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Abstract

How to build a high-quality multi-domain dialogue system is
a challenging work due to its complicated and entangled dia-
logue state space among each domain, which seriously limits
the quality of dialogue policy, and further affects the gener-
ated response. In this paper, we propose a novel method to ac-
quire a satisfying policy and subtly circumvent the knotty di-
alogue state representation problem in the multi-domain set-
ting. Inspired by real school teaching scenarios, our method
is composed of multiple domain-specific teachers and a uni-
versal student. Each individual teacher only focuses on one
specific domain and learns its corresponding domain knowl-
edge and dialogue policy based on a precisely extracted single
domain dialogue state representation. Then, these domain-
specific teachers impart their domain knowledge and policies
to a universal student model and collectively make this stu-
dent model a multi-domain dialogue expert. Experiment re-
sults show that our method reaches competitive results with
SOTAs in both multi-domain and single domain setting.

1 Introduction

Spoken Dialogue Systems (SDS) are widely used as assis-
tants to help users in processing daily affairs such as book-
ing tickets or reserving hotels. A typical dialogue system
consists of three key components: spoken language under-
standing (SLU), dialogue manager (DM), and natural lan-
guage generation (NLG)(Maes 2005; Maes and Gopalakr-
ishnan 2006). Within the procedure above, dialogue state
representation is crucial since DM needs a precise repre-
sentation of the present dialogue state to select an appro-
priate action. There are mainly two types of approaches for
dialogue state representation: the state tracking approach
and the hidden vector approach. The state tracking ap-
proach is to use a belief state tracker to extract the ontology
from users’ utterances (Sun et al. 2014; Mrksic et al. 2017;
Zhong, Xiong, and Socher 2018). Those extracted ontology,
known as slots, are used as the state representation. The hid-
den vector approach, more popular utilized in end-to-end
dialogue systems, is to use the hidden vector compressed
from users’ utterance as the state presentation (Serban et al.
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Figure 1: Learning scenarios in school

2016; Yao, Zweig, and Peng 2015). The aforementioned ap-
proaches are almost satisfactory in a single domain setting
dialogue task such as tickets booking since the number of the
slots, and the entities are relatively small in a single domain
setting. Nevertheless, the performance of existing dialogue
state representation approaches deteriorates rapidly when it
comes to multi-domain setting. For the state tracking ap-
proach, the ontology space grows enormous in multi-domain
dialogue systems. This growing ontology space leads to the
accuracy degeneracy of dialogue state tracking, which lim-
its the performance of dialogue systems. As for the hid-
den state representation approach, the human-labelled se-
mantic information cannot be fully used. Besides, a hid-
den state representation is almost a black box which makes
the dialogue system incomprehensible and hard to debug.
The poor-quality and inaccurate multi-domain dialogue state
representation severely limits the quality of multi-domain
dialogue policy and further affects the overall performance
of dialogue systems.

To build a satisfactory multi-domain dialogue system,
we propose a model named Multiple Teachers Single Stu-
dent (MTSS) to subtly circumvent the complex multi-
domain dialogue state representation problem and learn a
quality dialogue policy in a multi-domain setting. We use
multiple teacher models (one for one domain to learn a sat-
isfying domain-specific dialogue policy) to teach a student
model to become a multi-domain dialogue expert. Our in-
tuition comes from a real-life scenario in which a student
has to learn many subjects such as Math, History and Sci-
ence (see Figure 1). Usually, there is a full-time teacher
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regarding each subject. These teachers impart their pro-
fessional knowledge of their respective subjects to a stu-
dent. In other words, this student acquires a comprehen-
sive understanding of all subjects by learning from these
teachers. This well-educated student can achieve high per-
formance in all subjects. This MTSS learning pattern is
well-suited for the multi-domain dialogue systems. More
specifically, firstly, for each domain of a multi-domain di-
alogue corpus, an individual teacher model is employed to
learn dispersed dialogue knowledge and semantic annota-
tions as the extra information in this single domain. Each do-
main teacher takes dialogue history utterances and human-
labelled semantic from its corresponding domain as the di-
alogue state. Based on these domain-specialized dialogue
state representation, these customized teachers can acquire
a high-quality dialogue policy. Secondly, these well-trained
domain-specific teachers in first step impart their learnt
knowledge and dialogue policy to a universal student model
through text-level guiding and policy-level guiding. We use
knowledge distillation (Hinton, Vinyals, and Dean 2015;
Kim and Rush 2016) to implement this guiding process.
By learning from these domain-specific teachers, the uni-
versal student model acquires multi-domain knowledge and
labelled semantic information and it finally becomes a multi-
domain dialogue expert.

To sum up, the contributions are summarized as follows:
• We propose a novel multi-domain dialogue system. Our

model subtly circumvents the knotty multi-domain di-
alogue state representation problem by using multiple
teacher models to learn domain-specific dialogue knowl-
edge. With their acquired knowledge and policies, these
domain-specific teacher models collectively make a single
student model become a multi-domain dialogue expert.

• Based on MTSS, we propose a novel approach to transfer-
ring the knowledge of domain teacher models to this sin-
gle student model. These teacher models guide the student
model not only from the text-level but also from policy-
level, which collaboratively pass the teachers’ knowledge
and policies to the student model.

2 Related work
Multi-domain dialogue systems Recently, multi-domain
dialogue systems have attracted increasing attention. The
rule-based multi-domain dialogue systems (Pakucs 2003)
are faced with the insufficiency of the scalability. With
the development of deep learning, some multi-domain di-
alogue systems models are proposed based on neural net-
work (Wen et al. 2016; Ultes et al. 2017). Zhao, Xie, and
Eskénazi (2019) propose the Latent Action Reinforcement
Learning (LaRL) model, which uses reinforcement learning
to train a policy module to select the best latent action. The
Hierarchical Disentangled Self-Attention (HDSA) (Chen et
al. 2019) model uses hierarchical dialogue act representation
to deal with the large size of dialogue acts. Both two works
were applied in the MultiWOZ (Budzianowski et al. 2018)
dataset and achieved excellent results.

The representation of dialogue states A commonly-used
approach to representing dialogue states is to use the multi-

hot embedding vector of human-defined features as the
state representation. This type of approach needs an exter-
nal dialogue state tracker to recognize correct features from
users’ utterance. Many works have been done on this is-
sue, such as a rule-based state tracker (Sun et al. 2014) or
a Neural Belief Tracker (NBT) (Mrksic et al. 2017). Some
works are focusing on state trackers that track user intent
and slot values in multi-domain settings (Rastogi, Hakkani-
Tür, and Heck 2017; Goel et al. 2018). In addition to us-
ing human-defined features as the dialogue state represen-
tation, another approach is to use the hidden state vector
generated directly from the raw text as the state represen-
tation. Without handcrafted features, Hierarchical Recurrent
Encoder-Decoder (HRED) based dialogue systems(Sordoni
et al. 2015; Serban et al. 2016; 2017) encode the dialogue
history into a hidden vector to represent the current dialogue
state in open-domain dialogue systems.

The Teacher-student Framework The teacher-student
framework was first applied in the neural network by Hin-
ton, Vinyals, and Dean (2015) in the knowledge distilla-
tion approach. In the teacher-student framework, a massive
teacher model transfers their knowledge to a much smaller
student model or several assembled teacher models col-
lectively transfer their knowledge to a student model. Re-
cent works show that knowledge distillation based teacher-
student method works well in a language model (Kim and
Rush 2016). Tan et al. (2019) proposed a multi-teacher
single-student architecture to solve the multilingual neural
machine translation problem. Individual models are built as
teachers, and the multilingual model is trained to fit both the
ground truth and the outputs of individual models simultane-
ously through knowledge distillation. In this way, the student
model can reach comparable or even better accuracy in each
language pair than these teacher models. Our work adopts a
similar architecture, but we focus on multi-domain dialogue
systems, which is more challenging since it involves com-
plicated multi-domain dialogue policy learning.

3 The Framework of Multiple Teachers

Single Student (MTSS) Model

In this section, we present the framework of our proposed
Multiple Teachers Single Student (MTSS) model in Sec-
tion 3.1 and detail the teacher and the student component in
Section 3.2 and Section 3.3 respectively. We leave how the
multiple teacher models impart their acquired knowledge to
the student model in Section 4.

3.1 The Overview of MTSS

The overview of MTSS is presented in Figure 2 (For a clear
illustration, we only plot two teacher models in the figure,
which is sufficient to illustrate the whole framework and the
working procedure). MTSS consists of two types of compo-
nents: the student model and the teacher model. There are N
teacher models and one single student in MTSS, where N is
the number of dialogue corpus domain. In other words, each
teacher model in MTSS is associated with one domain of
the dialogue corpus. In the training phase, the teacher model
and the student model are trained with different input:
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Figure 2: The teacher-student framework that transfers the knowledge from teachers to the student.

• The teacher takes the utterance and the human-labelled
states as the input. The states labelled by human are of
the highest accuracy, provide the teacher model sufficient
information in dialogue policy decision and responding.

• The student takes the utterance and the history dialogues
as the input.

These well-trained teacher model impart their knowledge
in both text-level and policy-level. The text-level guidance
is to make the student generate a similar response as the
teacher models while the policy-level is to make the student
learn the policies of these teachers, which make sure the stu-
dent model can fully assimilate the knowledge of teachers.
We will introduce the details of interactions between the stu-
dent model and teacher models in Section 4.

After the training phase, the student model has acquired
sufficient multi-domain knowledge and a satisfying multi-
domain dialogue policy. At the testing phase, the student
model only takes raw context utterances as input and can
generate high-quality responses.

3.2 Multiple Teachers: One Teacher for One
Domain

The structure of the teacher model We adopt
Budzianowski et al. (2018) as the basic structure. As
shown in Figure 3, it contains three parts: the encoder,
the decoder and a middle policy model that takes both the
utterance representation ut as well as the human-defined
feature et as the input. The feature consists of two vector
representations. The first part is the belief state vector vb,
where each dimension of the vector stands for the one-hot
value of a specific slot in each domain, a slot value receiving
from the user. If the slot value appears, the corresponding
value in the vector is set to 1. Otherwise, the value is 0. Thus
all values of vb stand for necessary information the system
keep at the current state. At every turn, the belief state is
updated according to the semantic labelling of the users’
utterances. Another construct of the state is the database
pointer vector vkb, where a database pointer vector stands
for the number of the corresponding entities that match

the request of the user. We use a 4-dimensional one-hot
embedding vector, and each position embedding means
separately 0, 1, 2 and more than 3 candidate entities. We
concatenate three vectors: the utterance vector vu

t , the belief
state vb, and the database pointer vkb, to get the vector of
the current state st in the conversation.

Then we feed the concatenated vector to the policy model.
The vector is processed with a nonlinear layer with tanh as
the activation function, and the action vector at is generated
from this layer:

at = tanh(w · [vu
t ;vb;vkb]),

where [; ] stands for concatenation. The action at is finally
delivered to the decoder module and the response is gener-
ated with an addition of the attention mechanism. We train
teacher models individually in each domain. Thus the mean-
ing of the belief state differs in teachers. After the teachers
are well pre-trained in all domains, we take the teachers as
the guidance to train the student model using the teacher-
student framework.

Training of the teacher model The teacher model di-
rectly learns from the ground truth. For a teacher model,
given the user utterance u and the state representation s, the
purpose of the model is to minimize the negative log likeli-
hood loss between the generated response r̂ with a ground
truth response r = {wr

0, w
r
1, ..., w

r
m}. That can be written

as:
JNLL(r̂|u, s) =

−
m∑

i=0

∑

ŵi∈V
1{ŵi = wr

i } log p(ŵi|u, s, wr
0∼i−1;φ),

(1)

where the V is the vocabulary of all possible words, φ is the
parameters of the teacher model and the symbol 1{·} stands
for the indicator function.

3.3 Single Student: A Universal Multi-domain
Dialogue System

The structure of the student model The universal dia-
logue system, also the student model is the final produced
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Figure 3: The teacher model pre-trained from each domain

model of our framework. The universal model takes no extra
state information as the input. And it should have the abil-
ity to model the whole context, summarize the history states
directly from the text. Under such consideration, we adopt
the HRED (Sordoni et al. 2015; Serban et al. 2016) model
as our universal dialogue system’s base architecture. We use
an encoder module to encode the user utterance to a latent
vector representation and summarize all utterances’ vectors
with a context-level encoder in hierarchical encoder-decoder
architecture, as shown in Figure 4. At the time t, for an utter-
ance ut contains m words (w0,w1, ...,wm). The encoder is
an LSTM (Hochreiter and Schmidhuber 1997) network:

ht = vw
tm = LSTMe(h0;wt0,wt1, ...wtm),

Then we consider the last hidden state of the LSTM as the
utterance representation vector vu

t = ht, and take the hi-
erarchical encoder as the context-level policy module. The
action at is made based on the all history utterances. We use
another LSTM as the context-level encoder:

at = LSTMc(v
u
0 ,v

u
1 , ...,v

u
t )

The action at is in the form of an abstract latent vector, serv-
ing as the guidance for the dialogue system to make proper
responses. By regarding the context-encoder output as the
action representation, we’ll see how this representation fa-
cilitates the performance of our model using the teacher-
student framework.

The action is fed into the generation part lately. The NLG
module regards the action as the initial state of LSTM and
generates the final response rt. With the addition of the at-
tention mechanism, the decoder model can be written as:

vr
i = LSTMd(at,v

w
0∼m,vr

0∼i−1),

where vw
j is the output of the encoder in the position of the

j-th word .

The guidance from ground truth for the student model
Same as the training process of teacher model, the student
model learns for the ground truth too. In contrast to the in-
put for a teacher model, there is no explicit state represen-
tation as an input for the student. Instead, the student needs
to summarize the hidden state from the context input itself.
In addition to the guidance from the ground truth, the stu-
dent model also learns from domain teachers, which will be
elaborated in Section 4.
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Figure 4: The student model architecture

4 How Does The Single Student Learn from

Domain Teachers?

In this section, we elaborate on the methods of transfer-
ring the knowledge from domain teachers to the student
model. This transferring process can also be viewed as
knowledge distillation (Hinton, Vinyals, and Dean 2015;
Kim and Rush 2016) from teacher models to the single stu-
dent model. These domain-specific teachers cooperatively
guide the student model from both text-level (Section 4.1)
and policy-level (Section 4.2), which makes sure the student
can fully absorb the knowledge of these domain-specific
teachers.

4.1 Text-level Guiding

We expect that the student should output a similar response
as the teachers do. At each timestep, the student model is ex-
pected to generate the same output distribution as the teach-
ers do. To enforce this objective, we use the cross entropy
loss to measure the probability similarity between the out-
put distributions of student and the teachers. The loss of the
text-level distillation is:

JKD = −
m∑

i=0

∑

wr
i ∈V

p(wr
i |u, s, wr

0∼i−1;φ)

log p(wr
i |u, c, wr

0∼i−1; θ),

(2)

in which φ is the parameter of the teacher models and θ is
the parameter of the student model. And V is the whole vo-
cabulary. For the grounding truth of the training data, the
generation part of the model learns only the one-hot value at
each position. For text-level distillation, the guidance from
the teachers’ output applies a smoother distribution of the
probability of words. The distillation brings naturalness and
correctness for the dialogue generation.

4.2 Policy-level Guiding

We also expect that the universal model can acquire the di-
alogue policies of these teachers. In other words, we expect
that the teacher models and the student model should have
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Models
Restaurant Hotel Train Attraction Taxi General

BLEU ER BLEU ER BLEU ER BLEU ER BLEU ER BLEU ER

Teachers
Universal teacher 16.5 69.89 14.1 52.52 22.3 63.19 13.1 58.96 15.7 48.03 19.8 -

Individual teachers 20.5 68.60 16.4 56.43 23.1 60.31 16.6 67.65 17.7 86.68 23.0 -
Students

HRED(No teacher) 17.1 54.82 15.0 44.95 17.2 47.27 16.8 71.78 15.5 76.64 22.7 -
HRED-MTSS 18.1 50.89 16.5 45.91 19.9 56.19 16.3 66.82 16.4 64.85 19.9 -

Table 1: Performance of different teachers and different students in each domain. A universal multi-domain teacher model trains
on the whole dataset and several individual teacher models train in each domain. ER: entity recall.

Domain
Number of Turns
Train Test

Restaurant 13471 1571
Hotel 12943 1506
Train 10612 1735

Attraction 7054 1061
Taxi 2996 419

Hospital 593 0
Police 463 4

General 8646 1072

Table 2: Number of turns in each domain when MultiWOZ
is split.

similar action vector if provided with similar input. We use
the action aT from the teachers’ policy output as the extra
information to train the student’s policy. For aT and aS are
both in the form of latent vectors. In the training phase, we
use mean squared error (MSE) loss to force the student to
learn the policies of the teachers:

JKD−π =

k∑

i=0

(aT
i − aS

i )
2, (3)

We use both the ground truth (Section 3.3) and the teach-
ers’ guidance as the training target. We add the text-level
distillation loss and the policy-level distillation loss to the
loss of the ground truth. To adjust the effect of the teachers
and balance the weights of the different losses, we apply a
weight scalar α1 to the text-level distillation loss and another
weight scalar α2 to the policy-level one. Finally, the combi-
nation training loss Jθ of the student model can be illustrated
as:

Jθ = JNLL + α1JKD + α2JKD−π, (4)
then we train the student model to minimize the combination
loss Jθ to implement the guiding of teacher models.

5 Experiments
In this section, we elaborate the experiment settings (Sec-
tion 5.1), the baselines we use (Section 5.2), and the analysis
of experimental results (Section 5.3).

5.1 Experiment Settings

Dataset We choose MultiWOZ (Budzianowski et al.
2018), a multi-domain human-human conversation corpus,

Models
Multi-domain

BLEU Inform Success

Comparisons
Seq2seq 16.7 65.7 44.4
HRED 17.5 70.7 60.9

Seq2seq + MDBT 13.1 69.3 30.0
Seq2seq + TRADE 13.2 65.9 34.6

HRED + MDBT 13.1 68.8 35.5
HRED + TRADE 13.7 70.8 41.8

HRED-MTSS(ours) 18.7 77.5 64.9

State-of-the-art models
LaRL + TRADE 12.4 79.5 44.7
HDSA + TRADE 20.1 76.4 65.9

Models with manual states
Seq2seq + Manual states 17.8 75.4 62.8
HRED + Manual states 19.3 75.2 66.2
HDSA + Manual states 22.9 82.3 75.1

Table 3: Performance on the multi-domain environment.

as our dataset. The MultiWOZ dataset consists of dialogue
turns in 7 domains, respectively including restaurant, ho-
tel, attraction, taxi, train, hospital and police. The conversa-
tion in MultiWOZ aims at satisfying users’ intents, and in-
forms the necessary information the user needs about some
entities. An episode of conversation contains around 14
turns of dialogues between the user and the system. Several
episodes’ topics are limited in one domain from beginning to
the end turn, while others’ are switching among the conver-
sation in 2 to up 5 domains. In each domain, there are about
4 slots that the system can receive from the user and about 3
properties of the entity the system should provide to the user.
For example, in a restaurant domain, the user can choose the
area, the price range and the food type of a restaurant, and
the information the system should offer about the restaurant
includes the address, the reference number, the phone num-
ber and other essential properties.

To test the response quality of the models, we take a pre-
processing on the dataset: we replace the names of the en-
tities and their property values with placeholders. Then we
manually generate the belief states and the database pointers,
as the extra inputs of teachers, from the human labelled se-
mantics. All the dialogue turns are split to 7 specific domains
based on the domain tags, which are given by MultiWOZ
dataset and are determined by entities in the dialogue turns.

8612



Models
Restaurant Hotel Train Attraction

Inform Success Inform Success Inform Success Inform Success

Seq2seq + TRADE 88.6 57.9 90.9 42.4 72.1 60.8 63.9 55.3
HRED + TRADE 91.8 74.4 81.7 50.5 76.2 62.6 76.8 65.4
HDSA + TRADE 78.5 68.6 91.4 85.3 81.4 80.4 93.9 82.1

HRED-MTSS(ours) 87.4 81.2 86.8 81.5 85.1 83.4 86.6 74.5

Table 4: Results on different domains

For the dialogue turns that don’t belong to these 7 domains,
they are included into a generic domain. In other words, we
have 8 separate dialogue turn sets, each set corresponds to an
individual domain. We train 8 individual teachers for each
domain. Table 2 shows the number of training and testing
turns in each domain after the dataset is split. Besides, fol-
lowing the pre-processing instruction of MultiWOZ, all dia-
logue turns are delexicalized, which means all the slot values
are replaced with placeholders.

Experiment Settings We construct two vocabularies from
the dataset, the input one and the output one. For the input
vocabulary, we discard the words appear less than 5 times.
About 1300 words remain in input vocabulary. For the out-
put vocabulary, we limited the size to 500. We use two types
of embeddings for the input and the output vocabularies. The
embedding size is set to 50. The hidden layer size of LSTM
layers in all involved models is set to 150. The teacher mod-
els are the Seq2seq architecture, the encoder and the decoder
are 150 dimensions hidden layer of LSTM networks as well.
For each teacher model, we trained it on its respective do-
main, and find the model which has the best entity matching
recall rate as the guidance. For the student model, we use
Adam optimizer, and the learning rate is 0.005. As for α1

and α2 in Equation 4, both α1 and α2 are set to 0.005 for
balancing the guidance from the ground truth and the teacher
models. To test the stability and get reliable results, we re-
peat each experiment setting 3 times and some of them for 5
times.

Training Strategies In the training phase of the teacher
models, we found that the sub-dataset of some domains are
limited. For instance, the sub-dataset of the police domain
only accounts for 0.82% of all training data, which results
in poor performance of these teacher models. To solve this
problem, we use a warm-start strategy: we use a pre-trained
model Tall trained on the whole the training dataset as the
starts, and each teacher model is fine-tuned from Tall. This
warm-up strategy ensures the domain-specific teachers have
equal or higher performance than Tall.

Evaluation Metrics To measure the performance of dif-
ferent models, we use several examined metrics to evaluate
the generated response.

1. BLEU: we calculate BLEU-4 (Papineni et al. 2002)
scores to measure the similarity between the real response
and the generated one.

2. Inform rate and Success rate: We use two metrics that are
suggested by Budzianowski et al. (2018), as the estima-
tions for the MultiWOZ dataset in the dialogue context to

text task. Both the measurements are on the episode-level.
The Inform rate indicates whether the dialogue system
suggests suitable entities according to the user’s intent in
an episode. The Success rate illustrates if the system pro-
vides all the correct properties for the user requests after
a success informing.

3. Entity Recall: Entity Recall (ER) measures the recall
score of the entities between the generated response and
the ground truth. ER is a turn-level metrics and used to
evaluate the performances of the teachers.

5.2 Baselines

• Seq2Seq: the vanilla Seq2Seq model (Cho et al. 2014).

• HRED: the HRED architecture proposed in Sordoni et
al. (2015).

• Seq2Seq + MDBT: the Seq2Seq model with the
Multi-domain Belief Tracker (MDBT) (Ramadan,
Budzianowski, and Gasic 2018) as the state tracking
model.

• Seq2Seq + TRADE: the Seq2Seq model with the Trans-
ferable Dialogue State Generator (TRADE) (Wu et al.
2019) as its state tracker model.

• HRED + MDBT: the HRED model with MDBT as its
state tracker model.

• HRED + TRADE: the HRED model with TRADE as its
state tracker model.

• LaRL + TRADE: the Latent Action Reinforcement
Learning (LaRL) (Zhao, Xie, and Eskénazi 2019) method
with TRADE as its state tracker model.

• HDSA + TRADE: the Hierarchical Disentangled Self-
Attention (HDSA) (Chen et al. 2019) model with TRADE
as its state tracker model.

• HRED-MTSS (Our model): the HRED student model
training with a Multiple Teachers Single Student frame-
work.

• Seq2Seq/HRED/HDSA + Manual states Those three
comparisons use the same models mentioned above. In-
stead of the dialogue state extracted by model-based state
tracker, we use the human-labelled dialogue states as the
model input in the test setting. In a real dialogue situation,
there is not human labelling in the user’s text. So this set-
ting can be considered an idealized setting to figure out
the upper bound performance the models can reach.
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Distill weights Multi-domain
α1 α2 BLEU Inform Success

0.01 0.005 17.0 71.7 63.5
0.005 0.01 18.9 73.6 61.2
0.005 0.005 18.7 77.5 64.9

0.0025 0.005 18.1 73.1 63.9
0.01 0 17.0 72.2 62.0

0.005 0 18.3 72.2 63.4
0 0.01 18.2 77.1 64.7
0 0.005 18.3 74.6 63.2
0 0 17.5 70.7 60.9

Table 5: Results of adopting different distillation strategies.
The last column is the results of a model without distilling.

5.3 Experimental Results and Analysis

Results on a multi-domain environment The compari-
son between our model with the different baseline models is
shown in Table 3. From the table, we can see that compared
with the baselines such as the Seq2Seq or the HRED model,
our model (HRED-MTSS) gets the best performance in the
multi-domain settings. By adding a teacher-student frame-
work, the informing rate and success rate receive 6.8% and
4.0% improvements respectively over the original HRED
model. While compared with the state-of-the-art results
achieved by HDSA or LaRL with the TRADE state tracker,
HDSA+TRADE slightly outperforms our model in certain
but not all metrics. We have to state that

• HDSA uses pre-trained models such as BERT (Devlin
et al. 2019). However, BERT not only boosts its perfor-
mance but also brings bloated model and high latency
problems in real scenario deployments.

• LaRL uses the reinforcement learning method, which
aims to maximize the long-term return, i.e., the Inform
rate and the Success rate in the dialogue context. LaRL
can achieve high scores in one aforementioned metrics but
fail in the BLEU score and utterance fluency.

Additionally, in the setting of manual states, our model
reaches equal or higher results than the Seq2seq and the
HRED model. Adding an external state tracker to the
Seq2Seq model and the HRED model increases the inform
rate but has no help for the dialogue success rate.

Results on single domain environments As shown in Ta-
ble 4, we also test our models’ performance in 4 major sin-
gle domains of MultiWOZ: restaurant, hotel, attraction and
train. When compared with a Seq2Seq and HRED model,
our model achieves the best success rate in all domains and
outperforms in the attraction domain and train domain un-
der the metrics of inform rate . We believe that it is due to
the application of an individual teacher in each domain in
the training phrase, which results in a better performance in
this domain than the universal one. And compared with the
HDSA model with the TRADE state tracker, our model is
better in 2 of all 4 domains, the restaurant domain and the
train domain.

Individual teachers’ performances We compare the per-
formance between different teachers, a universal multi-
domain teacher trained on the whole dataset and the individ-
ual teachers trained on respective domains. Table 1 shows
the experimental results of two kinds of teachers in 5 spe-
cific domains and 1 generic domain (The rest 2 domains
lack testing data). From the table, we can see that for all
domains, the individual teachers get higher BLEU scorers
than the universal one. As for the entity matching recall met-
rics, the individual teachers perform better in 3 of all 5 spe-
cific domains. In the restaurant domain, the individual model
gets the competitive result over the universal one. The uni-
versal model achieves higher entity recall rate than the in-
dividual teacher only in the train domain. Results show that
the fine-tuned individual teachers significantly outperform
the universal model most of the time, while the universal
model gets slight advantages only in a few domains. We
also compare the student’s performance with the teachers’
and a raw model. Experimental results show that the HRED
model applied with MTSS framework, compared with the
vanilla HRED model, achieves more satisfying performance
in domains whose dataset size is large (The dataset size of
first 5 domains is in a descending order from left to right in
Table 1).

Effect of distillation weights From Table 5, we can see
the results of using different guiding weights for text-level (
α1) and policy-level (α2). Compared with the model without
distillation (α1 = 0, α2 = 0), text-level distillation (α1 �= 0,
α2 = 0) and policy-level distillation (α1 = 0, α2 �= 0)
can bring improvements respectively. Besides, when applied
with both distillation methods together with their weights
α1 = 0.005 and α2 = 0.005, the model gets the highest
performance in both the inform rate and the success. Both
the two distillation methods help with the student model.

6 Conclusions

In this paper, we propose a novel approach to building
a high-quality multi-domain dialogue system based on a
teacher-student framework. We utilize multiple domain-
specific teacher models to help a single student model be-
come a multi-domain dialogue expert, which circumvent the
knotty multi-domain dialogue state representation problem.
To fully take advantage of the knowledge of the teacher
models, we creatively make the teacher model impart their
knowledge to the student in both text-level and policy-level.
To discover the potential of the teacher-student framework,
we would focus on adopting the framework to the SOTA di-
alogue models in our future work.
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