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Abstract

Existing conversational systems tend to generate generic re-
sponses. Recently, Background Based Conversations (BBCs)
have been introduced to address this issue. Here, the gener-
ated responses are grounded in some background informa-
tion. The proposed methods for BBCs are able to generate
more informative responses, however, they either cannot gen-
erate natural responses or have difficulties in locating the
right background information. In this paper, we propose a
Reference-aware Network (RefNet) to address both issues.
Unlike existing methods that generate responses token by to-
ken, RefNet incorporates a novel reference decoder that pro-
vides an alternative way to learn to directly select a semantic
unit (e.g., a span containing complete semantic information)
from the background. Experimental results show that RefNet
significantly outperforms state-of-the-art methods in terms of
both automatic and human evaluations, indicating that RefNet
can generate more appropriate and human-like responses.

1 Introduction
Dialogue systems have attracted a lot of attention recently
(Huang, Zhu, and Gao 2019). Sequence-to-sequence mod-
els (Sutskever, Vinyals, and Le 2014; Lei et al. 2018) are
an effective framework that is commonly adopted in exist-
ing studies. However, a problem of sequence-to-sequence
based methods is that they tend to generate generic and
non-informative responses which provide deficient informa-
tion (Gao et al. 2019).

Previous research has proposed various methods to allevi-
ate the issue, such as adjusting objective functions (Li et al.
2016; Jiang et al. 2019), incorporating external knowledge
(Ghazvininejad et al. 2018; Parthasarathi and Pineau 2018;
Dinan et al. 2019), etc. Recently, Background Based Con-
versations (BBCs) have been proposed for generating more
informative responses that are grounded in some back-
ground information (Zhou, Prabhumoye, and Black 2018;
Moghe et al. 2018). As shown in Fig. 1, unlike previous
conversational settings (Serban et al. 2016), in a BBC back-
ground material (e.g., a plot or review about a movie) is sup-
plied to promote topic-specific conversations.
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Figure 1: Background Based Conversation (BBC).

Existing methods for BBCs can be grouped into two cat-
egories, generation-based methods (e.g., GTTP (See, Liu,
and Manning 2017)) and extraction-based methods (e.g.,
QANet (Yu et al. 2018)). Generation-based methods gener-
ate the response token by token, so they can generate natural
and fluent responses, generally. However, generation-based
methods suffer from two issues. First, they are relatively in-
effective in leveraging background information. For exam-
ple, for the case in Fig. 1, S2SA does not leverage back-
ground information at all. Second, they have difficulties lo-
cating the right semantic units in the background informa-
tion. Here, a semantic unit is a span from the background
information that expresses complete semantic meaning. For
example, in Fig. 1, the background contains many seman-
tic units, e.g., “mtv movie + tvawards 2004 best cameo” and
“scary movie 4.” GTTP uses the wrong semantic unit “scary
movie 4” to answer the question by “human 2.” Moreover,
because generation-based methods generate the response
one token at a time, they risk breaking a complete seman-
tic unit, e.g., “scary movie 4” is split by a comma in the
response of GTTP in Fig. 1. The reason is that generation-
based methods lack a global perspective, i.e., each decoding
step only focuses on a single (current) token and does not
consider the tokens to be generated in the following steps.
Extraction-based methods extract a span from the back-
ground as their response and are relatively good at locating
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the right semantic unit. But because of their extractive na-
ture, they cannot generate natural conversational responses,
see, e.g., the response of QANet in Fig. 1.

We propose a Reference-aware Network (RefNet) to ad-
dress above issues. RefNet consists of four modules: a back-
ground encoder, a context encoder, a decoding switcher,
and a hybrid decoder. The background encoder and con-
text encoder encode the background and conversational con-
text into representations, respectively. Then, at each decod-
ing step, the decoding switcher decides between reference
decoding and generation decoding. Based on the decision
made by the decoding switcher, the hybrid decoder either se-
lects a semantic unit from the background (reference decod-
ing) or generates a token otherwise (generation decoding).
In the latter case, the decoding switcher further determines
whether the hybrid decoder should predict a token from the
vocabulary or copy one from the background. Besides gen-
erating the response token by token, RefNet also provides
an alternative way to learn to select a semantic unit from the
background directly. Experiments on a BBC dataset show
that RefNet significantly outperforms state-of-the-art meth-
ods in terms of both automatic and, especially, human eval-
uations.

Our contributions are as follows:
• We propose a novel architecture, RefNet, for BBCs

by combing the advantages of extraction-based and
generation-based methods. RefNet can generate more in-
formative and appropriate responses while retaining flu-
ency.

• We devise a decoding switcher and a hybrid decoder to
adaptively coordinate between reference decoding and
generation decoding.

• Experiments show that RefNet outperforms state-of-the-
art models by a large margin in terms of both automatic
and human evaluations.

2 Related work
We survey two types of related work on BBCs: generation-
based and extraction-based methods.

2.1 Generation-based methods

Most effective generation-based models are based on
sequence-to-sequence modeling (Sutskever, Vinyals, and Le
2014) and an attention mechanism (Bahdanau, Cho, and
Bengio 2015). The proposed methods have achieved promis-
ing results on different conversational tasks (Serban et al.
2016). However, response informativeness is still a urgently
need to be addressed challenge; these approaches prefer
generating generic responses such as ”I don’t know” and
”thank you”, which make conversations dull (Gao et al.
2019). Various methods have been proposed to improve re-
sponse informativeness, such as adjusting objective func-
tions (Li et al. 2016; Jiang et al. 2019), incorporating la-
tent topic information (Xing et al. 2017), leveraging out-
side knowledge bases (Liu et al. 2018; Zhou et al. 2018)
and knowledge representation (Ghazvininejad et al. 2018;
Parthasarathi and Pineau 2018; Lian et al. 2019), etc.

Recently, Background Based Conversations (BBCs) have
been proposed for generating more informative responses

by exploring related background information (Zhou, Prab-
humoye, and Black 2018; Dinan et al. 2019). Moghe et
al. (2018) build a dataset for BBC and conduct experiments
with state-of-the-art generation-based methods. They show
that generation-based methods can generate fluent, natural
responses, but have difficulty in locating the right back-
ground information. Therefore, most recent studies try to
address this issue (Li et al. 2019; Qin et al. 2019). Zhang,
Ren, and de Rijke (2019) introduce a pre-selection pro-
cess that uses dynamic bi-directional attention to improve
background information selection. Liu et al. (2019) pro-
pose an augmented knowledge graph based chatting model
via transforming background information into knowledge
graph. However, generation-based models still cannot solve
inherent problems effectively, such as tending to break a
complete semantic unit and generate shorter responses.

2.2 Extraction-based methods

Extraction-based methods have originally been proposed for
Reading Comprehension (RC) tasks (Rajpurkar et al. 2016),
where each question can be answered by a right span in
a given passage. Wang and Jiang (2017) combine match-
LSTM and a pointer network (Vinyals, Fortunato, and Jaitly
2015) to predict the boundary of the answer. Seo et al. (2016)
propose BiDAF, which uses a variant co-attention architec-
ture (Xiong, Zhong, and Socher 2017) to enhance the ex-
traction result. Wang et al. (2017) propose R-Net, which in-
troduces a self-matching mechanism. Yu et al. (2018) pro-
pose QANet, which devises an encoder consisting exclu-
sively of convolution and self-attention. For BBCs, Moghe
et al. (2018) show that extraction-based methods are better at
locating the right background information than generation-
based methods. However, current extraction-based methods
are specifically designed for RC tasks. They are not suit-
able for BBCs for two reasons: First, BBCs usually do not
have standard factoid questions like those in RC tasks. Sec-
ond, BBCs require that the responses are fluent and conver-
sational, which cannot be met by rigid extraction; see Fig. 1.

Unlike the work summarized above, we propose RefNet
to combine the advantages of generation-based and
extraction-based methods while avoiding their shortcom-
ings. The main challenge that RefNet addresses is how to
design an effective neural architecture that is able to refer
to the right background information at the right time in the
right place of a conversation while minimizing the influence
on response fluency.

3 Reference-aware Network

Given a background in the form of free text K = (k1,
k2, . . . , kt, . . . , kLK

) with LK tokens and a current con-
versational context Cτ = (. . ., Xτ−3, Xτ−2, Xτ−1),
the task of BBC is to generate a response Xτ at τ .
Each Xτ contains a sequence of LXτ units, i.e., Xτ =
(xτ

1 , x
τ
2 , . . . , x

τ
t , . . . , x

τ
LXτ

), where xτ
t , the unit at timestamp

t, could be a token {xτ
t,i}1i=1 or a semantic unit {xτ

t,i}ni=1
containing n tokens.

RefNet consists of four modules: background encoder,
context encoder, decoding switcher, and hybrid decoder; see
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Figure 2: Overview of RefNet.

Fig. 2. Background and context encoders encode the given
background K and context Cτ into latent representations
Hk and Hc

τ , respectively. Hk and Hc
τ go through a match-

ing layer to get a context-aware background representation
Hm. At each decoding step, the decoding switcher predicts
the probabilities of executing the reference decoding or gen-
eration decoding. The hybrid decoder takes Hc

τ , Hm and
the embedding of the previous token as input and computes
the probability of selecting a semantic unit from the back-
ground (reference decoding) or generating a token (genera-
tion decoding) based on the decision made by the decoding
switcher. Next, we introduce the separate modules.

3.1 Background and context encoders

We use a bi-directional RNN (Schuster and Paliwal 1997)
with GRU (Cho et al. 2014) to convert the context and back-
ground sequences into two hidden state sequences Hc

τ =
(hc

1, hc
2, . . . , hc

LCτ
) and Hk = (hk

1 , hk
2 , . . . , hk

LK
):

hc
t = BiGRUc(h

c
t−1, e(xt)),

hk
t = BiGRUk(h

k
t−1, e(kt)),

(1)

where hc
t or hk

t correspond to a token in the context or back-
ground, respectively, and e(xt) and e(kt) are the embedding
vectors, respectively. We concatenate the responses in the
context, LCτ is the number of all tokens in the context, and
we do not consider the segmentation of semantic units dur-
ing encoding, i.e., each xτ

t is a token {xτ
t,i}1i=1.

Further, we use a matching layer (Wang and Jiang 2017;
Wang et al. 2017) to get the context-aware background rep-
resentation Hm = (hm

1 , hm
2 , . . . , hm

LK
):

hm
t = BiGRUm(hm

t−1, [h
k
t ; c

kc
t ]), (2)

where ckct is calculated using an attention mechanism (Bah-
danau, Cho, and Bengio 2015) with hk

t attentively reading
Hc

τ :
skct,j = vT

kc tanh(Wkch
c
j +Ukch

k
t + bkc),

αkc
t,i =

exp(skct,i)∑LCτ
j=1 exp(skct,j)

, ckct =

LCτ∑

i=1

αkc
t,ih

c
i ,

(3)

where Wkc, Ukc, vkc and bkc are parameters.

3.2 Hybrid decoder

During training, we know that the next xτ
t to be generated

is a token {xτ
t,i}1i=1 or a semantic unit {xτ

t,i}ni=1. If xτ
t =

{xτ
t,i}ni=1, then xτ

t is generated in reference decoding mode
with the probability modeled as follows:

P (xτ
t |xτ

<t, Cτ ,K) = P (r)P (xτ
t | r), (4)

where P (r) is the reference decoding probability (see §3.3);
P (xτ

t | r) is the probability of generating xτ
t under the ref-

erence decoding r. If xτ
t = {xτ

t,i}1i=1, then xτ
t is generated

in generation decoding mode with the probability modeled
as:

P (xτ
t |xτ

<t, Cτ ,K) =

P (gp)P (xτ
t | gp) + P (gc)P (xτ

t | gc), (5)

where P (g) = P (gp) + P (gc) is the generation decod-
ing probability; P (gp) is the predicting generation decoding
probability (see §3.3) and P (gc) is the copying generation
decoding probability (see §3.3). P (xτ

t | gp) and P (xτ
t | gc)

are the probabilities of generating xτ
t under gp and gc, re-

spectively.

Reference decoding. Within reference decoding, the
probability of generating the semantic unit {xτ

t,i}ni=1 is eval-
uated as follows:

P (xτ
t = {xτ

t,i}ni=1|r) = αr1
t,startα

r2
t,start+n−1, (6)

where αr1
t,start and αr2

start+n−1 are the probabilities of the
start and end tokens of {xτ

t,i}ni=1 (from the background), re-
spectively, which are estimated by two-hop pointers with
respect to the context-aware background hidden state se-
quence Hm. The αr1

t,start is calculated by the first hop
pointer, as shown in Eq. 7:

o1
t = Wo1 [h

s
t ; c

sc
t ; csmt ] + bo1 ,

sr1t,j = vT
r tanh(Wrh

m
j +Uro

1
t + br),

αr1
t,start =

exp(sr1t,start)∑LK

j=1 exp(s
r1
t,j)

,

(7)
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where Wo1 , Wr, Ur, vr, bo1 and br are parameters. hs
t

is the decoding hidden state vector, the updating scheme of
which will be detailed in §3.4. csct and csmt are calculated
in a similar way like Eq. 3 with hs

t attentively reading Hc
τ

and Hm, respectively. The αr2
t,start+n−1 is calculated by the

second hop pointer, as shown in Eq. 8:

crt =

LK∑

i=1

αr1
t,ih

m
i , o2t = Wo2 [o

1
t ; c

r
t ] + bo2 ,

sr2t,j = vT
r tanh(Wrh

m
j +Uro

2
t + br),

αr2
t,start+n−1 =

exp(sr2t,start+n−1)∑LK

j=1 exp(s
r2
t,j)

,

(8)

where Wo2 and bo2 are parameters. Reference decoding
adopts soft pointers αr1

t,start and αr2
start+n−1 to select seman-

tic units, so it will not influence the automatic differentiation
during training.

Generation decoding. Within predicting generation de-
coding, the probability of predicting the token xτ

t from the
vocabulary is estimated as follows:

P (xτ
t = {xτ

t,i}1i=1|gp)=softmax(Wgpo
1
t + bgp), (9)

where Wgp and bgp are parameters and the vector o1
t is the

same one as in Eq. 7.
Within copying generation decoding, the probability of

copying the token xτ
t from the background is estimated as

follows:

P (xτ
t = {xτ

t,i}1i=1 | gc) =
∑

i:ki=xτ
t

αsm
t,i , (10)

where αsm
t,i is the attention probability distribution on Hm

produced by the same attention process with csmt in Eq. 7.

3.3 Decoding switcher

The decoding switching probabilities P (r), P (gp) and
P (gc) are estimated as follows:

[P (r), P (gp), P (gc)] = softmax(ft), (11)

where ft is a fusion vector, which is computed through a
linear transformation in Eq. 12:

ft = Wf [h
s
t ; c

sc
t ; csmt ] + bf , (12)

where Wf and bf are parameters. hs
t is decoding states (see

§3.4).
During testing, at each decoding step, we first compute

P (r) and P (g) = P (gp) + P (gc). If P (r) ≥ P (g), we use
Eq. 4 to generate a semantic unit, otherwise we use Eq. 5 to
generate a token.

3.4 State updating

The decoding state updating depends on whether the gener-
ated unit is a token or semantic unit. If xτ

t−1 is a token, then
hs
t =

GRU(hs
t−1, [e(x

τ
t−1); c

sc
t−1; c

sm
t−1]). (13)

If xτ
t−1 is a span containing n tokens, Eq. 13 will update

n times with one token as the input, and the last state will
encode the full semantics of a span; see hs

t to hs
t+1 in Fig. 2.

The decoding states are initialized using a linear layer
with the last state of Hm and Hc

τ as input:

hs
0 = ReLU(Whs[h

m
LK

;hc
LCτ

] + bhs), (14)

where Whs and bhs are parameters. ReLU is the ReLU ac-
tivation function.

3.5 Training

Our goal is to maximize the prediction probability of the
target response given the context and background. We have
three objectives, namely generation loss, reference loss and
switcher loss.

The generation loss is defined as Lg(θ) =

− 1

M

M∑

τ=1

LXτ∑

t=1

log[P (xτ
t | xτ

<t, Cτ ,K)], (15)

where θ are all the parameters of RefNet. M is the number of
all training samples given a background K. In Lg(θ), each
xτ
t is a token {xτ

t,i}1i=1.
The reference loss is defined as Lr(θ) =

− 1

M

M∑

τ=1

LXτ∑

t=1

I(xτ
t ) · log[P (xτ

t | xτ
<t, Cτ ,K))], (16)

where I(xτ
t ) is an indicator function that equals 1 if xτ

t =
{xτ

t,i}ni=1 and 0 otherwise.
RefNet introduces a decoding switcher to decide between

reference decoding and generation decoding. To better su-
pervise this process we define switcher loss Ls(θ) =

− 1

M

M∑

τ=1

LXτ∑

t=1

I(xτt ) log[P (r)]+(1−I(xτt )) log[P (g)], (17)

where I(xτ
t ) is also an indicator function, which is the same

as in Lr(θ).
The final loss is a linear combination of the three loss

functions just defined:

L(θ) = Lg(θ) + Lr(θ) + Ls(θ). (18)

All parameters of RefNet as well as word embeddings
are learned in an end-to-end back-propagation training
paradigm.

4 Experimental Setup

4.1 Implementation details

We set the word embedding size and GRU hidden state size
to 128 and 256, respectively. The vocabulary size is limited
to 25,000. For fair comparison, all models use the same em-
bedding size, hidden state size and vocabulary size. Follow-
ing Moghe et al. (2018), we limit the context length of all
models to 65. We train all models for 30 epochs and test on
a validation set after each epoch, and select the best model
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based on the validation results according to BLEU metric.
We use gradient clipping with a maximum gradient norm of
2. We use the Adam optimizer with a mini-batch size of 32.
The learning rate is 0.001. The code is available online.1

4.2 Dataset

Recently, some datasets for BBCs have been released
(Zhou, Prabhumoye, and Black 2018; Dinan et al. 2019). We
choose the Holl-E dataset released by Moghe et al. (2018)
because it contains boundary annotations of the background
information used for each response. We did not use the other
datasets because they do not have such annotations for train-
ing RefNet. Holl-E is built for movie chats in which each
response is explicitly generated by copying and/or modify-
ing sentences from the background. The background con-
sists of plots, comments and reviews about movies collected
from different websites. We use the mixed-short background
which is truncated to 256 words, because it is more challeng-
ing according to Moghe et al. (2018). We follow the origi-
nal data split for training, validation and test. There are also
two versions of the test set: one with single golden reference
(SR) and the other with multiple golden references (MR);
see (Moghe et al. 2018).

4.3 Baselines

We compare with all methods we can get on this task.
• Extraction-based methods2: (i) BiDAF extracts a span

from background as response and uses a co-attention ar-
chitecture to improve the span finding accuracy (Seo et al.
2016). (ii) R-Net proposes gated attention-based recurrent
networks and a self-matching attention mechanism to en-
code background (Wang et al. 2017). (iii) QANet uses an
encoder consisting exclusively of convolution and self-at-
tention to capture local and global interactions in back-
ground (Yu et al. 2018).

• Generation-based methods: (i) S2S maps the context
to the response with an encoder-decoder framework
(Sutskever, Vinyals, and Le 2014). (ii) HRED encodes the
context of the conversation with two hierarchical levels
(Serban et al. 2016). S2S and HRED do not use any back-
ground information. (iii) S2SA adds an attention mech-
anism to the original S2S model to attend to the rele-
vant background information (Bahdanau, Cho, and Ben-
gio 2015). (iv) GTTP leverages background information
with a copying mechanism to copy a token from the
background at the appropriate decoding step (See, Liu,
and Manning 2017). (v) CaKe is a improved version of
GTTP, which introduces a pre-selection process that uses
dynamic bi-directional attention to improve knowledge
selection from background (Zhang, Ren, and de Rijke
2019). (vi) AKGCM first transforms background infor-
mation into knowledge graph, and uses a policy network

1https://github.com/ChuanMeng/RefNet
2For fair comparison, different from Moghe et al. (2018), we

do not use pre-trained GloVe (Pennington, Socher, and Manning
2014) such that all models randomly initialize the word embedding
with the same vocabulary size.

to select knowledge with an additional GTTP to generate
responses (Liu et al. 2019).

4.4 Evaluation metrics

Following the work of Moghe et al. (2018), we use BLEU-4,
ROUGE-1, ROUGE-2 and ROUGE-L as automatic evalua-
tion metrics. We also report the average length of responses
outputted by each model. For extraction-based methods and
RefNet, we further report F1 (Seo et al. 2016), which only
evaluates the extracted spans not the whole responses. We
also randomly sample 500 test samples to conduct human
evaluations using Amazon Mechanical Turk. For each sam-
ple, we ask 3 workers to annotate whether the response is
good in terms of four aspects: (1) Naturalness (N), i.e.,
whether the responses are conversational, natural and flu-
ent; (2) Informativeness (I), i.e., whether the responses use
some background information; (3) Appropriateness (A), i.e.,
whether the responses are appropriate/relevant to the given
context; and (4) Humanness (H), i.e., whether the responses
look like they are written by a human.

5 Results

5.1 Automatic evaluation

We list the results of all methods on mixed-short background
setting in Table 1.

First, RefNet significantly outperforms all generation-
based methods on all metrics, except in the BLEU score
compared to AKGCM. Especially, RefNet outperforms the
recent and strong baseline CaKe by around 2%-4% (signifi-
cantly). The improvements show that RefNet is much better
at leveraging and locating the right background information
to improve responses than these generation-based methods.
We believe RefNet benefits from reference decoding to tend
to produce more complete semantic units, alleviating the in-
herent problems that pure generation-based method faced.

Second, RefNet outperforms extraction-based methods in
most cases, including the strong baseline QANet. We think
the reason is that extraction-based methods can only rigidly
extracts the relevant spans from the background, which does
not consider the conversational characteristics of responses.
Differently, RefNet also benefits from the generation decod-
ing to generate natural conversational words in responses,
which makes up the shortcoming of only extraction. RefNet
is comparable in average length with extraction-based meth-
ods, which demonstrates that RefNet retains the advantages
of extraction-based methods.

Third, the performance of these three extraction-based
methods are comparable. However, their performances dif-
fer greatly between each other on the RC task dataset
SQuAD (Rajpurkar et al. 2016), e.g. QANet outperforms
BiDAF by around 7% on F1 score. Even with a stronger
extraction-based model, we will arrive at a similar conclu-
sion that they cannot generate natural and fluent responses
due to the extraction nature. This confirms that extraction-
based methods are not suitable for this task. Besides, we can
further enhance the reference decoding of RefNet by incor-
porating various mechanisms used by extraction-based mod-
els. But that’s beyond the scope of this paper.
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Table 1: Automatic evaluation results. Bold face indicates leading results. Significant improvements over the best baseline
results are marked with ∗ (t-test, p < 0.05). SR and MR refer to test sets with single and multiple references. The results of
AKGCM are taken from the paper because the authors have not released their code and processed knowledge graph. Note that
AKGCM uses GloVe and BERT (Devlin et al. 2019) to improve performance but none of other models do.

Methods
F1 BLEU ROUGE-1 ROUGE-2 ROUGE-L

Average length
SR MR SR MR SR MR SR MR SR MR

no background

S2S - - 5.26 7.11 27.15 30.91 9.56 11.85 21.48 24.81 16.08
HRED - - 5.23 5.38 24.55 25.38 7.61 8.35 18.87 19.67 16.22

mixed-short background (256 words)

BiDAF 40.38 45.86 27.44 33.40 38.79 43.93 32.91 39.50 35.09 40.12 25.40
R-Net 40.92 46.84 27.54 33.18 39.78 44.30 32.34 37.65 35.63 40.49 23.08
QANet 41.65 47.32 28.21 33.91 40.66 44.82 33.62 39.04 35.29 41.02 23.21

S2SA - - 11.71 12.76 26.36 30.76 13.36 16.69 21.96 25.99 16.94
GTTP - - 13.65 19.49 30.77 36.06 18.72 23.70 25.67 30.69 14.31
CaKe - - 26.03 29.18 40.21 44.12 29.03 34.00 35.01 39.03 20.06
AKGCM - - 30.84 - - - 29.29 - 34.72 - -

RefNet 41.86∗ 48.46∗ 30.33 33.97 42.11∗ 47.35∗ 31.35 36.53 36.70∗ 41.88∗ 23.51

Table 2: Human evaluation results on mixed-short back-
ground version. ≥ n means that at least n MTurk workers
think it is a good response w.r.t. Naturalness (N), Informa-
tiveness (I), Appropriateness (A) and Humanness (H).

CaKe QANet RefNet

≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2

(N) 449 264 288 63 457 299
(I) 359 115 414 225 434 247
(A) 390 153 406 213 435 240
(H) 438 231 355 128 444 242

5.2 Human evaluation

We also conduct a human evaluation for RefNet, CaKe
(the best generation-based baseline), and QANet (the best
extraction-based baseline). The results are shown in Table 2.
Generally, RefNet achieves the best performance in terms of
all metrics. In particular, we find that RefNet is even bet-
ter than CaKe in terms of Naturalness and Humanness. We
believe this is because RefNet has a good trade-off between
reference decoding and generation decoding, where the gen-
erated conversational words and the selected semantic units
are synthesized in a natural and appropriate way. RefNet is
also much better than CaKe in terms of Appropriateness and
Informativeness, which shows that RefNet is better at locat-
ing the appropriate semantic units. The reason is that with
the ability to generate a full semantic unit at once, RefNet
has a global perspective to locate the appropriate seman-
tic units, reducing the risk of breaking a complete semantic
unit. QANet achieves good evaluation scores on Informa-
tiveness and Appropriateness than CaKe, but gets the worst
scores on Naturalness and Humanness. Although QANet is

Table 3: Analysis of reference and generation decoding on
mixed-short background version. Bold face indicates lead-
ing results. Significant improvements over the best competi-
tor are marked with ∗ (t-test, p < 0.05).

Force reference Force generation Combination

SR MR SR MR SR MR

BLEU 26.73 30.84 26.01 29.19 30.33∗ 33.97∗
ROUGE-1 38.03 43.76 39.86 45.53 42.11∗ 47.35∗
ROUGE-2 29.06 34.70 28.34 34.07 31.35∗ 36.53∗
ROUGE-L 34.11 39.67 35.03 40.63 36.70∗ 41.88∗

relatively good at locating the relevant semantic unit, its re-
sponses lack contextual explanations, which makes workers
hard to understand. This further shows that only extracting a
span from the background is far from enough for BBCs, even
replacing QANet with a more stronger extraction-based one.

6 Analysis

6.1 Reference vs. generation decoding

To analyze the effectiveness of reference and generation de-
coding, we compare the results of RefNet with only refer-
ence decoding (force reference) and with only generation de-
coding (force generation) in Table 3. Note that force genera-
tion is better than GTTP because there are two differences3.
First, we use a matching layer to get the context-aware back-
ground representation in Eq. 2, while GTTP only uses basic
background representations without such a matching oper-
ation. Second, we use the hidden states of the background
and context to jointly initialize the decoding states in Equa-

3We use the code released by Moghe et al. (2018)
https://github.com/nikitacs16/Holl-E
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Table 4: Case study. Bold face indicates the true span in the current turn.
Example 1 Example 2

Background: ... but if you like ben stiller , go see ”
meet the fockers ” . dustin ’s antics will favorite char-
acter was jack ( the older one ) , because he was so se-
rious but always plotting and putting up a front . i think
it was $ 279,167,575 awards ascap film and television
music awards 2005 top box office films mtv ...

Background: ...being captured by boris and onatopp
. bond arrives in st . petersburg and meets his cia
contact , jack wade ( joe don baker ) . wade agrees to
take bond to the hideout of a russian gangster , valentin
zukovsky ( robbie coltrane ) , whom bond had shot in
the leg and given a permanent limp years before ...

Human1: that name is so ridiculous but funny .
Human2: first off , the writers did not miss a sin-
gle opportunity to play off of the name ” focker
” .
Human1: yeah , i heard it was a pretty successful
movie overall .

Human1: that was a good seen .
Human2: what did you like about the movie ?
Human1: i liked his friend , jack wade .

CaKe i agree , ben stiller , go see “ meet the fockers ” . let them pout and go back to macgyver reruns .

QANet $279,167,575
bond arrives in st. petersburg and meets his cia con-
tact, jack wade (joe don baker).

RefNet it made $ 279,167,575 at the box office .
i loved the part where bond arrives in st . petersburg
and meets his cia contact , jack wade ( joe don baker
) .

Table 5: Analysis of switcher loss on mixed-short back-
ground version. Bold face indicates leading results. Signifi-
cant improvements over the best competitor are marked with
∗ (t-test, p < 0.05).

Without SL With SL

SR MR SR MR

F1 37.13 43.42 41.86∗ 48.46∗
BLEU 28.96 31.63 30.33∗ 33.97∗
ROUGE-1 41.27 46.67 42.11∗ 47.35∗
ROUGE-2 30.65 35.98 31.35∗ 36.53
ROUGE-L 36.02 41.86 36.70∗ 41.88

tion Eq. 14, while GTTP only uses the single representation
of background to initialize it. We can see that force reference
and force generation are comparable if working alone. The
contributions of reference and generation decoding are com-
plementary as the combination brings further improvements
on all metrics, demonstrating the need for both.

6.2 Switcher loss

To verify the effectiveness of the switcher loss Ls(θ) in
Eq. 17, we compare RefNet with and without training
switcher loss, as shown in Table 5. We find that the overall
performance increases in terms of all metrics with switcher
loss, especially on F1. It means that the switcher loss is
an effective component, which better guides the model to
choose between reference decoding and generation decod-
ing at the right time in the right place of a conversation by
additional supervision signal. The obvious increase of F1
further shows that at the right time to cite a semantic unit
may bring higher accuracy.

6.3 Case study

We select some examples from the test set to illustrate the
performance of RefNet, CaKe and QANet, as shown in Ta-
ble 4. One can see that RefNet can select the right semantic
unit from the background or generate fluent tokens at appro-
priate time and position, resulting in more informative and
appropriate responses. For instance, in Example 1, RefNet
identifies the right semantic unit “$279,167,575” within the
background, which is combined with “it made” ahead and
followed by “at the box office” to form a more natural and
conversational response. The second example indicates that
RefNet can locate longer semantic units accurately. In con-
trast, the responses by QANet lack naturality. The responses
by CaKe are relatively inconsistent and irrelevant. In the first
example, CaKe breaks the complete semantic unit “if you
like ben stiller ” and throws out the part “if you like ”.

There are also some cases where RefNet does not perform
well. For example, we find that RefNet occasionally selects
short or meaningless semantic units, such as “i” and “it.”
This indicates that we could further improve reference de-
coding by taking more factors (e.g., the length of semantic
units) into consideration.

7 Conclusion and Future Work

In this paper, we propose RefNet for the Background Based
Conversation (BBCs) task. RefNet incorporates a novel ref-
erence decoding module to generate more informative re-
sponses while retaining the naturality and fluency of re-
sponses. Experiments show that RefNet outperforms state-
of-the-art methods by a large margin in terms of both auto-
matic and human evaluations.

A limitation of RefNet is that it needs boundary anno-
tations of semantic units to enable supervised training. In
future work, we hope to design a weakly supervised or un-
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supervised training scheme for RefNet in order to apply it to
other datasets and tasks. In addition, we will consider more
factors (e.g., the length or frequency of semantic unit) to fur-
ther improve the reference decoding module of RefNet.
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