Chieu, and Lu (2016). The la-
bels, L for lower and U for upper, are predicted by a feedfor-
ward network using the hidden representations of a bidirec-
tional LSTM (BiLSTM) that operates over the characters in
a sentence. For example, in Figure 2, the truecaser predicts
“name was Alan” for the input “name was alan”. Formally,
the output of this model is a categorical distribution dc over
two values (true/false), for each character c,

dc = softmax(Whc)
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Figure 2: Diagram of our truecasing model. The input is
characters, and the output hidden states from the BiLSTM
are used to predict binary labels, ‘U’ for upper case, and
‘L’ for lower case. A sentence fragment is shown, but the
B-LSTM takes entire sentences as input.
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Figure 3: Diagram of our NER model. The left side shows
a standard BiLSTM CRF model with word vectors (red)
concatenated with character vectors (purple). The right side
shows how the character vectors are created. The gray
shaded area is our truecaser, with parameters frozen. This
produces 2-dimensional case predictions (in blue) for each
character. These are concatenated with learned character
embeddings (in green) before going to a CNN for encoding.

where hc ∈ R
H is the hidden representation for the c-th

character from the BiLSTM, and W ∈ R
2×H represents a

learnable feed-forward network. In addition to the parame-
ters of the LSTM and the feedforward network, the model
also learns character embeddings. Generating training data
for this task is trivial and does not need any manual label-
ing; we lower-case text to generate input instances for the
truecaser, and use the original case values as the gold labels
to be predicted by the model. The model also uses whites-
pace characters as input for which the gold label is always
lowercase (L) (not shown in Figure 2).

Proposed NER Model

In NER literature, the standard model is the BiLSTM-CRF.
In this model, token embeddings are given as input to a
BiLSTM, and the output hidden representations are in turn
passed as features to a Conditional Random Field (CRF).
The BiLSTM input embeddings are typically a concatena-

tion of pretrained word embeddings (such as GloVe; (Pen-
nington, Socher, and Manning 2014)) and encoded charac-
ter embeddings. Given the popularity of this model, we omit
a detailed description, and refer interested readers to prior
work (Chiu and Nichols 2016; Lample et al. 2016).

Our proposed model augments the standard BiLSTM
at the character level, appending truecaser predictions (dc,
from above) to each character embedding. Formally, let the
input embedding for token t be xt.

xt =

[
wx

f(c1, c2, ..., c|xt|)

]
(1)

Here, word embeddings wx are concatenated with an em-
bedding generated by f(.), which is some encoder function
over character embeddings c1:|xt| representing characters in
xt. This is usually either a BiLSTM, or, in our case, a convo-
lutional neural network (CNN). Even if the word vectors are
uncased, casing information may be encoded on the charac-
ter level through this mechanism.

For any xt, our model extends this framework to include
predictions from a truecaser for all characters, as a concate-
nation of character embedding ci with the corresponding
truecaser prediction di.

vi =

[
ci
di

]
(2)

Now, the input vector to the BiLSTM is:

xt =

[
wx

f(v1, v2, ..., v|xt|)

]
(3)

In this way, each character is now represented by a vec-
tor which encodes the value of the character (such as ‘a’, or
‘p’), and also a distribution over its predicted casing. This
separation of character and casing value has also been used
in Chiu and Nichols (2016) and Collobert et al. (2011). The
distinction of our model is that we explicitly use the pre-
dicted casing value (and not the true casing in the data). The
reason for using predicted casing is to make the NER model
robust to noisy casing during test time. Also, an NER sys-
tem using gold-casing while training might overfit to quirks
of the training data, whereas using predicted casing will help
the model to learn from its own mistakes and to better pre-
dict the correct NER tag.

A diagram of our model is shown in Figure 3. We refer
to the two-dimensional addition to each character vector as
“case vectors.” Notice that there are two separate character
vectors present in the model: those that are learned by the
truecaser and those that are learned in the NER model (char
vectors). We chose to keep these separate because it’s not
clear that the truecaser character vectors encode what the
NER model needs, and they need to stay fixed in order to
work properly in the truecaser model.

In our experiments, we found that it is best to detach the
truecaser predictions from the overall computation graph.
This means that the gradients propagated back from the
NER tag loss do not flow into the truecaser. Instead, we al-
low parameters in the truecaser to be modified through two
avenues: pretrained initialization, and truecaser fine-tuning.

8481



Dataset Train Dev Test

Wikipedia 2.9M 294K 32K
Common Crawl 24M 247K 494K

Table 1: Number of tokens in the train/dev/test splits for
Wikipedia (Wiki) and Common Crawl (CC).

Example sentences

“ the investigation is still ongoing , ” McMahon said .
he ’s a Texas genius .
Rothbart visits at 6 p.m. next thursday for a talk .
has Smith made a decision ?
in the Seventies , you would have written Britain off .

Table 2: Example sentences from the Common Crawl true-
casing training data. Notice that the first word is capitalized
only for names, “thursday” is lowercased, and “Seventies”
is a non-named entity which was not caught by the lower-
casing rules.

These avenues are orthogonal and can operate independently
of each other or together. In one of our experiments, we try
all combinations.

Experimental Setup

Having described our models, now we move to the experi-
mental setup.

Truecaser data

Supervision for a truecaser comes from raw text, with
the only requirement being that the use of capitals fol-
low certain desirable standards. We train on two differ-
ent datasets: the Wikipedia dataset (Wiki) introduced in
Coster and Kauchak (2011) and used in Susanto, Chieu, and
Lu (2016), and a specially preprocessed large dataset from
English Common Crawl (CC).1 Statistics for each dataset
are found in Table 1.

We used the Wiki dataset as is, but modified the CC
dataset in a few important ways. Since our ultimate goal is to
train NER models, we applied rules with the aim of leaving
only named entities capitalized. We did this in two ways: 1)
convert the first word of each sentence to its most common
form, and 2) lowercase certain words which are commonly
capitalized, but rarely named entities.

To accomplish the first, we used scripts from the moses
package (Koehn et al. 2007) to collect casing statistics for
each word in a large corpus, then replace the first word of
each sentence with the most common form.2 For example,
this sentence begins with ‘For’, which is more likely to take
the form ‘for’ in a large corpus.

To accomplish the second preprocessing step, we briefly
examined the training data, and applied rules that lower-

1commoncrawl.org
2In a naming clash, the moses script is called a ‘truecaser’, even

though it only touches sentence-initial words.

Dataset Train Dev Test

CoNLL2003 203,621 51,362 46,435
23,499 5,942 5,648

Ontonotes 1,088,503 147,724 152,728
81,829 11,066 11,257

WNUT17 62,730 15,733 23,394
1,975 836 1,079

Table 3: Data sizes of the NER datasets. In each group, the
top row shows number of tokens, the bottom row shows
number of entity phrases.

cased a small number of words. For example, this list in-
cludes titles (Mr., Senator, Archbishop), month/day names
(January, Thursday, although not April, or May, as these
may well be person names), and other conventionally capi-
talized words which are not entities (GMT, PM, AM). These
rules covered many commonly capitalized non-entities, but
are not comprehensive.

Further, in order to avoid keeping titles or other upper
cased sentences, we removed all sentences in which the ra-
tio of capitalized words to total words exceeded 20%. This
removed such misleading sentences as “Man Bites Dog In
Pajamas.” Table 2 shows some example sentences from the
CC training data.

NER Data

We experiment on 3 English datasets: CoNLL 2003 (Sang
and Meulder 2003), Ontonotes v5 (Hovy et al. 2006),
WNUT17 (Derczynski et al. 2017). Data statistics are shown
in Table 3.

CoNLL 2003 English, a widely used dataset constructed
from newswire, uses 4 tags: Person, Organization, Location,
and Miscellaneous.

Ontonotes is the largest of the three datasets, and is com-
posed of 6 diverse sub-genres, with a named entity annota-
tion layer with 17 tags. We use the v5 split from Pradhan et
al. (2012).

WNUT17 is the dataset from the shared task at the Work-
shop for Noisy User-generated Text 2017 (WNUT17), with
6 named entity tags. Since the focus of the shared task was
on emerging entities, the dev and test sets are considerably
different from the train set, and have a distinctly low entity
overlap with train.

Training Details

When setting up experiments, we always assume that we
have access to cased training data, and the uncertainty arises
in the casing of the test data. We suggest that there are only
two casing scenarios for test data: 1) test data is cased cor-
rectly with high probability, (this may be the situation if the
text comes from a reputable news source, for example) and
2) test data in which there is some doubt about the quality of
the casing. In such a case, we argue that the text should be
all lowercased as a preprocessing step.
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These two scenarios will guide our experiments. In the
first scenario, high-likelihood cased test data, we will train
models on cased text, and evaluate on cased text, as well as
uncased text. This simulates the situation in which lower-
cased text is given to the model. Since there is a casing mis-
match between train and test, we would expect these num-
bers to be low. In the second scenario, we target known low-
ercased text and all training data is lowercased.

In all experiments, we used a truecaser trained on the
Common Crawl data, with character embedding of size 50,
hidden dimension size 100, and dropout of 0.25. One trick
during training was to leave 20% of the sentences in their
original case, effectively teaching the truecaser to retain cas-
ing if it exists, but add casing if it doesn’t. We refer to this
as pass-through truecasing.

For the NER model, we used character embeddings
of size 16, hidden dimension size 256, and GloVe 100-
dimensional uncased embeddings (Pennington, Socher, and
Manning 2014).3 Even though the word embeddings are un-
cased, the character embeddings retain case.

For the WNUT17 experiments, we used 100-dimensional
GloVe twitter embeddings, and 300-dimensional embed-
dings from FastText,4 trained on English Common Crawl.

For BERT, we used the model called
bert-base-uncased as provided by HuggingFace.5
All experiments used AllenNLP (Gardner et al. 2017).

Experiments and Results

This section describes our experiments and results, first for
the truecaser, then for the NER model.

Truecaser

We train our truecaser on each of the two datasets (Wiki and
CC), and evaluate on the corresponding test sets, as well as
on the test sets of NER datasets. Further, we train the true-
caser on NER training sets (without using the NER labels),
and evaluate respectively. Performance is shown in Table 4,
using character-level F1, with U as the positive label.

The highest scores for each test set are obtained with
models trained on the corresponding training set. Given the
difference in training data preprocessing, the performance
of Wiki and CC are not comparable. All the same, a pat-
tern emerges between the two truecasers: the highest per-
formance is on Ontonotes, then CoNLL, then WNUT17. In
fact, this pattern holds even in the bottom section, where the
NER training set was used for training.

Given that the pattern holds not only across truecasers
from separate data, but also when training on in-domain
training sets, this suggests that the explanation lies not in the
power of the truecaser used to predict, but in the consistency
(or inconsistency) of the data.

Since capitalization is just a convention, truecasing is
not well-defined. For example, if in this sentence, THESE
WORDS were capitalized, it would not be so much “wrong”
as unconventional. As such, the rankings of scores should be

3nlp.stanford.edu/projects/glove/
4fasttext.cc
5github.com/huggingface/pytorch-pretrained-BERT/

Train Test F1

Wiki Wiki 91.8
CC CC 81.9

Wiki Ontonotes 79.9
Wiki CoNLL 64.3
Wiki WNUT17 47.0

CC Ontonotes 61.7
CC CoNLL 57.3
CC WNUT17 30.6

Ontonotes Ontonotes 86.3
CoNLL CoNLL 81.9
WNUT17 WNUT17 52.3

Table 4: Truecasing performance on the character level
(precision, recall, F-measure). In each of the three bottom
sections, there is a descending pattern of F1 scores from
Ontonotes, CoNLL, WNUT17. This suggests decreasing ob-
servance of capitalization conventions.

understood as a measure of how much a particular dataset
follows convention. These observations ring true with in-
spection of the data. Ontonotes, with some exceptions, fol-
lows relatively standard capitalization conventions. CoNLL
is slightly less standard, with a combination of headlines
and bylines, such as “RUGBY UNION - CUTTITTA BACK
FOR ITALY”, and tables summarizing sporting events. In a
few memorable cases, capitalization is repurposed, as in:

League games on Thursday ( home team in CAPS ) :
Hartford 4 BOSTON 2

No truecaser could be reasonably expected to correctly
mark capitals here.

Finally, WNUT17, the twitter dataset, has the lowest
scores, suggesting the lowest attention to convention. Intu-
itively, this makes sense, and examples from the training set
confirm it:

• HAPPY B . DAY TORA *OOOOOOOOO*
• ThAnK gOd ItS fRiDaY !!
• im thinking jalepeno poppers tonight :] ]
• Don Mattingly will replace Joe Torre as LA Dodgers man-

ager after this season

Ultimately, it’s important to understand that truecasers are
far from perfect. It may seem like a simple task, but the
many edge cases and inconsistencies can lead to poor per-
formance.

Truecaser Initialization for NER

We would like to know which truecaser training data per-
forms best for NER. We would also like to understand if
there is a correlation between truecaser and NER perfor-
mance.

To measure this, we train a standard BiLSTM-CRF with
GloVe embeddings on uncased text, using several different
truecaser pretraining initializations, shown in Table 5. As
baseline and ceiling respectively, we use No initialization
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Model Init NER F1 Char F1

BiLSTM-CRF
+GloVe

None 87.4 0.0
Gold 90.4 100.0

Wiki 87.4 63.7
CC 88.3 58.6
CoNLL 85.3 81.9

Table 5: CoNLL2003 testb performance of BiLSTM-
CRF+GloVe uncased with different pretraining initializa-
tions, no auxiliary loss. NER F1 does not correlate with true-
caser character-level F1.

(None) and perfect predictions (Gold). Further, we compare
using a truecaser trained on Wiki, trained on CC, and trained
on CoNLL training data directly.

With no initialization, the model is poor, and with per-
fect initialization (gold predictions), the model has perfor-
mance comparable to models trained on cased text. How-
ever, the story with learned initializations shows that higher
Char F1 does not lead to higher NER F1.

This may seem counter-intuitive, but consider the follow-
ing. There exists a truecaser that capitalizes the first word
of each sentence, and every occurrence of ‘Mrs.’ and ‘I’.
Such a truecaser would have reasonably high Char F1, but
poor NER performance. Conversely, there also exists a true-
caser that capitalizes every named entity and nothing else, it
would clearly be useful for NER, but would perform poorly
on truecaser metrics.

In this light, if you can’t build a perfect truecaser, then
targeting entities is the next best option. This validates our
decision to preprocess the CC truecaser training data to more
closely track with named entities. With this intuition, and
the results from this experiment, we chose to use CC in all
further experiments.

The CoNLL-trained truecaser achieves high Char F1,
but hurts the NER performance. We suspect that the true-
caser learns to capitalize certain easy words (first word of
sentence, day names) and to memorize names in the training
data, and the model learns to rely on this signal, as in regular
cased data. But at test time, the remaining 19% F1 consists
of names that the truecaser fails to correctly capitalize, thus
misleading the NER model.

Main Results

Using the CC truecaser, we experiment in several settings on
the three NER datasets. All results are shown in Table 6.

Cased Training Data In the first setting (top section of
the table), we train on cased NER data, resulting in standard
performance on the cased data, but a severe drop in perfor-
mance on the uncased data (from 90.2 F1 to 24.3 F1). This
is the performance one might see when using a typical NER
model in the wild. Adding our truecaser representations, we
maintain scores on cased test data, and significantly improve
performance on uncased data; by an average of 12.5 F1.

The middle section of Table 6 shows results from a data
augmentation approach proposed in Mayhew, Tsygankova,

and Roth (2019). In this approach, we simply concatenate
cased training data with a lowercased copy of itself. This
leads to strong performance on the average of cased and
uncased outputs, although the outcome in the WNUT17 is
somewhat degraded.

Uncased Training Data In the second experiment (lower
half of Table 6), we address the scenario in which the casing
of the test data cannot be trusted, leading us to lower-case
all test data as a pre-processing step.

In theory, appending gold case labels to the character vec-
tors (as in Chiu and Nichols (2016), for example) should
result in performance comparable to training on cased data.
This is the case for CoNLL and Ontonotes, as shown in the
GloVe + Gold case vectors row.

We experiment with two different embeddings: using
GloVe uncased embeddings as before, or using BERT un-
cased embeddings. In each setting, we train models with and
without the truecaser representations.

The first experiment with GloVe is equivalent to training
on lower-cased text only, which is about 3 points lower than
the cased version. This drop is much lower than the perfor-
mance gap seen when training on cased data, but tested on
uncased data. When we use our truecaser representations in
this model, we see a consistent improvement across datasets,
with an average of 1.4 points F1. This goes to show that even
when training on lower-cased data, using the predicted true-
casing labels helps the model perform better on uncased text.

Although the data augmentation approach is effective for
average performance on cased and uncased data, if the target
data is known to be lowercased (or if one decides to lower-
case it because of uncertain casing), then the approach in
this section has the best performance.

We gathered scores for each sub-genre in Ontonotes, dis-
played in Table 7. Performance increases in every subsec-
tion, with the greatest gains in the broadcast conversation
(bc) subsection (1.9) and the smallest in the telephone con-
versation (tc) subsection (0.3).

When using BERT uncased embeddings, even without the
truecaser, the performance is better than a cased model with-
out BERT, which shows that BERT is a strong contextual
token embedder as compared to a BiLSTM with GloVe em-
beddings. Using the truecaser along with BERT, the model
performance still improves (average of 0.3 points F1), show-
ing that the truecaser is able to provide the model with com-
plementary information that BERT does not capture.

Fine-Tuning and Pretraining So far, we have used a pre-
trained truecaser with no fine-tuning. However, we can fine-
tune the truecaser on training data with case labels, when
available.

Table 8 on WNUT17 shows that fine-tuning a pre-
trained truecaser substantially increases truecasing perfor-
mance from 30.6 F1 to 52.3 F1. Though, this increase does
not translate to an increase in NER performance, perhaps be-
cause of the domain mismatch in the pretrained truecaser’s
training data and WNUT17.
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CoNLL Ontonotes WNUT17
Train Case Method C U C U C U δ

Cased

(Lample et al. 2016) 90.9 – – – – –
(Chiu and Nichols 2016) 91.6† – 86.3† – – –
(Clark et al. 2018) 92.6 – 88.8 – – –
(Devlin et al. 2019) 92.8 – – – – –
(Akbik, Blythe, and Vollgraf 2018) – – – – 46.0∗ –
BiLSTM-CRF+GloVe uncased 90.2 24.3 87.3 83.5 41.0 15.7

+truecaser 90.3 84.5 87.0 81.1 43.7 30.2 +12.5

Cased+Uncased Data augmentation (Mayhew et al. 2019) 90.4 87.9 87.2 84.3 38.6 34.8

Uncased

(Aguilar et al. 2018) – – – – – 45.6
GloVe + Gold case vectors – 90.4 – 86.9 – 42.8
BiLSTM-CRF+GloVe uncased – 87.3 – 83.4 – 41.1

+truecaser – 88.3 – 84.4 – 43.2 +1.4
BiLSTM-CRF+BERT uncased – 91.0 – 88.1 – 46.1

+truecaser – 91.2 – 88.1 – 46.9 +0.3

Table 6: F1 scores on cased (C) and uncased (U) test data. Models are trained on cased text in the upper section, and uncased
text in the lower section. +truecaser means we include our pretrained two-dimensional character embeddings without fine-
tuning. †uses additional gazetteer features. ∗our run using their code, training only on train data. The δ columns shows average
performance improvements of adding the truecaser.

When we do not initialize the truecaser with pretrained
parameters, but train the truecaser from scratch in com-
bination with the NER objective, although the truecasing
performance is not the highest, the NER performance im-
proves greatly, achieving state of the art performance on
WNUT17. In this case, during the initial iterations, the NER
model receives random truecaser predictions, encouraging it
to discriminate using the context. As the truecaser improves,
the NER model now receives casing predictions helpful for
learning, leading to improved performance.

Related Work

Our work uses truecasing as a pretraining objective, with the
specific goal of improving NER. In this section, we discuss
prior work in each area.

Truecasing Early work in truecasing (Brown and Co-
den 2001) was motivated by the prevalence of tasks that
produced “case deficient” outputs, such as closed-caption
TV, and automatic speech recognition (ASR) (Kubala et al.
1998). The proposed solution was a mix of heuristics (cap-
italizing single letters followed by a period), learned rules
(frequency tables of commonly capitalized words), and con-
textual clues learned from running an NER system over
well-cased data.

Further innovations include lattice-based decoding with
language models (Lita et al. 2003), and truecasing as se-
quence tagging (Chelba and Acero 2006), with applications
to machine translation (Wang, Knight, and Marcu 2006) and
social media (Nebhi, Bontcheva, and Gorrell 2015). Later,
Susanto, Chieu, and Lu (2016) study the task with character-
based representations and recurrent neural networks.

Test Set F1 F1 +truecaser δ

All (micro) 83.4 84.4 1.0

bc 81.8 83.7 1.9
bn 87.5 88.6 1.1
mz 79.5 81.0 1.5
nw 85.8 86.6 0.8
tc 69.6 69.9 0.3
wb 76.1 76.6 0.5

Table 7: Scores on uncased Ontonotes test set from an un-
cased model, broken down by sub-genre. The leftmost col-
umn is a standard BiLSTM-CRF, the middle column is our
proposed approach, and the rightmost column is the dif-
ference. In all cases, the truecaser outperforms the origi-
nal model, with the greatest improvements in bc (broadcast
news) and mz (magazine).

Pretraining Objectives In recent years, several works
have shown how models trained over large amounts of raw
text can produce powerful contextual representations (De-
vlin et al. 2019; Peters et al. 2018). In most works, the train-
ing objective is language modeling, or predicting a masked
word given context. Our work can be seen as pretraining
with a truecasing objective.

Named Entity Recognition Named Entity Recognition
(NER) is the task of identifying and classifying named en-
tity mentions, such as persons, organizations, and locations.
NER is typically modeled as a sequence tagging problem,
in which each word is given a named entity tag, often us-
ing BIO encoding (Ramshaw and Marcus 1996) to mark
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TC Train NER F1 Char F1

Fixed pretrained 46.9 30.6
Fine-tuned pretrained 46.3 52.3

From scratch 47.7 36.2

Table 8: Results on WNUT17 with BERT uncased, trained
and tested on uncased (U) data, varying the Truecaser (TC)
training paradigm.

phrases.
Early models of NER used linear methods, including clas-

sifiers with Conditional Random Fields (CRF) (Finkel and
Manning 2009), and weighted averaged perceptron (Rati-
nov and Roth 2009). Neural models based on BiLSTM-
CRF have since shown strong performance, and have conse-
quently become ubiquitous (Chiu and Nichols 2016; Lample
et al. 2016).

When using the BiLSTM-CRF model, it is common to
include character embeddings, either encoded with a con-
volutional neural network (CNN) (Chiu and Nichols 2016),
or an LSTM (Lample et al. 2016). In some cases, notably
(Chiu and Nichols 2016) and (Collobert et al. 2011), casing
is included as an explicit feature in the character and word
embeddings. Our work is similar to this, except we predict
the casing.

In recent years, contextual representations such as ELMO
(Peters et al. 2018) and BERT (Devlin et al. 2019) have
proven to be remarkably successful for NER.

While there is little work that targets robustness of gen-
eral NER models, there has been work on NER in noisy do-
mains like twitter (Ritter et al. 2011), and several Workshops
on Noisy User-generated Text (WNUT) (Strauss et al. 2016;
Derczynski et al. 2017). In particular, (Aguilar et al. 2018)
target the WNUT17 task, achieving strong results using a
phonetic representation to model their text (with no capi-
talization, incidentally), and including multitask objectives.
Recent work has suggested data augmentation as a solution
(Mayhew, Tsygankova, and Roth 2019; Bodapati, Yun, and
Al-Onaizan 2019).

Conclusions

We have shown how pretraining with a truecasing objective
can improve the robustness of a named entity recognition
system to in both cased and uncased test scenarios. Our ex-
periments with varied types of truecasing training data give
insights into best practices for preprocessing. Finally, we
have demonstrated that BERT uncased representations are
helpful for lowercased NER, but can also be extended with
our techniques.
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