
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Effective Modeling of Encoder-Decoder
Architecture for Joint Entity and Relation Extraction

Tapas Nayak, Hwee Tou Ng
Department of Computer Science
National University of Singapore

nayakt@u.nus.edu, nght@comp.nus.edu.sg

Abstract

A relation tuple consists of two entities and the relation be-
tween them, and often such tuples are found in unstructured
text. There may be multiple relation tuples present in a text
and they may share one or both entities among them. Ex-
tracting such relation tuples from a sentence is a difficult task
and sharing of entities or overlapping entities among the tu-
ples makes it more challenging. Most prior work adopted a
pipeline approach where entities were identified first followed
by finding the relations among them, thus missing the inter-
action among the relation tuples in a sentence. In this paper,
we propose two approaches to use encoder-decoder architec-
ture for jointly extracting entities and relations. In the first
approach, we propose a representation scheme for relation
tuples which enables the decoder to generate one word at a
time like machine translation models and still finds all the
tuples present in a sentence with full entity names of differ-
ent length and with overlapping entities. Next, we propose a
pointer network-based decoding approach where an entire tu-
ple is generated at every time step. Experiments on the pub-
licly available New York Times corpus show that our pro-
posed approaches outperform previous work and achieve sig-
nificantly higher F1 scores.

Introduction

Distantly-supervised information extraction systems extract
relation tuples with a set of pre-defined relations from text.
Traditionally, researchers (Mintz et al. 2009; Riedel, Yao,
and McCallum 2010; Hoffmann et al. 2011) use pipeline ap-
proaches where a named entity recognition (NER) system is
used to identify the entities in a sentence and then a classi-
fier is used to find the relation (or no relation) between them.
However, due to the complete separation of entity detection
and relation classification, these models miss the interaction
between multiple relation tuples present in a sentence.

Recently, several neural network-based models (Katiyar
and Cardie 2016; Miwa and Bansal 2016) were proposed to
jointly extract entities and relations from a sentence. These
models used a parameter-sharing mechanism to extract the
entities and relations in the same network. But they still find
the relations after identifying all the entities and do not fully

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

capture the interaction among multiple tuples. Zheng et al.
(2017) proposed a joint extraction model based on neural
sequence tagging scheme. But their model could not extract
tuples with overlapping entities in a sentence as it could not
assign more than one tag to a word. Zeng et al. (2018) pro-
posed a neural encoder-decoder model for extracting rela-
tion tuples with overlapping entities. However, they used
a copy mechanism to copy only the last token of the enti-
ties, thus this model could not extract the full entity names.
Also, their best performing model used a separate decoder
to extract each tuple which limited the power of their model.
This model was trained with a fixed number of decoders
and could not extract tuples beyond that number during in-
ference. Encoder-decoder models are powerful models and
they are successful in many NLP tasks such as machine
translation, sentence generation from structured data, and
open information extraction.

In this paper, we explore how encoder-decoder models
can be used effectively for extracting relation tuples from
sentences. There are three major challenges in this task: (i)
The model should be able to extract entities and relations to-
gether. (ii) It should be able to extract multiple tuples with
overlapping entities. (iii) It should be able to extract exactly
two entities of a tuple with their full names. To address these
challenges, we propose two novel approaches using encoder-
decoder architecture1. We first propose a new representation
scheme for relation tuples (Table 1) such that it can repre-
sent multiple tuples with overlapping entities and different
lengths of entities in a simple way. We employ an encoder-
decoder model where the decoder extracts one word at a time
like machine translation models. At the end of sequence gen-
eration, due to the unique representation of the tuples, we
can extract the tuples from the sequence of words. Although
this model performs quite well, generating one word at a
time is somewhat unnatural for this task. Each tuple has ex-
actly two entities and one relation, and each entity appears as
a continuous text span in a sentence. The most effective way
to identify them is to find their start and end location in the
sentence. Each relation tuple can then be represented using
five items: start and end location of the two entities and the

1The code and data of this paper can be found at
https://github.com/nusnlp/PtrNetDecoding4JERE

8528

Source sentence Anti-Ethiopia riots erupted in Mogadishu , the capital of Somalia , on Friday , while masked gunmen emerged
for the first time on the streets , a day after Ethiopian-backed troops captured the city from Islamist forces .

Target: word-based decoding Somalia ; Mogadishu ; /location/country/capital | Somalia ; Mogadishu ; /location/location/contains
Target: pointer network-based decoding <9 9 4 4 /location/country/capital> <9 9 4 4 /location/location/contains>

Table 1: Relation tuple representation for encoder-decoder models.

relation between them (see Table 1). Keeping this in mind,
we propose a pointer network-based decoding framework.
This decoder consists of two pointer networks which find the
start and end location of the two entities in a sentence, and a
classification network which identifies the relation between
them. At every time step of the decoding, this decoder ex-
tracts an entire relation tuple, not just a word. Experiments
on the New York Times (NYT) datasets show that our ap-
proaches work effectively for this task and achieve state-of-
the-art performance. To summarize, the contributions of this
paper are as follows:
(1) We propose a new representation scheme for relation
tuples such that an encoder-decoder model, which extracts
one word at each time step, can still find multiple tuples
with overlapping entities and tuples with multi-token enti-
ties from sentences. We also propose a masking-based copy
mechanism to extract the entities from the source sentence
only.
(2) We propose a modification in the decoding framework
with pointer networks to make the encoder-decoder model
more suitable for this task. At every time step, this decoder
extracts an entire relation tuple, not just a word. This new
decoding framework helps in speeding up the training pro-
cess and uses less resources (GPU memory). This will be an
important factor when we move from sentence-level tuple
extraction to document-level extraction.
(3) Experiments on the NYT datasets show that our ap-
proaches outperform all the previous state-of-the-art models
significantly and set a new benchmark on these datasets.

Task Description

A relation tuple consists of two entities and a relation. Such
tuples can be found in sentences where an entity is a text
span in a sentence and a relation comes from a pre-defined
set R. These tuples may share one or both entities among
them. Based on this, we divide the sentences into three
classes: (i) No Entity Overlap (NEO): A sentence in this
class has one or more tuples, but they do not share any
entities. (ii) Entity Pair Overlap (EPO): A sentence in this
class has more than one tuple, and at least two tuples share
both the entities in the same or reverse order. (iii) Single En-
tity Overlap (SEO): A sentence in this class has more than
one tuple and at least two tuples share exactly one entity. It
should be noted that a sentence can belong to both EPO and
SEO classes. Our task is to extract all relation tuples present
in a sentence.

Encoder-Decoder Architecture

In this task, input to the system is a sequence of words, and
output is a set of relation tuples. In our first approach, we
represent each tuple as entity1 ; entity2 ; relation. We use ‘;’

as a separator token to separate the tuple components. Mul-
tiple tuples are separated using the ‘|’ token. We have in-
cluded one example of such representation in Table 1. Mul-
tiple relation tuples with overlapping entities and different
lengths of entities can be represented in a simple way us-
ing these special tokens (; and |). During inference, after the
end of sequence generation, relation tuples can be extracted
easily using these special tokens. Due to this uniform repre-
sentation scheme, where entity tokens, relation tokens, and
special tokens are treated similarly, we use a shared vocab-
ulary between the encoder and decoder which includes all
of these tokens. The input sentence contains clue words for
every relation which can help generate the relation tokens.
We use two special tokens so that the model can distinguish
between the beginning of a relation tuple and the beginning
of a tuple component. To extract the relation tuples from a
sentence using the encoder-decoder model, the model has to
generate the entity tokens, find relation clue words and map
them to the relation tokens, and generate the special tokens
at appropriate time. Our experiments show that the encoder-
decoder models can achieve this quite effectively.

Embedding Layer & Encoder

We create a single vocabulary V consisting of the source
sentence tokens, relation names from relation set R, spe-
cial separator tokens (‘;’, ‘|’), start-of-target-sequence token
(SOS), end-of-target-sequence token (EOS), and unknown
word token (UNK). Word-level embeddings are formed by
two components: (1) pre-trained word vectors (2) charac-
ter embedding-based feature vectors. We use a word embed-
ding layer Ew ∈ R

|V |×dw and a character embedding layer
Ec ∈ R

|A|×dc , where dw is the dimension of word vectors,
A is the character alphabet of input sentence tokens, and dc
is the dimension of character embedding vectors. Following
Chiu and Nichols (2016), we use a convolutional neural net-
work with max-pooling to extract a feature vector of size df
for every word. Word embeddings and character embedding-
based feature vectors are concatenated (‖) to obtain the rep-
resentation of the input tokens.

A source sentence S is represented by vectors of its tokens
x1,x2,,xn, where xi ∈ R

(dw+df) is the vector represen-
tation of the ith word and n is the length of S. These vec-
tors xi are passed to a bi-directional LSTM (Hochreiter and
Schmidhuber 1997) (Bi-LSTM) to obtain the hidden repre-
sentation hE

i . We set the hidden dimension of the forward
and backward LSTM of the Bi-LSTM to be dh/2 to obtain
hE
i ∈ R

dh , where dh is the hidden dimension of the se-
quence generator LSTM of the decoder described below.

Word-level Decoder & Copy Mechanism

A target sequence T is represented by only word embed-
ding vectors of its tokens y0,y1,,ym where yi ∈ R

dw

8529

is the embedding vector of the ith token and m is the length
of the target sequence. y0 and ym represent the embedding
vector of the SOS and EOS token respectively. The decoder
generates one token at a time and stops when EOS is gen-
erated. We use an LSTM as the decoder and at time step t,
the decoder takes the source sentence encoding (et ∈ R

dh)
and the previous target word embedding (yt−1) as the in-
put and generates the hidden representation of the current
token (hD

t ∈ R
dh). The sentence encoding vector et can

be obtained using attention mechanism. hD
t is projected to

the vocabulary V using a linear layer with weight matrix
Wv ∈ R

|V |×dh and bias vector bv ∈ R
|V | (projection

layer).

hD
t = LSTM(et‖yt−1,h

D
t−1)

ôt = Wvh
D
t + bv, ot = softmax(ôt)

ot represents the normalized scores of all the words in the
embedding vocabulary at time step t. hD

t−1 is the previous
hidden state of the LSTM.

The projection layer of the decoder maps the decoder out-
put to the entire vocabulary. During training, we use the gold
label target tokens directly. However, during inference, the
decoder may predict a token from the vocabulary which is
not present in the current sentence or the set of relations or
the special tokens. To prevent this, we use a masking tech-
nique while applying the softmax operation at the projection
layer. We mask (exclude) all words of the vocabulary except
the current source sentence tokens, relation tokens, separator
tokens (‘;’, ‘|’), UNK, and EOS tokens in the softmax oper-
ation. To mask (exclude) some word from softmax, we set
the corresponding value in ôt at −∞ and the correspond-
ing softmax score will be zero. This ensures the copying of
entities from the source sentence only. We include the UNK
token in the softmax operation to make sure that the model
generates new entities during inference. If the decoder pre-
dicts an UNK token, we replace it with the corresponding
source word which has the highest attention score. During
inference, after decoding is finished, we extract all tuples
based on the special tokens, remove duplicate tuples and tu-
ples in which both entities are the same or tuples where the
relation token is not from the relation set. This model is re-
ferred to as WordDecoding (WDec) henceforth.

Pointer Network-Based Decoder

In the second approach, we identify the entities in the sen-
tence using their start and end locations. We remove the
special tokens and relation names from the word vocab-
ulary and word embeddings are used only at the encoder
side along with character embeddings. We use an additional
relation embedding matrix Er ∈ R

|R|×dr at the decoder
side of our model, where R is the set of relations and dr
is the dimension of relation vectors. The relation set R in-
cludes a special relation token EOS which indicates the end
of the sequence. Relation tuples are represented as a se-
quence T = y0, y1,, ym, where yt is a tuple consisting
of four indexes in the source sentence indicating the start
and end location of the two entities and a relation between
them (see Table 1). y0 is a dummy tuple that represents the

Figure 1: The architecture of an encoder-decoder model
(left) and a pointer network-based decoder block (right).

start tuple of the sequence and ym functions as the end tu-
ple of the sequence which has EOS as the relation (enti-
ties are ignored for this tuple). The decoder consists of an
LSTM with hidden dimension dh to generate the sequence
of tuples, two pointer networks to find the two entities, and
a classification network to find the relation of a tuple. At
time step t, the decoder takes the source sentence encoding
(et ∈ R

dh) and the representation of all previously gener-
ated tuples (yprev =

∑t−1
j=0 yj) as the input and generates

the hidden representation of the current tuple, hD
t ∈ R

dh .
The sentence encoding vector et is obtained using an atten-
tion mechanism as explained later. Relation tuples are a set
and to prevent the decoder from generating the same tuple
again, we pass the information about all previously gener-
ated tuples at each time step of decoding. yj is the vector
representation of the tuple predicted at time step j < t and
we use the zero vector (y0 =

−→
0) to represent the dummy

tuple y0. hD
t−1 is the hidden state of the LSTM at time step

t− 1.

yprev =

t−1∑

j=0

yj , hD
t = LSTM(et‖yprev,h

D
t−1)

Relation Tuple Extraction

After obtaining the hidden representation of the current tuple
hD
t , we first find the start and end pointers of the two enti-

ties in the source sentence. We concatenate the vector hD
t

with the hidden vectors hE
i of the encoder and pass them to

a Bi-LSTM layer with hidden dimension dp for forward and
backward LSTM. The hidden vectors of this Bi-LSTM layer
hk
i ∈ R

2dp are passed to two feed-forward networks (FFN)
with softmax to convert each hidden vector into two scalar
values between 0 and 1. Softmax operation is applied across
all the words in the input sentence. These two scalar values
represent the probability of the corresponding source sen-
tence token to be the start and end location of the first entity.
This Bi-LSTM layer with the two feed-forward layers is the
first pointer network which identifies the first entity of the

8530

current relation tuple.

ŝ1i = W1
sh

k
i + b1s, ê1i = W1

eh
k
i + b1e

s1 = softmax(ŝ1), e1 = softmax(ê1)

where W1
s ∈ R

1×2dp , W1
e ∈ R

1×2dp , b1s, and b1e are the
weights and bias parameters of the feed-forward layers. s1i ,
e1i represent the normalized probabilities of the ith source
word being the start and end token of the first entity of the
predicted tuple. We use another pointer network to extract
the second entity of the tuple. We concatenate the hidden
vectors hk

i with hD
t and hE

i and pass them to the second
pointer network to obtain s2i and e2i , which represent the nor-
malized probabilities of the ith source word being the start
and end of the second entity. These normalized probabilities
are used to find the vector representation of the two entities,
a1t and a2t .

a1t =

n∑

i=1

s1ih
k
i ‖

n∑

i=1

e1ih
k
i , a2t =

n∑

i=1

s2ih
l
i‖

n∑

i=1

e2ih
l
i

We concatenate the entity vector representations a1t and a2t
with hD

t and pass it to a feed-forward network (FFN) with
softmax to find the relation. This feed-forward layer has a
weight matrix Wr ∈ R

|R|×(8dp+dh) and a bias vector br ∈
R

|R|.

rt = softmax(Wr(a
1
t‖a2t‖hD

t) + br)

zt = Er(argmax(rt)), yt = a1t‖a2t‖zt
rt represents the normalized probabilities of the relation at
time step t. The relation embedding vector zt is obtained
using argmax of rt and Er. yt ∈ R

(8dp+dr) is the vector
representation of the tuple predicted at time step t. During
training, we pass the embedding vector of the gold label re-
lation in place of the predicted relation. So the argmax func-
tion does not affect the back-propagation during training.
The decoder stops the sequence generation process when the
predicted relation is EOS. This is the classification network
of the decoder.

During inference, we select the start and end location of
the two entities such that the product of the four pointer
probabilities is maximized keeping the constraints that the
two entities do not overlap with each other and 1 ≤ b ≤
e ≤ n where b and e are the start and end location of the
corresponding entities. We first choose the start and end lo-
cation of entity 1 based on the maximum product of the
corresponding start and end pointer probabilities. Then we
find entity 2 in a similar way excluding the span of entity
1 to avoid overlap. The same procedure is repeated but this
time we first find entity 2 followed by entity 1. We choose
that pair of entities which gives the higher product of four
pointer probabilities between these two choices. This model
is referred to as PtrNetDecoding (PNDec) henceforth.

Attention Modeling

We experimented with three different attention mechanisms
for our word-level decoding model to obtain the source con-
text vector et:

(1) Avg.: The context vector is obtained by averaging the
hidden vectors of the encoder: et = 1

n

∑n
i=1 h

E
i

(2) N-gram: The context vector is obtained by the N-gram
attention mechanism of Trisedya et al. (2019) with N=3.

agi = (hE
n)

TVgwg
i , αg = softmax(ag)

et = [hE
n ‖

∑N
g=1 W

g(
∑|Gg|

i=1 αg
iw

g
i)]

Here, hE
n is the last hidden state of the encoder, g ∈ {1, 2, 3}

refers to the word gram combination, Gg is the sequence of
g-gram word representations for the input sentence, wg

i is
the ith g-gram vector (2-gram and 3-gram representations
are obtained by average pooling), αg

i is the normalized
attention score for the ith g-gram vector, W ∈ R

dh×dh and
V ∈ R

dh×dh are trainable parameters.
(3) Single: The context vector is obtained by the attention
mechanism proposed by Bahdanau, Cho, and Bengio
(2015). This attention mechanism gives the best perfor-
mance with the word-level decoding model.

ui
t = Wuh

E
i , qi

t = Wqh
D
t−1 + bq ,

ait = va tanh(q
i
t + ui

t), αt = softmax(at),

et =
∑n

i=1 α
i
th

E
i

where Wu ∈ R
dh×dh , Wq ∈ R

dh×dh , and va ∈ R
dh are

all trainable attention parameters and bq ∈ R
dh is a bias

vector. αi
t is the normalized attention score of the ith source

word at the decoding time step t.
For our pointer network-based decoding model, we use

three variants of the single attention model. First, we use
hD
t−1 to calculate qi

t in the attention mechanism. Next, we
use yprev to calculate qi

t, where Wq ∈ R
(8dp+dr)×dh . In

the final variant, we obtain the attentive context vector by
concatenating the two attentive vectors obtained using hD

t−1
and yprev . This gives the best performance with the pointer
network-based decoding model. These variants are referred
to as dechid, tupprev, and combo in Table 4.

Loss Function

We minimize the negative log-likelihood loss of the gener-
ated words for word-level decoding (Lword) and minimize
the sum of negative log-likelihood loss of relation classifica-
tion and the four pointer locations for pointer network-based
decoding (Lptr).

Lword = − 1

B × T

B∑

b=1

T∑

t=1

log(vbt)

Lptr = − 1

B × T

B∑

b=1

T∑

t=1

[log(rbt) +
2∑

c=1

log(sbc,te
b
c,t)]

vbt is the softmax score of the target word at time step t for
the word-level decoding model. r, s, and e are the softmax
score of the corresponding true relation label, true start and
end pointer location of an entity. b, t, and c refer to the bth

8531

training instance, tth time step of decoding, and the two en-
tities of a tuple respectively. B and T are the batch size and
maximum time step of the decoder respectively.

Experiments

Datasets

We focus on the task of extracting multiple tuples with over-
lapping entities from sentences. We choose the New York
Times (NYT) corpus for our experiments. This corpus has
multiple versions, and we choose the following two ver-
sions as their test dataset has significantly larger number of
instances of multiple relation tuples with overlapping enti-
ties. (i) The first version is used by Zeng et al. (2018) (men-
tioned as NYT in their paper) and has 24 relations. We name
this version as NYT24. (ii) The second version is used by
Takanobu et al. (2019) (mentioned as NYT10 in their paper)
and has 29 relations. We name this version as NYT29. We
select 10% of the original training data and use it as the val-
idation dataset. The remaining 90% is used for training. We
include statistics of the training and test datasets in Table 2.

NYT29 NYT24
Train Test Train Test

relations 29 29 24 24
sentences 63,306 4,006 56,196 5,000
tuples 78,973 5,859 88,366 8,120
Entity overlap type
NEO 53,444 2,963 37,371 3,289
EPO 8,379 898 15,124 1,410
SEO 9,862 1,043 18,825 1,711
tuples in a sentence
1 53,001 2,950 36,835 3,240
2 6,154 595 12,065 1,047
3 3,394 187 3,672 314
4 450 239 2,623 290
≥ 5 307 35 1,001 109

Table 2: Statistics of train/test split of the two datasets.

Parameter Settings

We run the Word2Vec (Mikolov et al. 2013) tool on the
NYT corpus to initialize the word embeddings. The char-
acter embeddings and relation embeddings are initialized
randomly. All embeddings are updated during training. We
set the word embedding dimension dw = 300, relation em-
bedding dimension dr = 300, character embedding dimen-
sion dc = 50, and character-based word feature dimension
df = 50. To extract the character-based word feature vector,
we set the CNN filter width at 3 and the maximum length of
a word at 10. The hidden dimension dh of the decoder LSTM
cell is set at 300 and the hidden dimension of the forward and
the backward LSTM of the encoder is set at 150. The hid-
den dimension of the forward and backward LSTM of the
pointer networks is set at dp = 300. The model is trained
with mini-batch size of 32 and the network parameters are
optimized using Adam (Kingma and Ba 2015). Dropout lay-
ers with a dropout rate fixed at 0.3 are used in our network
to avoid overfitting.

Baselines and Evaluation Metrics

We compare our model with the following state-of-the-art
joint entity and relation extraction models:
(1) SPTree (Miwa and Bansal 2016): This is an end-to-end
neural entity and relation extraction model using sequence
LSTM and Tree LSTM. Sequence LSTM is used to identify
all the entities first and then Tree LSTM is used to find the
relation between all pairs of entities.
(2) Tagging (Zheng et al. 2017): This is a neural sequence
tagging model which jointly extracts the entities and rela-
tions using an LSTM encoder and an LSTM decoder. They
used a Cartesian product of entity tags and relation tags
to encode the entity and relation information together. This
model does not work when tuples have overlapping entities.
(3) CopyR (Zeng et al. 2018): This model uses an encoder-
decoder approach for joint extraction of entities and rela-
tions. It copies only the last token of an entity from the
source sentence. Their best performing multi-decoder model
is trained with a fixed number of decoders where each de-
coder extracts one tuple.
(4) HRL (Takanobu et al. 2019): This model uses a reinforce-
ment learning (RL) algorithm with two levels of hierarchy
for tuple extraction. A high-level RL finds the relation and
a low-level RL identifies the two entities using a sequence
tagging approach. This sequence tagging approach cannot
always ensure extraction of exactly two entities.
(5) GraphR (Fu, Li, and Ma 2019): This model considers
each token in a sentence as a node in a graph, and edges
connecting the nodes as relations between them. They use
graph convolution network (GCN) to predict the relations of
every edge and then filter out some of the relations.
(6) N-gram Attention (Trisedya et al. 2019): This model uses
an encoder-decoder approach with N-gram attention mecha-
nism for knowledge-base completion using distantly super-
vised data. The encoder uses the source tokens as its vocabu-
lary and the decoder uses the entire Wikidata (Vrandečić and
Krötzsch 2014) entity IDs and relation IDs as its vocabulary.
The encoder takes the source sentence as input and the de-
coder outputs the two entity IDs and relation ID for every tu-
ple. During training, it uses the mapping of entity names and
their Wikidata IDs of the entire Wikidata for proper align-
ment. Our task of extracting relation tuples with the raw en-
tity names from a sentence is more challenging since entity
names are not of fixed length. Our more generic approach is
also helpful for extracting new entities which are not present
in the existing knowledge bases such as Wikidata. We use
their N-gram attention mechanism in our model to compare
its performance with other attention models (Table 4).

We use the same evaluation method used by Takanobu et
al. (2019) in their experiments. We consider the extracted
tuples as a set and remove the duplicate tuples. An extracted
tuple is considered as correct if the corresponding full entity
names are correct and the relation is also correct. We report
precision, recall, and F1 score for comparison.

Experimental Results

Among the baselines, HRL achieves significantly higher F1
scores on the two datasets. We run their model and our

8532

models five times and report the median results in Table 3.
Scores of other baselines in Table 3 are taken from previous
published papers (Zeng et al. 2018; Takanobu et al. 2019;
Fu, Li, and Ma 2019). Our WordDecoding (WDec) model
achieves F1 scores that are 3.9% and 4.1% higher than HRL
on the NYT29 and NYT24 datasets respectively. Similarly,
our PtrNetDecoding (PNDec) model achieves F1 scores that
are 3.0% and 1.3% higher than HRL on the NYT29 and
NYT24 datasets respectively. We perform a statistical sig-
nificance test (t-test) under a bootstrap pairing between HRL
and our models and see that the higher F1 scores achieved
by our models are statistically significant (p < 0.001). Next,
we combine the outputs of five runs of our models and five
runs of HRL to build ensemble models. For a test instance,
we include those tuples which are extracted in the majority
(≥ 3) of the five runs. This ensemble mechanism increases
the precision significantly on both datasets with a small im-
provement in recall as well. In the ensemble scenario, com-
pared to HRL, WDec achieves 4.2% and 3.5% higher F1
scores and PNDec achieves 4.2% and 2.9% higher F1 scores
on the NYT29 and NYT24 datasets respectively.

NYT29 NYT24
Model Prec. Rec. F1 Prec. Rec. F1
Single
Tagging 0.593 0.381 0.464 0.624 0.317 0.420
CopyR 0.569 0.452 0.504 0.610 0.566 0.587
SPTree 0.492 0.557 0.522 - - -
GraphR - - - 0.639 0.600 0.619
HRL 0.692 0.601 0.643 0.781 0.771 0.776
WDec 0.777 0.608 0.682 0.881 0.761 0.817
PNDec 0.732 0.624 0.673 0.806 0.773 0.789
Ensemble
HRL 0.764 0.604 0.674 0.842 0.778 0.809
WDec 0.846 0.621 0.716 0.945 0.762 0.844
PNDec 0.815 0.639 0.716 0.893 0.788 0.838

Table 3: Performance comparison on the two datasets.

Analysis and Discussion

Ablation Studies

We include the performance of different attention mech-
anisms with our WordDecoding model, effects of our
masking-based copy mechanism, and ablation results of
three variants of the single attention mechanism with our
PtrNetDecoding model in Table 4. WordDecoding with sin-
gle attention achieves the highest F1 score on both datasets.
We also see that our copy mechanism improves F1 scores
by around 4–7% in each attention mechanism with both
datasets. PtrNetDecoding achieves the highest F1 scores
when we combine the two attention mechanisms with re-
spect to the previous hidden vector of the decoder LSTM
(hD

t−1) and representation of all previously extracted tuples
(yprev).

Performance Analysis

From Table 3, we see that CopyR, HRL, and our models
achieve significantly higher F1 scores on the NYT24 dataset
than the NYT29 dataset. Both datasets have a similar set of

NYT29 NYT24
Model Prec. Rec. F1 Prec. Rec. F1
WDec
Avg. 0.638 0.523 0.575 0.771 0.683 0.724
+ copy 0.709 0.561 0.626 0.843 0.717 0.775
N-gram 0.640 0.498 0.560 0.783 0.698 0.738
+ copy 0.739 0.519 0.610 0.847 0.716 0.776
Single 0.683 0.545 0.607 0.816 0.716 0.763
+ copy 0.777 0.608 0.682 0.881 0.761 0.817

PNDec
dechid 0.720 0.615 0.663 0.798 0.772 0.785
tupprev 0.726 0.614 0.665 0.805 0.764 0.784
combo 0.732 0.624 0.673 0.806 0.773 0.789

Table 4: Ablation of attention mechanisms with WordDecod-
ing (WDec) and PtrNetDecoding (PNDec) model.

relations and similar texts (NYT). So task-wise both datasets
should pose a similar challenge. However, the F1 scores sug-
gest that the NYT24 dataset is easier than NYT29. The rea-
son is that NYT24 has around 72.0% of overlapping tuples
between the training and test data (% of test tuples that ap-
pear in the training data with different source sentences). In
contrast, NYT29 has only 41.7% of overlapping tuples. Due
to the memorization power of deep neural networks, it can
achieve much higher F1 score on NYT24. The difference be-
tween the F1 scores of WordDecoding and PtrNetDecoding
on NYT24 is marginally higher than NYT29, since Word-
Decoding has more trainable parameters (about 27 million)
than PtrNetDecoding (about 24.5 million) and NYT24 has
very high tuple overlap. However, their ensemble versions
achieve closer F1 scores on both datasets.

Despite achieving marginally lower F1 scores, the pointer
network-based model can be considered more intuitive and
suitable for this task. WordDecoding may not extract the spe-
cial tokens and relation tokens at the right time steps, which
is critical for finding the tuples from the generated sequence
of words. PtrNetDecoding always extracts two entities of
varying length and a relation for every tuple. We also ob-
serve that PtrNetDecoding is more than two times faster and
takes one-third of the GPU memory of WordDecoding dur-
ing training and inference. This speedup and smaller mem-
ory consumption are achieved due to the fewer number of
decoding steps of PtrNetDecoding compared to WordDe-
coding. PtrNetDecoding extracts an entire tuple at each time
step, whereas WordDecoding extracts just one word at each
time step and so requires eight time steps on average to ex-
tract a tuple (assuming that the average length of an entity
is two). The softmax operation at the projection layer of
WordDecoding is applied across the entire vocabulary and
the vocabulary size can be large (more than 40,000 for our
datasets). In case of PtrNetDecoding, the softmax operation
is applied across the sentence length (maximum of 100 in
our experiments) and across the relation set (24 and 29 for
our datasets). The costly softmax operation and the higher
number of decoding time steps significantly increase the
training and inference time for WordDecoding. The encoder-
decoder model proposed by Trisedya et al. (2019) faces
a similar softmax-related problem as their target vocabu-
lary contains the entire Wikidata entity IDs and relation IDs

8533

which is in the millions. HRL, which uses a deep reinforce-
ment learning algorithm, takes around 8x more time to train
than PtrNetDecoding with a similar GPU configuration. The
speedup and smaller memory consumption will be useful
when we move from sentence-level extraction to document-
level extraction, since document length is much higher than
sentence length and a document contains a higher number of
tuples.

Error Analysis

The relation tuples extracted by a joint model can be erro-
neous for multiple reasons such as: (i) extracted entities are
wrong; (ii) extracted relations are wrong; (iii) pairings of
entities with relations are wrong. To see the effects of the
first two reasons, we analyze the performance of HRL and
our models on entity generation and relation generation sep-
arately. For entity generation, we only consider those enti-
ties which are part of some tuple. For relation generation,
we only consider the relations of the tuples. We include the
performance of our two models and HRL on entity genera-
tion and relation generation in Table 5. Our proposed models
perform better than HRL on both tasks. Comparing our two
models, PtrNetDecoding performs better than WordDecod-
ing on both tasks, although WordDecoding achieves higher
F1 scores in tuple extraction. This suggests that PtrNetDe-
coding makes more errors while pairing the entities with re-
lations. We further analyze the outputs of our models and
HRL to determine the errors due to ordering of entities (Or-
der), mismatch of the first entity (Ent1), and mismatch of
the second entity (Ent2) in Table 6. WordDecoding generates
fewer errors than the other two models in all the categories
and thus achieves the highest F1 scores on both datasets.

Model Prec. Rec. F1

NYT29

Ent
HRL 0.833 0.827 0.830
WDec 0.865 0.812 0.838
PNDec 0.858 0.851 0.855

Rel
HRL 0.846 0.745 0.793
WDec 0.895 0.729 0.803
PNDec 0.884 0.770 0.823

NYT24

Ent
HRL 0.887 0.892 0.890
WDec 0.926 0.858 0.891
PNDec 0.906 0.901 0.903

Rel
HRL 0.906 0.896 0.901
WDec 0.941 0.880 0.909
PNDec 0.930 0.921 0.925

Table 5: Comparison on entity and relation generation tasks.

NYT29 NYT24
Model Order Ent1 Ent2 Order Ent1 Ent2
HRL 0.2 5.9 6.6 0.2 4.7 6.3
WDec 0.0 4.2 4.7 0.0 2.4 2.4
PNDec 0.8 5.6 6.0 1.0 4.0 6.1

Table 6: % errors for wrong ordering and entity mismatch.

Related Work

Traditionally, researchers (Mintz et al. 2009; Riedel, Yao,
and McCallum 2010; Hoffmann et al. 2011; Zeng et al.
2014; 2015; Shen and Huang 2016; Ren et al. 2017; Zhang
et al. 2017; Jat, Khandelwal, and Talukdar 2017; Vashishth
et al. 2018; Ye and Ling 2019; Guo, Zhang, and Lu 2019;
Nayak and Ng 2019) used a pipeline approach for relation
tuple extraction where relations were identified using a clas-
sification network after all entities were detected. Su et al.
(2018) used an encoder-decoder model to extract multiple
relations present between two given entities.

Recently, some researchers (Katiyar and Cardie 2016;
Miwa and Bansal 2016; Bekoulis et al. 2018; Nguyen and
Verspoor 2019) tried to bring these two tasks closer to-
gether by sharing their parameters and optimizing them to-
gether. Zheng et al. (2017) used a sequence tagging scheme
to jointly extract the entities and relations. Zeng et al. (2018)
proposed an encoder-decoder model with copy mechanism
to extract relation tuples with overlapping entities. Takanobu
et al. (2019) proposed a joint extraction model based on rein-
forcement learning (RL). Fu, Li, and Ma (2019) used a graph
convolution network (GCN) where they treated each token
in a sentence as a node in a graph and edges were considered
as relations. Trisedya et al. (2019) used an N-gram attention
mechanism with an encoder-decoder model for completion
of knowledge bases using distant supervised data.

Encoder-decoder models have been used for many NLP
applications such as neural machine translation (Sutskever,
Vinyals, and Le 2014; Bahdanau, Cho, and Bengio 2015;
Luong, Pham, and Manning 2015), sentence generation
from structured data (Marcheggiani and Perez-Beltrachini
2018; Trisedya et al. 2018), and open information extrac-
tion (Zhang, Duh, and Van Durme 2017; Cui, Wei, and
Zhou 2018). Pointer networks (Vinyals, Fortunato, and Jaitly
2015) have been used to extract a text span from text
for tasks such as question answering (Seo et al. 2017;
Kundu and Ng 2018). For the first time, we use pointer net-
works with an encoder-decoder model to extract relation tu-
ples from sentences.

Conclusion

Extracting relation tuples from sentences is a challenging
task due to different length of entities, the presence of mul-
tiple tuples, and overlapping of entities among tuples. In
this paper, we propose two novel approaches using encoder-
decoder architecture to address this task. Experiments on
the New York Times (NYT) corpus show that our proposed
models achieve significantly improved new state-of-the-art
F1 scores. As future work, we would like to explore our pro-
posed models for a document-level tuple extraction task.

Acknowledgments

We would like to thank the anonymous reviewers for their
valuable and constructive comments on this paper.

8534

References

Bahdanau, D.; Cho, K.; and Bengio, Y. 2015. Neural ma-
chine translation by jointly learning to align and translate. In
ICLR.
Bekoulis, G.; Deleu, J.; Demeester, T.; and Develder, C.
2018. Joint entity recognition and relation extraction as a
multi-head selection problem. Expert Systems with Applica-
tions.
Chiu, J., and Nichols, E. 2016. Named entity recognition
with bidirectional LSTM-CNNs. TACL.
Cui, L.; Wei, F.; and Zhou, M. 2018. Neural open informa-
tion extraction. In ACL.
Fu, T.-J.; Li, P.-H.; and Ma, W.-Y. 2019. GraphRel: Mod-
eling text as relational graphs for joint entity and relation
extraction. In ACL.
Guo, Z.; Zhang, Y.; and Lu, W. 2019. Attention guided
graph convolutional networks for relation extraction. In
ACL.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural Computation.
Hoffmann, R.; Zhang, C.; Ling, X.; Zettlemoyer, L.; and
Weld, D. S. 2011. Knowledge-based weak supervision for
information extraction of overlapping relations. In ACL.
Jat, S.; Khandelwal, S.; and Talukdar, P. 2017. Improving
distantly supervised relation extraction using word and en-
tity based attention. In AKBC.
Katiyar, A., and Cardie, C. 2016. Investigating LSTMs for
joint extraction of opinion entities and relations. In ACL.
Kingma, D. P., and Ba, J. 2015. Adam: A method for
stochastic optimization. In ICLR.
Kundu, S., and Ng, H. T. 2018. A question-focused multi-
factor attention network for question answering. In AAAI.
Luong, M.-T.; Pham, H.; and Manning, C. D. 2015. Effec-
tive approaches to attention-based neural machine transla-
tion. In EMNLP.
Marcheggiani, D., and Perez-Beltrachini, L. 2018. Deep
graph convolutional encoders for structured data to text gen-
eration. In ICNLG.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In NIPS.
Mintz, M.; Bills, S.; Snow, R.; and Jurafsky, D. 2009. Dis-
tant supervision for relation extraction without labeled data.
In ACL.
Miwa, M., and Bansal, M. 2016. End-to-end relation ex-
traction using LSTMs on sequences and tree structures. In
ACL.
Nayak, T., and Ng, H. T. 2019. Effective attention modeling
for neural relation extraction. In CoNLL.
Nguyen, D. Q., and Verspoor, K. 2019. End-to-end neural
relation extraction using deep biaffine attention. In ECIR.
Ren, X.; Wu, Z.; He, W.; Qu, M.; Voss, C. R.; Ji, H.; Ab-
delzaher, T. F.; and Han, J. 2017. CoType: Joint extraction of
typed entities and relations with knowledge bases. In WWW.

Riedel, S.; Yao, L.; and McCallum, A. 2010. Modeling
relations and their mentions without labeled text. ML and
KDD.
Seo, M.; Kembhavi, A.; Farhadi, A.; and Hajishirzi, H. 2017.
Bidirectional attention flow for machine comprehension. In
ICLR.
Shen, Y., and Huang, X. 2016. Attention-based convolu-
tional neural network for semantic relation extraction. In
ICCL.
Su, S.; Jia, N.; Cheng, X.; Zhu, S.; and Li, R. 2018. Explor-
ing encoder-decoder model for distant supervised relation
extraction. In IJCAI.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to
sequence learning with neural networks. In NIPS.
Takanobu, R.; Zhang, T.; Liu, J.; and Huang, M. 2019. A hi-
erarchical framework for relation extraction with reinforce-
ment learning. In AAAI.
Trisedya, B. D.; Qi, J.; Zhang, R.; and Wang, W. 2018. GTR-
LSTM: A triple encoder for sentence generation from RDF
data. In ACL.
Trisedya, B. D.; Weikum, G.; Qi, J.; and Zhang, R. 2019.
Neural relation extraction for knowledge base enrichment.
In ACL.
Vashishth, S.; Joshi, R.; Prayaga, S. S.; Bhattacharyya,
C.; and Talukdar, P. 2018. Reside: Improving distantly-
supervised neural relation extraction using side information.
In EMNLP.
Vinyals, O.; Fortunato, M.; and Jaitly, N. 2015. Pointer
networks. In NIPS.
Vrandečić, D., and Krötzsch, M. 2014. Wikidata: A free
collaborative knowledge base. Communications of the ACM.
Ye, Z.-X., and Ling, Z.-H. 2019. Distant supervision relation
extraction with intra-bag and inter-bag attentions. In ACL.
Zeng, D.; Liu, K.; Lai, S.; Zhou, G.; and Zhao, J. 2014. Re-
lation classification via convolutional deep neural network.
In COLING.
Zeng, D.; Liu, K.; Chen, Y.; and Zhao, J. 2015. Distant su-
pervision for relation extraction via piecewise convolutional
neural networks. In EMNLP.
Zeng, X.; Zeng, D.; He, S.; Liu, K.; and Zhao, J. 2018. Ex-
tracting relational facts by an end-to-end neural model with
copy mechanism. In ACL.
Zhang, Y.; Zhong, V.; Chen, D.; Angeli, G.; and Manning,
C. D. 2017. Position-aware attention and supervised data
improve slot filling. In EMNLP.
Zhang, S.; Duh, K.; and Van Durme, B. 2017. MT/IE: Cross-
lingual open information extraction with neural sequence-
to-sequence models. In EACL.
Zheng, S.; Wang, F.; Bao, H.; Hao, Y.; Zhou, P.; and Xu, B.
2017. Joint extraction of entities and relations based on a
novel tagging scheme. In ACL.

8535

