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Abstract

Graph neural networks have recently emerged as a very effec-
tive framework for processing graph-structured data. These
models have achieved state-of-the-art performance in many
tasks. Most graph neural networks can be described in terms
of message passing, vertex update, and readout functions. In
this paper, we represent documents as word co-occurrence
networks and propose an application of the message passing
framework to NLP, the Message Passing Attention network
for Document understanding (MPAD). We also propose sev-
eral hierarchical variants of MPAD. Experiments conducted
on 10 standard text classification datasets show that our ar-
chitectures are competitive with the state-of-the-art. Ablation
studies reveal further insights about the impact of the differ-
ent components on performance. Code is publicly available
at: https://github.com/giannisnik/mpad.

1 Introduction

The concept of message passing over graphs has been
around for many years (Weisfeiler and Lehman 1968; Mur-
phy, Weiss, and Jordan 1999), as well as that of graph neu-
ral networks (GNNs) (Gori, Monfardini, and Scarselli 2005;
Scarselli et al. 2008). However, GNNs have only recently
started to be closely investigated, following the advent of
deep learning. Some notable examples include (Duvenaud
et al. 2015; Battaglia et al. 2016; Li et al. 2016; Defferrard,
Bresson, and Vandergheynst 2016; Kearnes et al. 2016; Kipf
and Welling 2016; Hamilton, Ying, and Leskovec 2017;
Veličković et al. 2017; Xu et al. 2018b). These approaches
are known as spectral. Their similarity with message passing
(MP) was observed by (Kipf and Welling 2016) and formal-
ized by (Gilmer et al. 2017) and (Xu et al. 2018a).

The MP framework is based on the core idea of recur-
sive neighborhood aggregation. That is, at every iteration,
the representation of each vertex is updated based on mes-
sages received from its neighbors. The majority of the spec-
tral GNNs can be described in terms of the MP framework.

GNNs have been applied with great success to bioinfor-
matics and social network data, for node classification, link
prediction, and graph classification. However, a few studies
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only have focused on the application of the MP framework
to representation learning on text. This paper proposes one
such application. More precisely, we represent documents
as word co-occurrence networks, and develop an expres-
sive MP GNN tailored to document understanding, the Mes-
sage Passing Attention network for Document understand-
ing (MPAD). We also propose several hierarchical variants
of MPAD. Evaluation on 10 document classification datasets
shows that our architectures learn representations that are
competitive with the state-of-the-art. Furthermore, ablation
experiments shed light on the impact of various architectural
choices.

In what follows, we first provide some background about
the MP framework (sec. 2), thoroughly describe and ex-
plain MPAD (sec. 3), present our experimental framework
(sec. 4), report and interpret our results (sec. 5), and provide
a review of the relevant literature (sec. 6).

2 Message Passing Neural Networks

(Gilmer et al. 2017) proposed a MP framework under which
many of the recently introduced GNNs can be reformu-
lated1. MP consists in an aggregation phase followed by a
combination phase (Xu et al. 2018a). More precisely, let
G = (V,E) be a graph, and let us consider v ∈ V . At
time t + 1, a message vector mt+1

v is computed from the
representations of the neighbors N (v) of v:

mt+1
v = AGGREGATEt+1

({
ht
w | w ∈ N (v)

})
(1)

The new representation ht+1
v of v is then computed by com-

bining its current feature vector ht
v with the message vector

mt+1
v :

ht+1
v = COMBINEt+1

(
ht
v,m

t+1
v

)
(2)

Messages are passed for T time steps. Each step is imple-
mented by a different layer of the MP network. Hence, iter-
ations correspond to network depth. The final feature vector
hT
v of v is based on messages propagated from all the nodes

in the subtree of height T rooted at v. It captures both the

1Note that some GNNs, known as spatial, are not based on
MP (Niepert, Ahmed, and Kutzkov 2016; Nikolentzos et al. 2018;
Tixier et al. 2019).
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topology of the neighborhood of v and the distribution of
the vertex representations in it.

If a graph-level feature vector is needed, e.g., for classi-
fication or regression, a READOUT pooling function, that
must be invariant to permutations, is applied:

hG = READOUT
({

hT
v | v ∈ V

})
(3)

Next, we present the MP network we developed for docu-
ment understanding.

3 Message Passing Attention network for

Document understanding (MPAD)

3.1 Word co-occurrence networks

We represent a document as a statistical word co-occurrence
network (Mihalcea and Tarau 2004) with a sliding window
of size 2 overspanning sentences. Let us denote that graph
by G = (V,E). Each unique word in the preprocessed docu-
ment is represented by a node in G, and an edge is added be-
tween two nodes if they are found together in at least one in-
stantiation of the window. G is directed and weighted: edge
directions and weights respectively capture text flow and co-
occurrence counts.
G is a compact representation of its document. In G,

immediate neighbors are consecutive words in the same
sentence2. That is, paths of length 2 correspond to bi-
grams. Paths of length more than 2 can correspond either
to traditional n-grams or to relaxed n-grams, that is, words
that never appear in the same sentence but co-occur with
the same word(s). Such nodes are linked through common
neighbors.
Master node. Inspired by (Scarselli et al. 2008), our graph
G also includes a special document node, linked to all other
nodes via unit weight bi-directional edges. In what follows,
let us denote by n the number of nodes in G, including the
master node.

3.2 Message passing

We formulate our AGGREGATE function as:

Mt+1 = MLPt+1
(
D−1AHt

)
(4)

where Ht ∈ R
n×d contains node features (d is a hyperpa-

rameter3), and A ∈ R
n×n is the adjacency matrix of G.

Since G is directed, A is asymmetric. Also, A has zero
diagonal as we choose not to consider the feature of the
node itself, only that of its incoming neighbors, when up-
dating its representation4. Since G is weighted, the ith row
of A contains the weights of the edges incoming on node
vi. D ∈ R

n×n is the diagonal in-degree matrix of G. MLP
denotes a multi-layer perceptron, and Mt+1 ∈ R

n×d is the
message matrix.

2except for words at the end/beginning of two successive sen-
tences.

3at t=0, d is equal to the dimensionality of the pretrained word
embeddings.

4the feature of the node itself is already taken into account by
our GRU-based COMBINE function (see Eq. 5).

The use of a MLP was motivated by the observation that
for graph classification, MP neural nets with 1-layer per-
ceptrons are inferior to their MLP counterparts (Xu et al.
2018a). Indeed, 1-layer perceptrons are not universal ap-
proximators of multiset functions. Note that like in (Xu et
al. 2018a), we use a different MLP at each layer.
Renormalization. The rows of D−1A sum to 1. This is
equivalent to the renormalization trick of (Kipf and Welling
2016), but using only the in-degrees. That is, instead of com-
puting a weighted sum of the incoming neighbors’ feature
vectors, we compute a weighted average of them. The co-
efficients are proportional to the strength of co-occurrence
between words. One should note that by averaging, we lose
the ability to distinguish between different neighborhood
structures in some special cases, that is, we lose injectiv-
ity. Such cases include neighborhoods in which all nodes
have the same representations, and neighborhoods of differ-
ent sizes containing various representations in equal propor-
tions (Xu et al. 2018a). As suggested by the results of an ab-
lation experiment, averaging is better than summing in our
application (see subsection 5.2). Note that instead of simply
summing/averaging, we also tried using GAT-like attention
(Veličković et al. 2017) in early experiments, without ob-
taining better results.

As far as our COMBINE function, we use the Gated Re-
current Unit (Cho et al. 2014; Chung et al. 2014):

Ht+1 = GRU(Ht,Mt+1) (5)

Omitting biases for readability, we have:

Rt+1 = σ(Wt+1
R Mt+1 +Ut+1

R Ht)

Zt+1 = σ(Wt+1
Z Mt+1 +Ut+1

Z Ht)

H̃t+1 = tanh(Wt+1Mt+1 +Ut+1(Rt+1 �Ht))

Ht+1 = (1− Zt+1)�Ht + Zt+1 � H̃t+1

(6)

where the W and U are trainable weight matrices not shared
across time steps, σ(x) = 1/(1 + exp(−x)) is the sigmoid
function, and R and Z are the parameters of the reset and up-
date gates. The reset gate controls the amount of information
from the previous time step (in Ht) that should propagate
to the candidate representations, H̃t+1. The new represen-
tations Ht+1 are finally obtained by linearly interpolating
between the previous and the candidate ones, using the co-
efficients returned by the update gate.
Interpretation. Updating node representations through a
GRU should in principle allow nodes to encode a combi-
nation of local and global signals (low and high values of t,
resp.), by allowing them to remember about past iterations.
In addition, we also explicitly consider node representations
at all iterations when reading out (see Eq. 8).

3.3 Readout

After passing messages and performing updates for T iter-
ations, we obtain a matrix HT ∈ R

n×d containing the fi-
nal vertex representations. Let Ĝ be graph G without the
special document node and its adjacent edges, and matrix
ĤT ∈ R

(n−1)×d be the corresponding representation ma-
trix (i.e., HT without the row of the document node).
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We use as our READOUT function the concatenation
of self-attention applied to ĤT with the final document
node representation. More precisely, we apply a global self-
attention mechanism (Lin et al. 2017) to the rows of ĤT .
As shown in Eq. 7, ĤT is first passed to a dense layer pa-
rameterized by matrix WT

A ∈ R
d×d. An alignment vector α

is then derived by comparing, via dot products, the rows of
the output of the dense layer YT ∈ R

(n−1)×d with a train-
able vector vT ∈ R

d (initialized randomly) and normalizing
with a softmax. The normalized alignment coefficients are
finally used to compute the attentional vector uT ∈ R

d as a
weighted sum of the final representations ĤT .

YT = tanh(ĤTWT
A)

αT
i =

exp(Yi
T · vT )

∑n−1
j=1 exp(Yj

T · vT )

uT =

n−1∑

i=1

αT
i Ĥ

T
i

(7)

Note that we tried with multiple context vectors, i.e., with a
matrix VT instead of a vector vT , like in (Lin et al. 2017),
but results were not convincing, even when adding a regu-
larization term to the loss to favor diversity among the rows
of VT .
Master node skip connection. hT

G ∈ R
2d is obtained by

concatenating uT and the final master node representation.
That is, the master node vector bypasses the attention mech-
anism. This is equivalent to a skip or shortcut connection (He
et al. 2016). The reason behind this choice is that we expect
the special document node to learn a high-level summary
about the document, such as its size, vocabulary, etc. (more
details are given in subsection 5.2). Therefore, by making
the master node bypass the attention layer, we directly inject
global information about the document into its final repre-
sentation.
Multi-readout. (Xu et al. 2018a), inspired by Jumping
Knowledge Networks (Xu et al. 2018b), recommend to not
only use the final representations when performing readout,
but also that of the earlier steps. Indeed, as one iterates, node
features capture more and more global information. How-
ever, retaining more local, intermediary information might
be useful too. Thus, instead of applying the readout function
only to t = T , we apply it to all time steps and concatenate
the results, finally obtaining hG ∈ R

T×2d :
hG = CONCAT

(
READOUT

(
Ht

) | t = 1 . . . T
)

(8)
In effect, with this modification, we take into account fea-
tures based on information aggregated from subtrees of dif-
ferent heights (from 1 to T ), corresponding to local and
global features.

3.4 Hierarchical variants of MPAD

Through the successive MP iterations, it could be argued
that MPAD implicitly captures some soft notion of the hi-
erarchical structure of documents (words → bigrams →
compositions of bigrams, etc.). However, it might be ben-
eficial to explicitly capture document hierarchy. Hierarchi-
cal architectures have brought significant improvements to
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Figure 1: Illustration of MPAD-path (�: master node).

many NLP tasks, such as language modeling and genera-
tion (Lin et al. 2015; Li, Luong, and Jurafsky 2015), sen-
timent and topic classification (Tang, Qin, and Liu 2015;
Yang et al. 2016), and spoken language understanding (Ra-
heja and Tetreault 2019; Shang et al. 2019). Inspired by this
line of research, we propose several hierarchical variants of
MPAD, detailed in what follows. In all of them, we repre-
sent each sentence in the document as a word co-occurrence
network, and obtain an embedding for it by applying MPAD
as previously described.
MPAD-sentence-att. Here, the sentence embeddings are
simply combined through self-attention.
MPAD-clique. In this variant, we build a complete graph
where each node represents a sentence. We then feed that
graph to MPAD, where the feature vectors of the nodes
are initialized with the sentence embeddings previously ob-
tained.
MPAD-path. This variant, shown in Fig. 1, is similar to the
clique one, except that instead of a complete graph, we build
a path according to the natural flow of the text. That is, two
nodes are linked by a directed edge if the two sentences they
represent follow each other in the document.

Note that the sentence graphs in MPAD-clique and
MPAD-path do not feature a master node.

4 Experiments

4.1 Datasets

We evaluate the quality of the document embeddings learned
by MPAD on 10 document classification datasets, covering
the topic identification, coarse and fine sentiment analysis
and opinion mining, and subjectivity detection tasks. We
briefly introduce the datasets next. Their statistics are re-
ported in Table 1.
(1) Reuters contains stories from the Reuters news agency.
We used the ModApte split, removed documents belonging
to multiple classes and considered only the 8 classes with
the highest number of training examples.
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Dataset
# training # test

# classes av. # words max # words voc. size
# pretrained

examples examples words

Reuters 5,485 2,189 8 102.3 964 23,585 15,587
Snippets 10,060 2,280 8 18.0 50 29,257 17,142

BBCSport 737 CV 5 380.5 1,818 14,340 13,390
Polarity 10,662 CV 2 20.3 56 18,777 16,416

Subjectivity 10,000 CV 2 23.3 120 21,335 17,896
MPQA 10,606 CV 2 3.0 36 6,248 6,085
IMDB 25,000 25,000 2 254.3 2,633 141,655 104,391
TREC 5,452 500 6 10.0 37 9,593 9,125
SST-1 157,918 2,210 5 7.4 53 17,833 16,262
SST-2 77,833 1,821 2 9.5 53 17,237 15,756

Yelp2013 301,514 33,504 5 143.7 1,184 48,212 48,212

Table 1: Statistics of the datasets used in our experiments. CV indicates that cross-validation was used. # pretrained words refers
to the number of words in the vocabulary having an entry in the Google News word vectors (except for Yelp2013).

(2) BBCSport (Greene and Cunningham 2006) contains
sports news articles from the BBC Sport website.
(3) Polarity (Pang and Lee 2005) features positive and neg-
ative labeled snippets from Rotten Tomatoes.
(4) Subjectivity (Pang and Lee 2004) contains movie review
snippets from Rotten Tomatoes (subjective sentences), and
IMDB plot summaries (objective sentences).
(5) MPQA (Wiebe, Wilson, and Cardie 2005) is made of
positive and negative phrases, annotated as part of the sum-
mer 2002 NRRC Workshop on Multi-Perspective Question
Answering.
(6) IMDB (Maas et al. 2011) is a collection of highly polar-
ized movie reviews (positive/negative).
(7) TREC (Li and Roth 2002) consists of questions that are
classified into 6 different categories.
(8) SST-1 (Socher et al. 2013) contains the same snippets
as Polarity, split into multiple sentences and annotated with
fine-grained polarity (from very negative to very positive).
(9) SST-2 (Socher et al. 2013) is the same as SST-1 but with
neutral reviews removed and snippets classified as positive
or negative.
(10) Yelp2013 (Tang, Qin, and Liu 2015) features reviews
obtained from the 2013 Yelp Dataset Challenge.

4.2 Baselines

We evaluate MPAD against multiple state-of-the-art baseline
models, including hierarchical ones, to enable fair compari-
son with the hierarchical MPAD variants.
Doc2vec (Le and Mikolov 2014) is an extension of
word2vec that learns vectors for documents in a fully un-
supervised manner. Document embeddings are then fed to a
logistic regression classifier.
CNN (Kim 2014). 1D convolutional neural network where
the word embeddings are used as channels (depth dimen-
sions).
DAN (Iyyer et al. 2015). The Deep Averaging Network
passes the unweighted average of the embeddings of the in-
put words through multiple dense layers and a final softmax.
Tree-LSTM (Tai, Socher, and Manning 2015) is a general-
ization of the standard LSTM architecture to constituency
and dependency parse trees.
DRNN (Irsoy and Cardie 2014). Recursive neural networks
are stacked and applied to parse trees.

LSTMN (Cheng, Dong, and Lapata 2016) is an extension
of the LSTM model where the memory cell is replaced by a
memory network which stores word representations.
C-LSTM (Zhou et al. 2015) combines convolutional and re-
current neural networks. The region embeddings provided
by a CNN are fed to a LSTM.
SPGK (Nikolentzos et al. 2017) also models documents as
word co-occurrence networks. It computes a graph kernel
that compares shortest paths extracted from the word co-
occurrence networks and then relies on a SVM.
WMD (Kusner et al. 2015) is an application of the well-
known Earth Mover’s Distance to text. A k-nearest neighbor
classifier is used.
DiSAN (Shen et al. 2018) uses directional self-attention
along with multi-dimensional attention to generate docu-
ment representations.
LSTM-GRNN (Tang, Qin, and Liu 2015) is a hierarchical
model where sentence embeddings are obtained with a CNN
and a GRU-RNN is fed the sentence representations to ob-
tain a document vector.
HN-ATT (Yang et al. 2016) is another hierarchical model,
where the same encoder architecture (a bidirectional GRU-
RNN) is used for both sentences and documents. Self-
attention is applied at each level.

4.3 Model configuration and training

We preprocess all datasets using the code of (Kim 2014).
On Yelp2013, we also replace all tokens appearing strictly
less than 6 times with a special UNK token, like in (Yang
et al. 2016). We then build a directed word co-occurrence
network from each document, with a window of size 2.

We use two MP iterations (T=2) for the basic MPAD, and
two MP iterations at each level, for the hierarchical variants.
The output of the readout goes through a dense layer before
reaching the final classification layer (or the next level, at
the first level of MPAD-path and MPAD-clique). We set d to
64, except on IMDB and Yelp on which d = 128, and use a
two-layer MLP. The final graph representations are passed
through a softmax for classification. All our dense layers
(except in self-attention) use ReLU activation. We train
MPAD in an end-to-end fashion by minimizing the cross-
entropy loss function with the Adam optimizer (Kingma and
Ba 2014) and an initial learning rate of 0.001.
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To regulate potential differences in magnitude, we apply
batch normalization after concatenating the feature vector
of the master node with the self-attentional vector, that is,
after the skip connection (see subsection 3.3). To prevent
overfitting, we use dropout (Srivastava et al. 2014) with a
rate of 0.5. We select the best epoch, capped at 200, based
on the validation accuracy. When cross-validation is used
(see 3rd column of Table 1), we construct a validation set by
randomly sampling 10% of the training set of each fold.

On all datasets except Yelp2013, we use the publicly
available5 300-dimensional pre-trained Google News vec-
tors (Mikolov et al. 2013) to initialize the node representa-
tions H0. On Yelp2013, we follow (Yang et al. 2016) and
learn our own word vectors from the training and validation
sets with the gensim implementation of word2vec (Řehůřek
and Sojka 2010). MPAD was implemented in Python 3.6 us-
ing the PyTorch library. All experiments were run on a single
machine consisting of a 3.4 GHz Intel Core i7 CPU with 16
GB of RAM and an NVidia GeForce Titan Xp GPU.

5 Results and ablations

5.1 Results

Experimental results are shown in Table 2. For the base-
lines, we provide the scores reported in the original pa-
pers. Furthermore, we have evaluated some of the baselines
on the rest of our benchmark datasets, and we also report
these scores. MPAD reaches best performance on 5 out of
10 datasets, and is close second elsewhere. Moreover, the 5
datasets on which MPAD ranks first widely differ in training
set size, number of categories, and prediction task (topic,
sentiment, etc.), which indicates that MPAD can perform
well in different settings.
MPAD vs. hierarchical variants. On 9 datasets out of 10,
one or more of the hierarchical variants outperform the
vanilla MPAD architecture, highlighting the benefit of ex-
plicitly modeling the hierarchical nature of documents.

However, on Subjectivity, standard MPAD outperforms
all hierarchical variants. On TREC, it reaches the same ac-
curacy. We hypothesize that in some cases, using a different
graph to separately encode each sentence might be worse
than using one single graph to directly encode the docu-
ment. Indeed, in the single document graph, some words that
never appear in the same sentence can be connected through
common neighbors, as was explained in subsection 3.1. So,
this way, some notion of cross-sentence context is captured
while learning representations of words, bigrams, etc. at
each MP iteration. This creates better informed representa-
tions, resulting in a better document embedding. With the hi-
erarchical variants, on the other hand, each sentence vector
is produced in isolation, without any contextual information
about the other sentences in the document. Therefore, the
final sentence embeddings might be of lower quality, and
as a group might also contain redundant/repeated informa-
tion. When the sentence vectors are finally combined into a
document representation, it is too late to take context into
account.

5https://code.google.com/archive/p/word2vec

5.2 Ablation studies

To understand the impact of some hyperparameters on
performance, we conducted additional experiments on
the Reuters, Polarity, and IMDB datasets, with the non-
hierarchical version of MPAD. Results are shown in Table 3.
Number of MP iterations. First, we varied the number of
message passing iterations from 1 to 4. We can clearly see in
Table 3 that having more iterations improves performance.
We attribute this to the fact that we are reading out at each it-
eration from 1 to T (see Eq. 8), which enables the final graph
representation to encode a mixture of low-level and high-
level features. Indeed, in initial experiments involving read-
out at t=T only, setting T ≥ 2 was always decreasing perfor-
mance, despite the GRU-based updates (Eq. 5)6. These re-
sults were consistent with that of (Yao, Mao, and Luo 2019)
and (Kipf and Welling 2016), who both are reading out only
at t=T too. We hypothesize that node features at T ≥ 2 are
too diffuse to be entirely relied upon during readout. More
precisely, initially at t=0, node representations capture infor-
mation about words, at t=1, about their 1-hop neighborhood
(bigrams), at t=2, about compositions of bigrams, etc. Thus,
pretty quickly, node features become general and diffuse. In
such cases, considering also the lower-level, more precise
features of the earlier iterations when reading out may be
necessary.
Undirected edges. On Reuters, using an undirected graph
leads to better performance, while on Polarity and IMDB,
it is the opposite. This can be explained by the fact that
Reuters is a topic classification task, for which the presence
or absence of some patterns is important, but not necessar-
ily the order in which they appear, while Polarity and IMDB
are sentiment analysis tasks. To capture sentiment, modeling
word order is crucial, e.g., in detecting negation.
No master node. Removing the master node deteriorates
performance across all datasets, clearly showing the value
of having such a node. We hypothesize that since the special
document node is connected to all other nodes, it is able to
encode during message passing a summary of the document.
No renormalization. Here, we do not use the renormaliza-
tion trick of (Kipf and Welling 2016) during MP (see subsec-
tion 3.2). That is, Eq. 4 becomes Mt+1 = MLPt+1

(
AHt

)
.

In other words, instead of computing a weighted average
of the incoming neighbors’ feature vectors, we compute a
weighted sum of them7. Unlike the mean, which captures
distributions, the sum captures structural information (Xu et
al. 2018a). As shown in Table 3, using sum instead of mean
decreases performance everywhere, suggesting that in our
application, capturing the distribution of neighbor represen-
tations is more important that capturing their structure. We
hypothesize that this is the case because statistical word co-
occurrence networks tend to have similar structural proper-
ties, regardless of the topic, polarity, sentiment, etc. of the
corresponding documents.
Neighbors-only. In this experiment, we replaced the GRU
COMBINE function (see Eq. 5) with the identity function.

6The GRU should in principle enable nodes to retain locality in
their representations, by remembering about early iterations.

7Weights are co-occurrence counts, as before.
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Model Reut. BBC Pol. Subj. MPQA IMDB TREC SST-1 SST-2 Yelp’13
doc2vec (Le and Mikolov 2014) 95.34 98.64 67.30 88.27 82.57 92.5 70.80 48.7 87.8 57.7
CNN (Kim 2014) 97.21 98.37 81.5 93.4 89.5 90.28 93.6 48.0 87.2 64.89
DAN (Iyyer et al. 2015) 94.79 94.30 80.3 92.44 88.91 89.4 89.60 47.7 86.3 61.55
Tree-LSTM (Tai, Socher, and Manning 2015) - - - - - - - 51.0 88.0 -
DRNN (Irsoy and Cardie 2014) - - - - - - - 49.8 86.6 -
LSTMN (Cheng, Dong, and Lapata 2016) - - - - - - - 47.9 87.0 -
C-LSTM (Zhou et al. 2015) - - - - - - 94.6 49.2 87.8 -
SPGK (Nikolentzos et al. 2017) 96.39 94.97 77.89 91.48 85.78 OOM 90.69 OOM OOM OOM
WMD (Kusner et al. 2015) 96.5 98.71 66.42 86.04 83.95 OOM 73.40 OOM OOM OOM
DiSAN (Shen et al. 2018) 97.35 96.05 80.38 94.2 90.1 83.25 94.2 51.72 86.76 60.51
LSTM-GRNN (Tang, Qin, and Liu 2015) 96.16 95.52 79.98 92.38 89.08 89.98 89.40 48.09 86.38 65.1
HN-ATT (Yang et al. 2016) 97.25 96.73 80.78 92.92 89.08 90.06 90.80 49.00 86.71 68.2

MPAD 97.07 98.37 80.24 93.46* 90.02 91.30 95.60* 49.09 87.80 66.16
MPAD-sentence-att 96.89 99.32 80.44 93.02 90.12* 91.70 95.60* 49.95* 88.30* 66.47
MPAD-clique 97.57* 99.72* 81.17* 92.82 89.96 91.87* 95.20 48.86 87.91 66.60
MPAD-path 97.44 99.59 80.46 93.31 89.81 91.84 93.80 49.68 87.75 66.80*

Table 2: Classification accuracies. Best performance per column in bold, *best MPAD variant. OOM: >16GB RAM.

MPAD variant Reut. Pol. IMDB
MPAD 1MP 96.57 79.91 90.57
MPAD 2MP* 97.07 80.24 91.30

MPAD 3MP 97.07 80.20 91.24
MPAD 4MP 97.48 80.52 91.30

MPAD 2MP undirected 97.35 80.05 90.97
MPAD 2MP no master node 96.66 79.15 91.09
MPAD 2MP no renormalization 96.02 79.84 91.16
MPAD 2MP neighbors-only 97.12 79.22 89.50
MPAD 2MP no master node skip connection 96.93 80.62 91.12

Table 3: Ablation results. The n in nMP refers to the num-
ber of message passing iterations. *vanilla model (MPAD in
Table 2).

That is, we simply have Ht+1=Mt+1. Since A has zero
diagonal, by doing so, we completely ignore the previous
feature of the node itself when updating its representation.
That is, the update is based entirely on its neighbors. Except
on Reuters (almost no change), performance always suffers,
stressing the need to take into account the root node during
updates and not only its neighborhood.
No master node skip connection. Here, the master node
does not bypass the attention mechanism and is treated as a
normal node. This leads to better performance on Polarity,
but slightly worse performance on Reuters and IMDB.

6 Related work

(Kipf and Welling 2016; Atwood and Towsley 2016;
Veličković et al. 2017; Hamilton, Ying, and Leskovec 2017)
conduct some node classification experiments on citation
networks, where nodes are scientific papers, i.e., textual
data. However, text is only used to derive node feature vec-
tors. The external graph structure, which plays a central role
in determining node labels, is completely unrelated to text.

On the other hand, (Henaff, Bruna, and LeCun 2015;
Defferrard, Bresson, and Vandergheynst 2016) experiment
on traditional document classification tasks. They both build
k-nearest neighbor similarity graphs based on the Gaussian
diffusion kernel. More precisely, (Henaff, Bruna, and LeCun

2015) build one single graph where nodes are documents
and distance is computed in the BoW space. Node features
are then used for classification. Closer to our work, (Deffer-
rard, Bresson, and Vandergheynst 2016) represent each doc-
ument as a graph. All document graphs are derived from the
same underlying structure. Only node features, correspond-
ing to the entries of the documents’ BoW vectors, vary. The
underlying, shared structure is that of a k-NN graph where
nodes are vocabulary terms and similarity is the cosine of
the word embedding vectors. (Defferrard, Bresson, and Van-
dergheynst 2016) then perform graph classification. How-
ever they found performance to be lower than that of a naive
Bayes classifier.

(Peng et al. 2018) use a GNN for hierarchical classifica-
tion into a large taxonomy of topics. This task differs from
traditional document classification. The authors represent
documents as unweighted, undirected word co-occurrence
networks with word embeddings as node features. They
then use the spatial GNN of (Niepert, Ahmed, and Kutzkov
2016) to perform graph classification.

The work closest to ours is probably that of (Yao, Mao,
and Luo 2019). The authors adopt the semi-supervised node
classification approach of (Kipf and Welling 2016). They
build one single undirected graph from the entire dataset,
with both word and document nodes. Document-word
edges are weighted by TF-IDF and word-word edges are
weighted by pointwise mutual information derived from co-
occurrence within a sliding window. There are no document-
document edges. The GNN is trained based on the cross-
entropy loss computed only for the labeled nodes, that is, the
documents in the training set. When the final node represen-
tations are obtained, one can use that of the test documents
to classify them and evaluate prediction performance.

There are significant differences between (Yao, Mao, and
Luo 2019) and our work. First, our approach is inductive8,
not transductive. Indeed, while the node classification ap-
proach of (Yao, Mao, and Luo 2019) requires all test doc-

8Note that other GNNs used in inductive settings can be found
(Hamilton, Ying, and Leskovec 2017; Veličković et al. 2017).
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uments at training time, our graph classification model is
able to perform inference on new, never-seen documents.
The downside of representing documents as separate graphs,
however, is that we lose the ability to capture corpus-level
dependencies. Also, our directed graphs capture word order-
ing, which is ignored by (Yao, Mao, and Luo 2019). Finally,
the approach of (Yao, Mao, and Luo 2019) requires com-
puting the PMI for every word pair in the vocabulary, which
may be prohibitive on datasets with very large vocabular-
ies. On the other hand, the complexity of MPAD does not
depend on vocabulary size.

MPAD is also related to the Transformer’s encoder stack
(Vaswani et al. 2017). Specifically, the self-attention layer in
each encoder updates the representation of each term based
on the representations of all the other terms in the document,
and can thus be thought of as a function performing the AG-
GREGATE and COMBINE steps. Stacking multiple en-
coders can also be thought of as performing multiple MP it-
erations. The main difference is that the self-attention graph
is complete, thus ignoring word order and proximity. Also,
building the graph requires constructing an adjacency matrix
that may become prohibitively large with long documents.

7 Conclusion

We proposed an application of the message passing frame-
work to NLP, the Message Passing Attention network for
Document understanding (MPAD). Experiments show that
our architecture is competitive with the state-of-the-art.
By processing weighted, directed word co-occurrence net-
works, MPAD is sensitive to word order and word-word re-
lationship strength. To capture the hierarchical structure of
documents, we also proposed three hierarchical variants of
MPAD, that bring improvements over the vanilla model.
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