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Abstract

Computational analysis and modeling of the evolution of
trends is an important area of research in Natural Language
Processing (NLP) because of its socio-economic impact.
However, no large publicly available benchmark for trend
detection currently exists, making a comparative evaluation
of methods impossible. We remedy this situation by publish-
ing the benchmark TRENDNERT, consisting of a set of gold
trends and downtrends and document labels that is available
as an unrestricted download, and a large underlying docu-
ment collection that can also be obtained for free. We propose
Mean Average Precision (MAP) as an evaluation measure for
trend detection and apply this measure in an investigation of
several baselines.

1 Introduction

Science changes and evolves rapidly: novel research areas
emerge, while others fade away. Keeping pace with these
changes is challenging. Therefore, recognizing and forecast-
ing research trends is of great importance for researchers
and academic publishers as well as for funding agencies,
companies and journalists. The task of trend detection is
often solved by domain experts who use special tools to
investigate the data and get useful insights from it, e.g.,
through data visualization. However, manual analysis of
large amounts of data can be time-consuming, and domain
experts are expensive. Also, the overall increase of research
publications (e.g., on Google Scholar, PubMed, DBLP) in
the past decade makes an approach based on human domain
experts increasingly difficult whereas automated approaches
become a more desirable solution for the task of trend detec-
tion (Kontostathis et al. 2004).

At its inception, a new research topic often does not at-
tract a lot of attention from the scientific community and is
represented by just a few publications. He and Chen (2018)
attribute the emergence of a trend to some triggering event,
e.g., the publication of an article in a high-impact journal.
Then the research topic starts to grow faster and becomes a
trend (He and Chen 2018). We adopt this as our definition
of trend in this paper: a trend is a research topic that has
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a strongly increasing number of publications in a particu-
lar time interval. We define a downtrend as the converse: a
downtrend is a research topic that has a strongly decreasing
number of publications in a particular time interval. Down-
trends can be as important to detect as trends, e.g., for a
funding agency that is planning its budget.

There has been a lot of work on detecting trends in tex-
tual data, both in NLP and machine learning. However, de-
spite the overall importance of trend analysis, no large pub-
licly available benchmark for trend detection currently ex-
ists, making a comparative evaluation of methods impos-
sible. Most of the prior work has used proprietary data or
small datasets; or evaluation measures were not directly tied
to the objectives of trend detection (Gollapalli and Li 2015).

We remedy this situation by publishing the benchmark
TRENDNERT.1 The benchmark consists of the following:

1. A set of gold trends compiled based on an extensive anal-
ysis of the metaliterature;

2. A set of labeled documents, where each document is as-
signed to a trend, a downtrend or to a third class, the flat
topics;

3. An evaluation script to compute Mean Average Precision
as the measure for the accuracy of trend detection algo-
rithms;

We make the benchmark available as an unrestricted down-
load.2 The underlying research corpus can be obtained for
free from Semantic Scholar (Ammar et al. 2018).3

1.1 Outline and Contributions

In this work, we address the challenge of benchmark cre-
ation for (down)trend detection. This paper is structured as
follows: Section 2 discusses related work. Section 3 intro-
duces our model for corpus creation and its components. In
Section 4, we present the crowdsourcing procedure for la-
beling the benchmark. Section 5 introduces our evaluation
measure. Section 6 describes the proposed baseline for trend

1The name is a concatenation of trend and its ananym dnert
because it supports evaluation of both trends and downtrends.

2https://doi.org/10.17605/OSF.IO/DHZCT
3https://api.semanticscholar.org/corpus/
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detection, our experimental setup, and final results. Finally,
we present the details of the distributed benchmark in Sec-
tion 7 and conclude in Section 8.

Our contributions are as follows:

• TRENDNERT is the first publicly available benchmark
for (down)trend detection.

• TRENDNERT is based on a collection of more than a mil-
lion documents. It is among the largest that has been used
for trend detection and therefore offers a realistic setting
for developing trend detection algorithms.

• TRENDNERT addresses the task of detecting both trends
and downtrends. To the best of our knowledge, the task of
downtrend detection has not been addressed before.

2 Related Work

In addition to growth, two other characteristics of trends
that have been proposed are novelty and utility, and some
prior work has used this more narrow definition of trend
(Tu and Seng 2012; Small, Boyack, and Klavans 2014;
Rotolo, Hicks, and Martin 2015; He and Chen 2018). Un-
fortunately, novelty and utility are much harder to quantify
automatically than growth. For this reason, we define trends
in terms of growth only in this paper, i.e., a trend is a research
topic that has a strongly increasing number of publications
in a particular time interval.

Prior work on analyzing topics and their evolution over
time can be classified according to the primary source of
information it employs: text, citations and key phrases.

Text-based analysis: There has been a great deal of prior
work on text-based analysis for trend detection and evolu-
tion (Blei and Lafferty 2006; Wang and McCallum 2006;
Hall, Jurafsky, and Manning 2008; Gollapalli and Li 2015;
Gupta et al. 2018; Schein et al. 2019). However, our focus
in this paper is not to develop new algorithms or models, but
instead to create a benchmark. We have therefore selected a
simple baseline text-based analysis method for trend detec-
tion.

Citation-based analysis is the second popular direction
that is considered to be effective for trend identification (Le,
Ho, and Nakamori 2005; Small 2006; He et al. 2009; Shi-
bata et al. 2008; Shibata, Kajikawa, and Takeda 2009). This
method assumes that citations in their various forms (bib-
liographic citations, co-citation networks, citation graphs)
indicate meaningful relationships between topics and uses
citations to model the topic evolution in the scientific do-
main. Nie and Sun (2017) utilize this approach along with
Latent Dirichlet Allocation (LDA) and k-means clustering
to identify research trends. The authors first use LDA to ex-
tract features and determine the optimal number of topics.
Then they use k-means to obtain thematic clusters, and fi-
nally, they compute citation functions to identify the changes
of clusters over time. Though the main drawback of citation-
based analysis is that there are many trend detection scenar-
ios (e.g., research news articles or research blog posts) in

which citations are not available and the approach is there-
fore not applicable.

Keyphrase-based analysis: This approach is based on
keyphrase information extracted from research papers. A
keyphrase is interpreted as a representative for a single re-
search topic. For example, Asooja et al. (2016) utilize the
Saffron system (Monaghan et al. 2010) to extract keywords
from LREC proceedings and then forecast trends based on
regression models. A potential problem with this approach
is that there is no clear correspondence between topics and
keyphrases. Keyphrases are noisy, ambiguous (e.g., Java as
an island vs. Java as a programming language), and many
topics may not correspond to a single keyphrase because
there are several equivalent names for a topic.

3 Corpus Creation

In this section, we describe the methodology we use to create
the TRENDNERT benchmark.

3.1 Underlying Data

We use a subset of the Open Research Corpus provided by
Semantic Scholar. It contains more than one million pa-
pers published mostly between 2000 and 2015 in about
5000 computer science journals and conference proceed-
ings.4 Each document in the collection consists of title,
keyphrases, abstract and other metadata (e.g., venue, year).

3.2 Stratification

The distribution of papers over time in the underlying dataset
is skewed: years before 2000 have less than 1000 documents
per year (see Figure 1).5 During our experiments, we found
that clustering the entire collection or a random sample does
not support high-quality identification of (down)trend can-
didates, because more weight is given to later years than to
earlier years (see Section 6.2). Therefore, the first step in the
benchmark creation was the generation of a stratified sam-
ple of the original document collection. To this end, we ran-
domly select 10, 000 documents for each year between 2000
and 2015 for an overall sample size of 160, 000.

3.3 Document Representations & Clustering

As we mentioned before, our main focus in this paper is not
to develop new algorithms or models, but instead to cre-
ate a benchmark. We have therefore selected an algorithm
based on k-means clustering as a simple baseline method
for trend detection. In traditional document clustering (Man-
ning, Raghavan, and Schütze 2008), documents are usu-
ally represented as bag-of-words (BOW) feature vectors that
however have a major weakness: they ignore the seman-
tics of words (Le and Mikolov 2014). Still, the recent work
in representation learning and in particular doc2vec – the
method proposed by Le and Mikolov (2014) – can provide

4It also contains a small number of neuroscience articles.
5The number of papers for the year 2016 is small because of

the underlying dataset that was provided by Semantic Scholar at
the beginning of our work in 2016.
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Figure 1: Overall distribution of papers in our dataset. Years
1975 to 2016.

representations to document clustering that overcome this
weakness. The doc2vec6 algorithm is inspired by techniques
for learning word vectors (Mikolov et al. 2013) and is able
to capture semantic regularities in document collections. It
is an unsupervised approach for learning continuous dis-
tributed vector representations for pieces of text (i.e., para-
graphs, documents). This approach maps texts into a vec-
tor space such that semantically similar documents are as-
signed similar vector representations (e.g., an article about
genomics is closer to an article about gene expression than
to an article about fuzzy sets). Other work has already suc-
cessfully applied this type of document representations for
topic modeling, combining them with both LDA and cluster-
ing approaches (Moody 2016; Dieng, Ruiz, and Blei 2019;
Xie and Xing 2013; Curiskis et al. 2019).

In our work we run doc2vec on the stratified sample of
160, 000 papers and represent each document as a length-
normalized vector (i.e., as a document embedding). These
vectors are then clustered into k = 1000 clusters using the
scikit-learn7 implementation of k-means (MacQueen 1967)
with default parameters. The combination of document rep-
resentations with a clustering algorithm is conceptually sim-
ple and interpretable. Also, the comprehensive comparative
evaluation of topic modeling methods utilizing document
embeddings performed by Curiskis et al. (2019) showed that
doc2vec feature representations with k-means clustering out-
perform several other methods8 on three evaluation mea-
sures (Normalized Mutual Information, Adjusted Mutual In-
formation, and Adjusted Rand Index).

We run 10 trials of stratification and clustering, resulting
in 10 different clusterings. We do this to protect against the
variability of clustering and because we do not want to rely
on a single clustering for proposing (down)trends for the
benchmark.

6We use the implementation provided by Gensim: https://
radimrehurek.com/gensim/models/doc2vec.html

7https://scikit-learn.org/stable/
8hierarchical clustering, k-medoids, NMF and LDA

3.4 Trend & Downtrend Estimation

Recall our definitions of trend and downtrend. A trend (resp.
downtrend) is a research topic that has a strongly increas-
ing (resp. decreasing) number of publications in a particular
time interval.

Linear regression is a widely used technique in trend anal-
ysis (Hess, Iyer, and Malm 2001) that can identify changes
over time in a variable. It correlates the measurements of
the variable to the times at which they occurred. Here, we
use linear regression to identify trend and downtrend can-
didates in a given set of clusters. We count the number of
documents per year for a cluster and then estimate the slope
of the best fitting line. Clusters are then ranked according
to the resulting slope and the n = 150 clusters with the
largest (resp. smallest) slope are selected as trend (resp.
downtrend) candidates. Thus, our definition of a single-
clustering (down)trend candidate is a cluster with extreme
ascending or descending slope. Figure 2 gives two examples
of (down)trend candidates.

(a) A trend candidate (positive slope); Topic: Sentiment and
Emotion Analysis (using Social Media Channels)

(b) A downtrend candidate (negative slope); Topic: XML

Figure 2: An example of trend and downtrend candidates
according to the computed slope.

3.5 (Down)trend Candidate Validation

We run ten rounds of clustering (see. Section 3.3), re-
sulting in ten different clusterings. We then estimate the

8514



(down)trend candidates according to the procedure de-
scribed in Section 3.4, so that for each of the ten clusterings,
we obtain 150 trend and 150 downtrend candidates.

For our benchmark, among all the (down)trend candidates
across the ten clusterings, we want to keep only those that
are consistent across clusterings. To obtain such consistent
(down)trend candidates, we employ the Jaccard coefficient.
We define an equivalence relation ∼R: two candidates (i.e.,
clusters) are equivalent if their Jaccard coefficient is ≥ τ∼,
where τ∼ = 0.5. We compute the equivalence classes of ∼R

over the ten clusterings. Finally, we define an equivalence
class as an equivalence class trend candidate (resp. equiva-
lence class downtrend candidate) if it contains trend (resp.
downtrends) candidates in at least half of the clusterings.
This procedure gave us in total 110 equivalence class trend
candidates and 107 equivalence class downtrend candidates
that we then annotate for our benchmark.9

4 Benchmark Annotation

To annotate the equivalence class (down)trend candidates
obtained from our model we used the Figure-Eight10 plat-
form. It provides an integrated quality-control mechanism
and a training phase before the actual annotation (Kolhatkar,
Zinsmeister, and Hirst 2013), which helps disqualify poorly
performing annotators.

We design our annotation task as follows. A worker is
shown a descriptor of a particular candidate along with the
list of possible (down)trend tags (i.e., “curated” names). The
descriptors of candidates are obtained through the following
procedure:

• First, we examine the papers assigned to a candidate clus-
ter.

• Then we extract keywords and titles of the papers as-
signed to the cluster. Semantic Scholar provides keywords
and titles as a part of the metadata in the underlying col-
lection (see Section 3.1).

• Finally, we compute the top 15 most frequent keywords
and randomly pick 15 titles. These keywords and titles are
the descriptor of the candidate shown to crowd-workers.

We create the (down)trend tags as follows. Based on key-
words, titles and metadata such as publication venue, clus-
ter candidates are manually labeled by graduate employees
(i.e., domain experts in the computer science domain). Ex-
amples of (down)trend tags created this way are “XML”
and “Sentiment and Emotion Analysis (using Social Media
Channels)”.

In the crowdsourcing interface, the descriptor of a
(down)trend candidate is shown on the right. The
(down)trend tags are shown on the left. They are mixed and
presented in random order. The temporal presentation order
of candidates (i.e., descriptors) is also random. The worker
is asked to pick from the list of (down)trend tags the tag that

9Note that the overall number of 217 refers to the number of the
(down)trend candidates and not to the number of documents. Each
candidate contains hundreds of documents.

10formerly called CrowdFlower

matches the descriptor best. Even if there are several tags
that are a possible match, the worker must choose one. If
there is no matching tag, the worker can select the option
other. Three different workers evaluate each (down)trend
candidate (i.e., descriptor), and the final label is the ma-
jority label. If there is no majority label, we present the
(down)trend candidate repeatedly to the workers until there
is a majority.

4.1 Inter-annotator Agreement

To measure the quality of annotation, we compute the inter-
annotator agreement – a measure of how well two (or more)
annotators agree. We use two measures of inter-annotator
agreement: Krippendorff’s α and the Figure-Eight Internal
Agreement Rate.

Krippendorff’s α is a reliability coefficient developed to
measure the agreement between observers (i.e., annotators)
(Krippendorff 2011). We choose Krippendorff’s α as an
inter-annotator agreement measure because it – unlike other
specialized coefficients – is a generalization of several reli-
ability criteria and applies to situations like ours where we
have more than two annotators and a given annotator only
annotates a subset of the data (i.e., we have to deal with
missing values).

For our gold standard, Krippendorff’s α for the 217 anno-
tated down(trend) candidates (represented as descriptors) is
α = 0.798. According to Landis and Koch (1977), this value
corresponds to a substantial level of agreement.

Figure-Eight Internal Agreement Rate. Figure-Eight
provides an agreement score c for each annotated unit u,
which is based on the majority vote of the trusted work-
ers. The score has been proven to perform well compared
to classic metrics (Kolhatkar, Zinsmeister, and Hirst 2013).
For our gold standard, the average c for the 217 annotated
(down)trend candidates is 0.799.

Since both Krippendorff’s α and the Figure-Eight Internal
Agreement Rate are quite high, we consider the obtained
annotations for the benchmark to be of good quality.

4.2 Gold Trends

We then compiled a list of computer science trends for the
year 2016 based on our analysis of twelve survey publica-
tions (Augustin 2016; Frot 2016; Brooks 2016; Reese 2015;
Markov 2015; Zaino 2016; Rivera 2016; Harriet 2015;
IEEE Computer Society 2016; Nessma 2015; Meyerson and
Mariette 2016; Ankerholz 2016). We identified a total of
31 trends; see Table 1. Since there is variation as to the
name of a specific trend, we created a standard name for
each. Of the 31 trends, 28 (90%) were found as trend can-
didates during crowdsourcing11. We searched for the three
missing trends using a variety of techniques: inspection of
non-trends/downtrends; random browsing of documents not

11The first author verified this based on her judgment of equiv-
alence of one of the 31 gold trend names in the literature with one
of the trend tags.
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assigned to trend candidates; and keyword searches. Two of
the missing trends do not seem to occur in the collection at
all: Human Augmentation and Food and Water Technology.
The third missing trend is Cryptocurrency and Cryptogra-
phy; it does occur in the collection, but the occurrence rate
is very small (ca. 0.0001). We do not consider these three
trends in the rest of the paper.

In summary, based on our analysis of the meta-literature,
we identified 28 gold trends that also occur in our collection.
We will use them as the gold standard that trend detection
algorithms should aim to discover.

5 Evaluation Measure for Trend Detection

Whether something is a trend is a graded notion. For this rea-
son, we adopt an evaluation measure that is based on a rank-
ing of trend candidates: Mean Average Precision (MAP).
The score represents the average of the precision values of
ranks of correctly identified (and non-redundant) trends.

We define trend detection as computing a ranked list of
sets of documents (i.e., papers), where each set is a trend
candidate. We refer to documents as trendy, downtrendy or
flat depending on which category they are assigned to in our
benchmark. A trend candidate is called trendy, downtrendy
or flat, depending on which of the three classes constitutes
the plurality of documents. We count a trend candidate c as
a correct recognition of gold trend t if it meets the following
conditions:

• c is trendy;

• t is the largest trend in c;

• |t ∩ c|/|c| ≥ ρ, where ρ is a coverage parameter;

• t was not earlier recognized in the list.

This criterion give us a true positive (recognition of a gold
trend) or false positive (otherwise) for each position of the
ranked list, and a precision score for each trend that was
found. Precision for a trend that was not found is 0. We then
compute MAP; see Table 2 for an example.

6 Trend Detection Baselines

In this section, we investigate the impact of four different
configuration choices on the performance of trend detection
by way of ablation.

6.1 Configuration Choices

Abstracts vs. Full text. Our subset of data collection12

contains both abstracts and full text documents. Our ini-
tial expectation was that the full text of a document con-
tains more information than the abstract and should be a
better basis for trend detection. This is one of the configura-
tion choices we test in the ablation. We apply our proposed
method on full text (document content without abstract) and
abstract (only abstract) collections separately and observe
the results.

12The underlying dataset was provided by Semantic Scholar at
the beginning of our work in 2016.

Stratification. Due to the uneven distribution of docu-
ments over the years, the last years (with increased volume
of scientific publications) may get too much influence on re-
sults compared to earlier years. To investigate this, we con-
duct an ablation experiment in which we compare: (i) ran-
domly sampled 160, 000 documents from the entire collec-
tion and (ii) stratified sampling. In stratified sampling, we
select 10, 000 documents for each of the years 2000 – 2015,
resulting in a sampled collection of 160, 000.

Measure of Growth: Length Lt of Interval. Clusters are
ranked by trendiness, and the resulting ranked list is eval-
uated. To measure the trendiness or growth of topics over
time we fit a line to an interval {(i, ni}|i0 ≤ i < i0 + Lt}
by linear regression, where Lt is the length of the interval, i
is one of the 16 years (2000, . . . , 2015) and ni is the number
of documents that were assigned to cluster c in that year.

As a simple default baseline, we apply the regression to
half the entire interval, i.e., Lt = 8. There are nine such in-
tervals in our 16-year period. As the final measure of growth
for the cluster, we take the max of the nine individual slopes.
To determine how much this configuration choice affects our
results, we also test a linear regression over the entire time
span, i.e., Lt = 16. In this case, there is a single interval.

Clustering Method. We consider Gaussian Mixture Mod-
els (GMM) and k-means. We use GMM with spherical co-
variance, where each component has the same variance. For
both, we proceed as described in Section 3.3.

6.2 Experimental Setup and Results

We conducted experiments on the Semantic Scholar corpus
and evaluated a ranked list of trend candidates against the
benchmark. We used MAP as the primary evaluation mea-
sure. As a secondary evaluation measure, we compute recall
at 50 (R@50), which estimates the percentage of gold trends
found in the list of 50 highest-ranked trend candidates. We
found that the configuration (0) in Table 3 works best. We
then conducted ablation experiments to determine the im-
portance of the configuration choices.

Comparing (0) and (1),13 we see that abstracts (A) are
a better representation for our trend detection baseline than
full text (F ). This can be explained by the fact that an ab-
stract is a summary of a scientific paper that covers only the
central points, and thus it is semantically very concise and
rich. In contrast, the full text contains many parts that are
secondary (e.g., future work, related work) and thus may be
an inferior representation of the overall meaning of the doc-
ument.

Comparing (0) and (2), we observe that stratification (y)
clearly improves results compared to the setting with un-
stratified data (n), i.e., randomly sampled data. We would

13Numbers (0), (1), (2), (3), (4) denote the configuration choices
in the ablation Table 3.
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Computer Science Trends

Autonomous Agents and Systems Natural Language Processing
Autonomous Vehicles Open Source
Big Data Analytics Privacy
Bioinformatics and (Bio) Neuroscience Quantum Computing
Biometrics and Personal Identification Recommender Systems and Social Networks
Cloud Computing and Software as a Service Reinforcement Learning
Cryptocurrency and Cryptography∗ Renewable Energy
Cyber Security Robotics
E-business Semantic Web
Food and Water Technology∗ Sentiment and Emotion Analysis
Game-based Learning Smart Cities
Games and (Virtual) Augmented Reality Supply Chains and RFIDs
Human Augmentation∗ Technology for Climate Change
Machine/Deep Learning Transportation and Energy
Medical Advances and DNA Computing Wearables
Mobile Computing

Table 1: 31 topics identified as computer science trends for 2016 in the media. 28 of these trends were identified as trends in
crowdsourcing, and thus are covered in our benchmark. The three topics marked with asterisk (∗) were not found.

Gold Trends Gold Downtrends

Cloud Computing Compilers
Bioinformatics Petri Nets
Sentiment Analysis Fuzzy Sets
Privacy Routing Protocols

Trend Candidate |t ∩ c|/|c| tp/fp P
c1 Cloud Computing 0.60 tp 1.00
c2 Privacy 0.20 fp 0.50
c3 Cloud Computing 0.70 fp 0.33
c4 Bioinformatics 0.55 tp 0.50
c5 Sentiment Analysis 0.95 tp 0.60
c6 Sentiment Analysis 0.59 fp 0.50
c7 Bioinformatics 0.41 fp 0.43
c8 Compilers 0.60 fp 0.38
c9 Petri Nets 0.80 fp 0.33
c10 Privacy 0.33 fp 0.30

Table 2: Example of proposed MAP evaluation (with ρ =
0.5): MAP is the average of the precision values 1.0 (Cloud
Computing), 0.5 (Bioinformatics), 0.6 (Sentiment Analy-
sis), and 0.0 (Privacy), i.e., MAP = 2.1/4 = 0.525. True pos-
itive: tp, False positive: fp, Precision: P.

expect the effect of stratification to be even stronger for col-
lections in which the distribution of documents over time is
more skewed than in ours.

Comparing (0) and (3), the length of the interval is an
important configuration choice: as we expected, the 16 year
interval is too long and the 8 year interval seems to be a bet-
ter choice, especially if one aims to find short-term trends.

Comparing (0) and (4), we see that topics obtained from
k-means and from GMM have similar performance. How-

ever, GMM, which takes variance into account and estimates
a soft assignment, performs slightly better.

7 Benchmark Description

We now describe the contents of the TRENDNERT bench-
mark. It contains the following components.

1. Two files containing information about documents, one
for documents assigned to (down)trends and one for doc-
uments assigned to flat topics, i.e., topics that are neither
trends nor downtrends;

2. A script for generating document hash codes;
3. A file mapping hash codes to our internal IDs;
4. A script for computing MAP for a list of (down)trend

candidates (default setting is ρ = .25);

The two files containing information about documents
give the following information for each document.
• Paper ID: the internal ID we use for documents in the Se-

mantic Scholar collection;
• Cluster ID: unique ID of the equivalence class in which

the document occurs;
• Label: (down)trend tag assigned by crowd-workers (e.g.,

Cyber Security, Fuzzy Sets and Systems);
• Type of (down)trend candidate: trend (T ), downtrend (D)

or flat topic (F );
• Hash ID14 of each paper from the Semantic Scholar col-

lection;

8 Conclusion

With this work we release TRENDNERT – the first publicly
available benchmark for (down)trend detection that offers
a realistic setting for evaluating trend detection algorithms.

14MD5-hash of: First Author + Title + Year
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(0) (1) (2) (3) (4)

document part A F A A A
stratification y y n y y
Lt 8 8 8 16 8
clustering GMMsph GMMsph GMMsph GMMsph kμ
MAP .36 (.03) .07 (.19) .30 (.03) .32 (.04) .34 (.21)
R@50 avg .50 (.012) .25 (.018) .50 (.016) .46 (.018) .53(.014)
R@50 max .61 .37 .53 .61 .61

Table 3: Ablation results. Standard deviations are in parentheses. GMM clustering performed with spherical (sph.) covariance.
K-means clustering is denoted as kμ in the ablation table. ρ = .25

TRENDNERT also supports downtrend detection – an im-
portant problem that was not addressed before. We evalu-
ate a number of baselines for trend detection on TREND-
NERT. We find that, for these baselines, stratification im-
proves trend detection if the distribution of documents is
skewed and that abstract-based representations perform bet-
ter than fulltext representations for the models included in
our experiments.
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