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Abstract

Comments are an integral part of software development; they
are natural language descriptions associated with source code
elements. Understanding explicit associations can be useful
in improving code comprehensibility and maintaining the
consistency between code and comments. As an initial step
towards this larger goal, we address the task of associating en-
tities in Javadoc comments with elements in Java source code.
We propose an approach for automatically extracting super-
vised data using revision histories of open source projects and
present a manually annotated evaluation dataset for this task.
We develop a binary classifier and a sequence labeling model
by crafting a rich feature set which encompasses various as-
pects of code, comments, and the relationships between them.
Experiments show that our systems outperform several base-
lines learning from the proposed supervision.

1 Introduction

Natural language elements are used to document various
aspects of source code. Summaries provide a high-level
overview of the functionality of a given code snippet, com-
mit messages describe the code changes that are made be-
tween two versions of a software project, and API comments
define specific properties of a body of code such as precon-
ditions and the return value. Each of these serves as a cru-
cial mode of communication among developers and is crit-
ical to an effective development process. These natural lan-
guage elements are becoming increasingly prevalent in re-
search within the Natural Language Processing (NLP) com-
munity for code summarization (Iyer et al. 2016), commit
message generation (Loyola, Marrese-Taylor, and Matsuo
2017), and code generation (Rabinovich, Stern, and Klein
2017; Guu et al. 2017; Yin and Neubig 2017; Yu et al. 2018;
Richardson, Berant, and Kuhn 2018; Hayati et al. 2018;
Yin and Neubig 2018; 2019).

In particular, there is growing interest in cross-modal
tasks combining natural language comments and source
code. To successfully perform such tasks, it is necessary to
understand how elements in a comment relate to elements
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in the corresponding code. Prior work on detecting incon-
sistencies between code and comments (Tan et al. 2007;
Khamis, Witte, and Rilling 2010; Ratol and Robillard 2017)
incorporate task-specific rules to link comment components
to aspects of the code. Recent work in automatic com-
ment generation (Hu et al. 2018; Fernandes, Allamanis, and
Brockschmidt 2019) rely on an attention mechanism which
implicitly approximates the parts of the code that should be
attended to when generating certain terms in the comment.

In contrast to these approaches, we formulate a task
which aims to learn explicit associations between entities
in a comment and elements in the corresponding source
code. We believe explicit associations can lead to improved
systems for downstream applications. For tasks like code
and comment generation, they could serve as a mecha-
nism for supervised attention (Liu et al. 2016) and aug-
ment neural models with explicit knowledge, which often
leads to significant gains in performance (He et al. 2017;
Marcheggiani, Frolov, and Titov 2017; Strubell et al. 2018).
Moreover, this provides a means of doing more fine-grained
code/comment inconsistency detection, as opposed to the
common approach of identifying whether a full comment is
inconsistent with a body of code (Tan et al. 2012; Khamis,
Witte, and Rilling 2010). Such a system could be a valu-
able component for automated code/comment maintenance
which aims to keep comments consistent with the code they
serve to describe. By providing a signal about which ele-
ments in the code are referred to by a given entity in the com-
ment, the system can automatically detect when an entity in
the comment becomes inconsistent with the code based on
changes to these terms in the code.

As an initial step towards learning these associations, we
focus on Javadoc @return comments, which serve to de-
scribe the return type and potential return values that are de-
pendent on various conditions within a given method. We
observe that the @return comment tends to be more struc-
tured than other forms of comments, making it a cleaner data
source and consequently, a reasonable starting point for the
proposed task. Furthermore, we observe that comments gen-
erally describe entities and actions within a given body of
code, which map to noun phrases and verb phrases in nat-
ural language. In regards to @return comments specifi-
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Figure 1: Example from the node-sharing-plugin project
with the boxed/bolded tokens in the code being associated
with the underlined NP in the comment.

Figure 2: Example from adriaanm-maxine-mirror project
with the boxed/bolded tokens in the code being associated
with the underlined NP in the comment.

cally, the return values they characterize are typically enti-
ties and conditions related to entities (e.g., input parameters,
program state). Because we focus on such comments in this
paper, we target noun phrase entities within @return com-
ments as a first step. Illustrated in Figures 1 and 2, given a
noun phrase in a comment (underlined), the task is to iden-
tify code tokens with which they are associated (bolded).

Learning to automatically resolve associations between
comments and code, however, is challenging in terms of data
collection. Acquiring annotated data for code/language tasks
is difficult since it would require expertise in comprehending
source code in a particular programming language. More-
over, it is challenging to collect a high-quality parallel cor-
pus containing source code and natural language because the
data in large online code bases is inherently noisy (Yao et al.
2018; Yin et al. 2018). In this paper, we propose a novel ap-
proach, requiring no human annotation, for obtaining noisy
supervision for this task from GitHub, using the platform’s
commit history feature. We show that this noisy supervision
provides a valuable training signal.

To establish ground work for future research on this task,
we design a set of highly salient features with relatively sim-
ple models. We propose two models which are trained on
noisy data and evaluated on a manually labeled test set.1
The first is a binary classifier which independently makes
a classification for each element in a given code snippet on
whether or not it is associated with a specified noun phrase

1The full dataset (including the annotated test set) and
implementation are available at https://github.com/panthap2/
AssociatingNLCommentCodeEntities.

in the corresponding comment. Our second model is a se-
quence labelling model, specifically a conditional random
field (CRF) model, which jointly assigns labels to elements
in the code, where the labels denote whether or not an ele-
ment is associated with the specified noun phrase. We design
a set of novel features capturing contextual representations,
cosine similarity, and the API and grammar relevant to the
programming language.

Trained on noisy data, the two models outperform base-
lines by wide margins, with the binary classifier attaining
an F1 score of 0.677 and the CRF attaining an F1 score of
0.618, achieving 39.6% and 27.4% improvement from base-
lines, respectively. We demonstrate the value of noisy su-
pervision by showing improved performances of our mod-
els as the size of noisy training data increases. Additionally,
through an ablation study, we highlight the utility of the fea-
tures that are consumed by our models. The main contribu-
tions of this paper are summarized as follows:

• The new task of associating entities in natural language
comments with elements in source source code, with a
manually labeled evaluation dataset for this task;

• A technique for obtaining noisy supervision from histo-
ries of software changes and machine learning systems
that leverage this form of supervision;

• A novel feature set that captures characteristics of code
and comments as well as the relationships between them,
used in models that can serve as baselines for future work.

2 Task

Given a noun phrase (NP) in a comment, the task is to clas-
sify the relationship between the NP and each candidate
code token in the corresponding code as either associated
or not associated. The candidates include all tokens other
than Java keywords (e.g., try, public, throw), operators
(e.g., =), and symbols (e.g., brackets, parentheses); these el-
ements are related to the programming language syntax and
are commonly not described in comments. For instance, in
Figure 2, the tokens int, opcode, and currentBC are
associated with the NP “the current bytecode” but int (the
return type), setBCI, and nextBCI are not.

This task shares similarities with anaphora resolution in
natural language texts, including ones that explicitly refer
to antecedents (coreference) as well as ones linked by as-
sociative relations (bridging anaphora) (Mitkov 1999). In
such a setting, the selected noun phrase within the com-
ment is the anaphor, and tokens belonging to the source
code serve as candidate antecedents. However our task is
distinct from either in that it requires reasoning with re-
spect to two different modalities (Allamanis et al. 2015;
Loyola, Marrese-Taylor, and Matsuo 2017; Allamanis et al.
2018). In Figure 1, “problems” explicitly refers to e, but we
need to know that InterruptedException is its type,
which is a kind of Exception, and that Exception is
a programming term for “problems.” Further, in our setting,
an NP in the comment could be associated with multiple,
distinct elements in the source code that do not belong to
the same co-reference “chain.” For these reasons, we frame
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our task broadly as associating a noun phrase in a natural
language comment with individual code tokens in the corre-
sponding body of code.

We use the Java programming language and Javadoc com-
ments, namely, @return comments, in this work; however
this task and the methodology can be extended to other pro-
gramming languages. For instance, Python Docstring and
C# XML documentation comments serve similar purposes.

3 Data Source

We use one of the most well-structured types of comments
for Java, namely, comments tagged with @return that are
part of the Javadoc documentation (figures 1 and 2 are two
examples of such comments).

The content in the @return tag2 provides a fairly com-
prehensive overview of the functionality of the correspond-
ing method, since these comments describe the output,
which is computed by the various statements that make up
the method. In contrast, content in other Javadoc tags are
generally more narrow in scope, and unstructured comments
tend to be long and high-level in nature, making it difficult
to map directly to elements in code. We leave it to future
work to extend the proposed task to other types of com-
ments. Hereon, when we refer to comments, we are referring
to content attached to @return tags.

We construct a dataset by extracting examples from all
commits of popular open-source projects on GitHub. We
rank the projects by the number of stars, and used the top
∼1,000 projects, as they are considered to be of higher qual-
ity (Jarczyk et al. 2014). Each example we extract consists
of a code change to a method body as well as a change to the
corresponding @return comment.

4 Noisy Supervision

The core idea of our noisy supervision extraction method
is to utilize revision histories from software version con-
trol systems (e.g., Git), based on prior research showing that
source code and comments co-evolve (Fluri, Würsch, and
Gall 2007). Essentially, entities in comments have a higher
chance of being associated with entities in source code if
they were edited “at the same time”, which can be approx-
imated by “at the same commit”. Therefore, mining such
co-edits allow us to obtain noisy supervision for this task:
we use the version control system Git to isolate parts of the
code and comment that are added and deleted together.

4.1 Supervision setup

Additions Based on the intuition that the parts of the code
that are added are likely to be associated with the parts of
the comment that are also added, we assign noisy labels to
the code tokens. Namely, we label any code token that is
added in a given commit as associated with the NP that is
introduced in the comment within the same commit, and we
label all other code tokens as not associated with the NP.
These positive labels are noisy since a developer may also

2https://docs.oracle.com/javase/8/docs/technotes/tools/
windows/javadoc.html

Figure 3: Diff from a commit of the adriaanm-maxine-
mirror project. Green lines starting with ‘+’: added; red lines
starting with ‘-’: removed. Two examples can be extracted
from this, one for the deleted case (i.e., parts of the com-
ment+code present only in the previous version) and one for
the added case (i.e., parts of the comment+code present only
in the new version). Based on the supervision provided by
the diff, the bolded code tokens are automatically labeled as
associated with the underlined NP in the comments.

make other code changes that are not necessarily relevant to
the NP that is added. On the other hand, the negative labels
(not associated) have minimal noise, since code tokens that
are retained from the previous version of the code are un-
likely to be associated with an NP that does not exist in the
previous version of the comment. This set of examples we
collect from additions constitute our primary dataset.
Deletions Theoretically, if we assume that the code tokens
that are deleted are associated with an NP that is deleted
from the comment, we may be able to extract one more ex-
ample from each commit. However, deleted NPs are much
more subtle in this respect than added NPs. As stated above,
since the added NP does not exist in the previous version,
it is unlikely that code tokens that existed previously are as-
sociated with it. On the other hand, since the deleted NP
does exist in the previous version, we cannot reliably claim
that a token in the code that is unchanged between versions
is not associated with the NP. This could consequently lead
to more noise for the negative label in addition to the noise
that inherently exists for the positive label. For instance, in
the deleted example from Figure 3, nextBCI is automati-
cally labeled as not associated with the deleted NP “the next
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bytecode” even though it is arguably associated. Hence we
separate such examples from our primary dataset and form
another set of examples we refer to as the deletions dataset.

4.2 Processing

We examine the two versions of the code and comment in
a commit: before commit and after commit. Using spaCy,
we extract NPs from the two versions of the comment, and
using the javalang library, we tokenize the two versions of
the code. Using the difflib library, we compute the diff be-
tween the NPs in the two versions of the comment as well as
the diff between the two versions of the tokenized code se-
quences. These diffs are marked with plus and minus signs
for each changed line, as shown in Figure 3.

From the diffs, we identify the NPs and code tokens that
are unique to either the before or the after versions of the
comment and code respectively, allowing us to construct two
pairs in the form (NPs, associated code tokens). If either
the extracted NPs or list of associated code tokens is empty,
we discard the pair. Additionally, we discard pairs consist-
ing of more than one NP to obtain unambiguous training
data for determining which code tokens should be associ-
ated with which NP. Therefore, the final set of pairs are in
the form (NP, associated code tokens). Note that for any to-
ken in the associated code tokens, if it is not a common Java
type (e.g., int, String), we also treat any other token in
the sequence with the same literal string as associated.

We then go back to the before and after versions of the
code (excluding Java keywords, operators and symbols, c.f.
Section 2). We tokenize the code sequence and label any to-
ken that is not present in the associated code tokens as not
associated. Following this procedure, each example consists
of an NP and a sequence of labelled code tokens. The ex-
ample extracted from the previous version (before) is added
to the deletions dataset and the one from the new version
(after) is added to the primary (additions) dataset.

4.3 Filtering

While large code bases such as GitHub and StackOverflow
offer vast amounts of data, it is challenging to obtain large
quantities of high-quality parallel data for tasks involving
source code and natural language for a number of reasons
such as significant levels of noise (Yin et al. 2018) and code
duplication (Allamanis 2019). Prior work has addressed this
problem by filtering out low-quality examples with clas-
sifiers trained on manually labeled data (Iyer et al. 2016;
Yao et al. 2018; Yin et al. 2018). However, since acquiring
manually labeled data is difficult for this task, we choose to
apply heuristics, as done in prior work (Allamanis, Peng,
and Sutton 2016; Hu et al. 2018; Fernandes, Allamanis,
and Brockschmidt 2019). We impose constraints to filter out
noisy examples, including duplicates, trivial cases, and ex-
amples consisting of unrelated code and comment changes.

We define trivial cases as those examples involving
single-line methods which consist of only a few code to-
kens that are all likely to be associated with the NP as well
as those examples in which all associations can be resolved
with a simple string matching tool.

Additionally, after manually inspecting a sample of ap-
proximately 200 examples, we establish heuristics to mini-
mize the number of examples with unrelated code and com-
ment changes: (1) those that have lengthy methods or a sub-
stantial number of code changes which are likely not to all
be correlated with the comment; (2) cases with changes to
the code and comment that are related to re-formatting, typo
fixes, and simple rephrasing; (3) examples involving com-
ment changes entailing verb phrases as the corresponding
code changes could be related to these phrases rather than
the NP. In addition, since we focus on the @return tag
that describes the return value of a Java method, we elimi-
nate examples with code changes that do not include either
a change to the return type or at least one return statement.

Applying such heuristics substantially reduced the size of
our dataset. However, we determined such filtering to be
necessary after manually inspecting 200 examples and ob-
serving significant noise, and finding that is consistent with
aforementioned prior work, which pointed out that the levels
of noise in large code bases are too substantial to learn from
without aggressive filtering and pre-processing.

Upon filtering, we partition our primary dataset into train,
test, and validation sets, shown in Table 1. Based on the
training set, the median number of words in the NP is 2
with an interquartile range (IQR, difference between 25%
and 75% percentile)3 of 1, the median number of code to-
kens is 25 with IQR 21, and the median number of associ-
ated code tokens is 10 with IQR 13.

4.4 Test Set

The 117 examples in the test set were annotated by one of
the authors who has 7 years of experience with Java. During
pilot studies, two annotators jointly examined a sample set
of method/comment pairs before converging on the criteria
that were used for annotation. The standards used to iden-
tify a code token as associated include: whether it is directly
referred to by the NP; it is an attribute, type, or method cor-
responding to the entity referred to by the NP; it is set equal
to the entity referred to by the NP; and if an update to the
NP would be required if the token is changed. To assess the
quality of the annotations, we asked a graduate student, who
is not one of the authors and has 5 years of Java experience,
to annotate 286 code tokens (from 25 examples in the test
set) that are labeled associated under the noisy supervision.
The Cohen’s kappa score between the two sets of annota-
tions is 0.713, indicating satisfactory agreement.

5 Representations and features

We design a set of features that encompasses surface fea-
tures, word representations, code token representations, co-
sine similarity between terms, code structure, and the Java
API. Our models leverage the 1,852-dimensional feature
vector that results from concatenating these features.
Surface features. We incorporate two binary features,
subtoken matching and presence in return statement, which
we also use in two of the baseline models that are dis-
cussed in the next section. The subtoken matching feature

3We report IQR since the distributions are not normal.
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Candidate Code Tokens

Partition Examples Total Unique Average

Train 776 23,188 5,908 29.9
Validation 77 2,488 911 32.3
Test (annotated) 117 3,592 1,266 30.7
Deletions 867 25,203 6,186 29.1

Table 1: Number of examples, total and unique candidate to-
kens, and average number of candidate tokens per example,
for each partition of the dataset.

indicates that a candidate code token matches exactly with
a component of the given noun phrase, at the token-level
or subtoken-level (ignoring case). Subtokenization refers to
splitting camel case that is commonly used in Java (e.g.,
maxResult would be split into max and result). The
presence in return line feature indicates whether a candidate
code token appears in a return statement or matches exactly
with any token that appears in a return statement.
Word and code token representations. In order to de-
rive representations of terms in the comment and code,
we pre-train character-level and word-level embeddings for
the comment and character-level, subtoken-level, and token-
level embeddings for the code. These 128-dimensional em-
beddings are trained on a much larger corpus, consisting of
128,168 @return tag/Java method pairs that are extracted
from GitHub. The pre-training task is to generate @return
comments for Java methods using a single-layer, unidirec-
tional SEQ2SEQ model (Sutskever, Vinyals, and Le 2014).
We use averaged embeddings to derive representations for
the NP and candidate code token. Additionally, in order to
provide a meaningful context, we average the embeddings
corresponding to the full @return comment as well as the
embeddings corresponding to the tokens in the same line in
which the candidate token appears.
Cosine similarity. Recent work has used joint vector spaces
for code/natural language description pairs and has shown
that a body of code and its corresponding description have
similar vectors (Gu, Zhang, and Kim 2018). Since the con-
tent of @return comments often mention entities in the
code, rather than modeling a joint vector space, we project
the NP into the same vector space of the code by comput-
ing its vector representations with respect to the embeddings
trained on Java code. We then compute the cosine similarity
between the NP and the candidate code token at the token-
level, subtoken-level, and character-level. The same proce-
dure is followed to compute the cosine similarity between
the NP and the line in the code on which the candidate code
token appears.
Code structure. An abstract syntax tree (AST) captures the
syntactic structure of a given body of code in tree form, as
defined by Java’s grammar. Using javalang’s AST parser,
we derive the AST corresponding to the method. In order
to represent properties of the candidate code token with re-
spect to the overall structure of the method, we extract the
node types of its parent and grandparent and represent them
with one-hot encodings. This provides deeper insight into
the role of a candidate code token within the broader con-
text of the method by conveying details such as whether it

appears within a method invocation, a variable declaration,
a loop, an argument, a try/catch block, and so on.
Java API. We use one-hot encodings to represent features
related to common Java types and the java.util pack-
age, which is a collection of utility classes, such as List,
that we found to be used frequently. We hypothesize that
these features could shed light into patterns that are exhib-
ited by these frequently occurring tokens. To capture local
context, we also include Java-related characteristics of code
tokens adjacent to the candidate token such as whether it is
a common Java type or one of the Java keywords.

6 Models

We develop two models representing different ways to tackle
our proposed task: binary classification and sequence label-
ing. We also formulate multiple rule-based baselines.

6.1 Binary Classification

Given a sequence of code tokens and an NP in the comment,
we independently classify each token as associated or not
associated. Our classifier is a feedforward neural network
with 4 fully-connected layers and a final output layer.4 As
input, the network accepts a feature vector corresponding to
the candidate code token (discussed in the previous section)
and the model outputs a binary prediction for that token.

6.2 Sequence Labeling

Given a sequence of code tokens and an NP in the comment,
we jointly classify the tokens regarding whether or not they
are associated with the NP. The intuition behind structuring
the problem this way is that the classification of a given code
token can often depend on classifications of nearby tokens.
For instance, in Figure 3c, the int token that denotes the
return type of the next() function is not associated with
the specified NP, whereas the int token that is adjacent to
opcode is considered to be associated because opcode is
associated, and int is its type.

In order to re-establish the consecutive ordering of the
original sequence, we inject removed Java keywords and
symbols back into the sequence and introduce a third class
which serves as the gold label for these inserted tokens.
Specifically, we predict the three labels: associated, not as-
sociated, and a pseudo-label Java. Note that we disregard
the classifications of these tokens during evaluation, i.e., if
this pseudo-label is predicted for any other code token at test
time, we automatically assign it to be not associated (on av-
erage, this happens ∼1% of the time). We construct a CRF
model (Lample et al. 2016) by applying a neural CRF layer
on top of a feedforward neural network that resembles that
of the binary classifier in structure, except that the network
accepts a matrix consisting of the feature vectors of all the
tokens in the method.5

4We experimented with a logistic regression model as a classi-
fier; however, it did not perform as well as the neural network.

5We experimented with a non-neural CRF model using sklearn-
crfsuite; however, it did not perform as well as the neural model.
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6.3 Model Parameters

The 4 fully-connected layers have 512, 384, 256, and 128
units. Dropout is applied to each of these with probability
0.2. We terminate training if there is no improvement in the
F1 score on the validation set for 5 consecutive epochs (after
10 epochs), and we use the model corresponding to the high-
est validation F1 score up till that point. We implemented
both models with TensorFlow.

6.4 Baselines

Random. Random classification of a code token as associ-
ated or not based on a uniform distribution.
Weighted random. Random classification of a code token
as associated or not associated based on the probabilities of
the associated and not associated classes as observed from
the training set which are 42.8% and 57.2% respectively.
Subtoken matching. Any token for which the subtoken
matching surface feature (introduced in the previous sec-
tion) is set to be true is classified as associated while all
other tokens are classified as not associated. Note that there
will never be a case in which all associated code tokens
will match at the token-level or subtoken-level with the noun
phrase. We removed such trivial examples from the dataset
during filtering because they can be resolved with simple
string-matching tools and are not the focus of this work.
Presence in return statement. Any token for which the
presence in a return statement surface feature (discussed in
the previous section) is set to be true is classified as associ-
ated and all other tokens are classified as not associated.

7 Results

We evaluate our models using micro-level precision, recall,
and F1 metrics. That is, we evaluate our models at the token-
level, on the 3,592 NP-code token pairs in the test set. All
reported scores are averaged across three runs. In the fol-
lowing sections, we discuss results from training on just the
primary training set, results from incorporating the deletions
dataset into training, and results from an ablation study of
the features used by the binary classifier and CRF model.

7.1 Training on Primary Dataset

The results of the three baselines and our models are given in
Table 2. Our analysis is primarily based on the results on the
annotated test set, and we show the results from the unan-
notated set simply for completeness. Relative to scores from
the unannotated set, the models tend to achieve lower preci-
sion scores and higher recall scores with the annotated set.
This is expected since the number of tokens with the gold la-
bel associated was reduced during the annotation procedure.

Both of our models outperform the baselines by wide
margins. Although the recall score of the CRF is slightly
higher than that of the binary classifier, it is clear that the
binary classifier performs better overall with respect to the
F1 score. This may be due to the fact that the CRF requires
additional parameters to model dependencies which may not
be set accurately, given the limited amount of example-level
data in our experimental setup. Furthermore, while we ex-
pect the CRF to be more context-sensitive than the binary

Testset Model Prec. Recall F1

A
nn

ot
at

ed

Random 0.321 0.472 0.382
Weighted random 0.338 0.428 0.378
Subtoken matching 0.567 0.338 0.428
Presence in return line 0.515 0.458 0.485
Binary Classifier 0.574 0.654 0.610
CRF 0.484 0.663 0.559

U
na

nn
ot

at
ed

Random 0.396 0.498 0.441
Weighted random 0.395 0.425 0.409
Subtoken matching 0.583 0.294 0.391
Presence in return line 0.561 0.423 0.482
Binary Classifier 0.647 0.633 0.640
CRF 0.521 0.581 0.533

Table 2: Micro precision, recall, and F1 scores after train-
ing on the primary training set, evaluated on the annotated
and unannotated test sets. The differences between F1 scores
within the same test set are statistically significant based on
a signed rank t-test, with p < 0.01.

classifier, we do incorporate many contextual features (em-
beddings of surrounding and neighboring tokens, similarity
of context with the NP, and Java API knowledge of neigh-
boring tokens) with the binary classifier. With error analysis
we found that the CRF model tends to make mistakes over
tokens following Java keywords, as well as tokens that ap-
pear later in a method. This indicates that the CRF model
could be struggling to reason over longer range dependen-
cies and over longer sequences. Additionally, in contrast to
the binary classification setting, Java keywords are present in
the sequence labeling setting, so the CRF model must reason
about many more code tokens than the binary classifier.

7.2 Augmenting Training with Deletions

We increase the training set by adding data in stages from
the deletions dataset. The results from training the binary
classifier and CRF on these new supplemented datasets are
shown in Table 3. For the binary classifier, adding 500 and
867 deleted examples seems to provide a significant boost
in F1, and for the CRF model, adding any amount of deleted
examples leads to improved performance. This indicates that
our models can learn from data that we consider to be more
noisy than the primary training set that we collect. Since we
are able to find value in both the added case as well as the
deleted case corresponding to a given commit, we are able
to substantially increase the upper bound on the amount of
data that can be collected to train models that perform our
proposed task. This is particularly encouraging given how
difficult it is to obtain a large amount of high-quality data for
this task. Despite having extracted examples from methods
in source code files across all commits of more than 1,000
projects, we only acquire a total of 970 examples from added
cases after filtering for noise. By including the 867 examples
from deleted cases, we increase this number to 1,837. While
this is still a relatively small number, we expect the potential
size to increase substantially as the scope of the task is ex-
tended to other comments beyond the @return comments
that we focus on in this paper for an initial study.
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# of Deleted
Model Examples Precision Recall F1

Binary

0 0.574 0.654 0.610
100 0.572 0.639 0.603
200 0.554 0.689 0.614
500 0.624 0.693 0.655
867 0.644 0.715 0.677

CRF

0 0.484 0.663 0.559
100 0.482 0.736 0.582
200 0.512 0.685 0.585
500 0.504 0.740 0.599
867 0.528 0.745 0.618

Table 3: Micro precision, recall, and F1 scores after training
on the primary training set and a varying number of deleted
examples, tested on the annotated test set.

Model Precision Recall F1

Full 0.574 0.654 0.610
- code embeddings 0.519 0.617 0.562
- comment embeddings 0.523 0.675 0.587
- cosine similarity 0.582 0.613 0.597
- Java API & AST 0.543 0.641 0.588

Table 4: Micro precision, recall, and F1 scores for the binary
classifier upon ablating certain features, tested on the anno-
tated test set. All differences in F1 are statistically significant
based on a signed rank t-test, with p < 0.01.

7.3 Ablation Study

We conduct an ablation study on the binary classifier trained
on the primary dataset in order to analyze the impact of the
features we introduce. We ablate cosine similarity, embed-
ding, and the Java-related features. The embedding features
include code embeddings (i.e., the embeddings correspond-
ing to the candidate code token and the tokens in the line
of the method) and comment embeddings (i.e., the embed-
dings corresponding to the NP and @return comment). 6

Based on the results shown in Table 4, all of these features
contribute in a positive manner towards the performance of
the full model, with respect to the F1 metric.

8 Related Work

Prior work examines a task involving grounding noun
phrases within a dialogue system to a programming envi-
ronment (Li and Boyer 2015; 2016). The noun phrases are
extracted from interactions between students and tutors, and
the programming environment hosts students’ code. The na-
ture of their work resembles coreference resolution as the
goal is to identify the entities within the programming envi-
ronment that are referred to by a given noun phrase. Within
the dialogue, students and tutors discuss implementation de-
tails that pertain to specific entities in the code, which makes
coreference resolution an appropriate way to frame the task.

6Models without embeddings also do not include cosine simi-
larity, as the latter depends on the embeddings.

In contrast, the subject of their work—comments that ac-
company source code—often describe high-level functional-
ity rather than implementation details. Since multiple com-
ponents in the code interact to compose the functionality,
there could be entities in the code that are directly or indi-
rectly referred to by a given element in the comment. Be-
cause their data and implementation were not publicly avail-
able, we could not do any further comparisons between the
tasks and approaches.

Fluri, Würsch, and Gall (2007) studies a variant task re-
lated to mapping a single source code component (e.g., class,
method, statement) to a line or block comment based on dis-
tance metrics and other simple heuristics. In contrast, our ap-
proach treats both code and comments at a more fine-grained
level—we model code at the token level and consider NPs
in comments. Additionally, under our framework, multiple
code tokens can be mapped to the same NP, and these map-
pings are learned from data extracted from changes.

Liu et al. (2018) introduces a task related to linking differ-
ent change intents contained in a single commit message to
source code files in a software project which have changed
within the commit. While this entails associating compo-
nents within a natural language message to source code
much like the task we propose, the associations we are inter-
ested in occupy a higher level of granularity. Namely, we fo-
cus on NPs in comments while their work is concerned with
sentences and clauses in commit messages, and the unit of
classification is per individual code token in our case while
it is per file in their work. Additionally, the dataset that is
constructed in their work extracts source code files that have
changed and commit messages, which are newly written for
each commit. On the contrary, for our task, we collect exam-
ples that encompass changes in both source code and com-
ments, which co-evolve.

The procedure we follow to extract examples from Git
version control system is similar to the approach taken
by Faruqui et al. (2018) to build a corpus of Wikipedia ed-
its based on Wikipedia’s edit history. They extract samples
from insertions of contiguous text to sentences in Wikipedia
articles, and these examples are expected to demonstrate
how natural language text is typically edited. In contrast, we
do not limit to just insertions or require edits to be contigu-
ous. Furthermore, we strive to collect examples that demon-
strate how two modalities are edited together.

9 Conclusion
In this paper, we formulated the task of associating entities
in Javadoc comments with elements in Java source code. We
proposed a novel approach for obtaining noisy supervision
for this task, and we presented a rich set of features that aim
to capture aspects of the code, comments, and the relations
that hold between them. Based on evaluation conducted on a
manually labeled test set, we showed that two different mod-
els trained on such noisy data can significantly outperform
multiple baselines. Moreover, we demonstrated the poten-
tial for learning from noisy data by showing how increasing
the size of the noisy training data can lead to improved per-
formance. We also highlighted the value of our feature set
through an ablation study.
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