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Abstract

Cross-lingual natural language inference is a fundamental
task in cross-lingual natural language understanding, widely
addressed by neural models recently. Existing neural model
based methods either align sentence embeddings between
source and target languages, heavily relying on annotated par-
allel corpora, or exploit pre-trained cross-lingual language
models that are fine-tuned on a single language and hard to
transfer knowledge to another language. To resolve these lim-
itations in existing methods, this paper proposes an adver-
sarial training framework to enhance both pre-trained models
and classical neural models for cross-lingual natural language
inference. It trains on the union of data in the source language
and data in the target language, learning language-invariant
features to improve the inference performance. Experimental
results on the XNLI benchmark demonstrate that three popu-
lar neural models enhanced by the proposed framework sig-
nificantly outperform the original models.

Introduction

Cross-lingual language understanding (XLU) plays a crucial
role in multilingual systems. In general XLU aims to train a
model primarily on the data in one language and then apply
it to natural language understanding in other languages. Nat-
ural language inference (NLI), also known as recognizing
textual entailment (RTE), is one of the typical tasks in nat-
ural language understanding. It aims to determine the infer-
ential relationship between two natural language sentences,
one called the premise and the other called the hypothesis.

The importance of NLI in XLU has been identified in re-
cent studies such as (Conneau et al. 2018). Cross-lingual nat-
ural language inference (XNLI) is considered as a better task
for evaluating XLU than other tasks such as cross-lingual
document classification, since XNLI is more challenging
and has also large-scale benchmark data. By now NLI
has been widely used in information retrieval (Clinchant,
Goutte, and Gaussier 2006), question answering (Harabagiu
and Hickl 2006), machine translation (Poliak et al. 2018)
and other applications. Upgrading NLI to XNLI can adapt
these applications to multilingual scenarios and improve
the performance for low-resource languages. The challenges
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for achieving XNLI are two-fold. On one hand, knowledge
transfer between two languages is difficult, usually rely-
ing on large parallel corpora (Hermann and Blunsom 2014;
Conneau et al. 2018). On the other hand, XNLI needs to
transfer not only information about individual sentences but
also matching information between two sentences from the
source language to the target language.

Neural models have become dominant in XNLI. Most of
the neural model based methods such as (Conneau et al.
2018; Artetxe and Schwenk 2019) encode sentences in dif-
ferent languages into the same embedding space through
parallel corpora. They hardly work for low-resource lan-
guages in which parallel corpora are rare. Recently more
advanced methods such as multilingual BERT (Devlin et al.
2019) and XLM (Lample and Conneau 2019) have been pro-
posed, which rely on pre-trained language models. These
pre-training based methods learn a cross-lingual language
model from a large multilingual corpus and then fine-tune
the model on training data in one language. Although these
methods do not rely on parallel corpora, they still have lim-
itations since fine-tuning is performed in a single language.
When the model is fine-tuned on the original training data
in one language, matching information between two sen-
tences can hardly be transferred to other languages. When
the model is fined-tuned on the training data that have been
translated to another language, sentence information on the
original training data is ignored and translation errors can
easily be propagated into the model.

Inspired by the promising results for adversarial training
to domain adaption (Ganin et al. 2016; Chen et al. 2018;
Wang and Pan 2018), we also adapt adversarial training to
XNLI. We develop an adversarial training framework named
TMAN (short for Translation-based Matching Adversarial
Network) for XNLI. As shown in Figure 1, TMAN trans-
lates training data in the source language to the target lan-
guage and merges these two sets of data. The merged set is
then fed into an NLI model to generate matching represen-
tations between premises and hypotheses. To better capture
language-invariant features, TMAN introduces a discrimi-
nator for classifying languages (source or target) to com-
pete against the discriminator for classifying inferential rela-
tionships (entailment, neutral or contradiction). We employ
TMAN to enhance two pre-trained language models, multi-
lingual BERT (Devlin et al. 2019) and XLM (Lample and
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Figure 1: The proposed translation-based matching adversarial network (TMAN).

Conneau 2019), as well as a popular classical neural model
ESIM (Chen et al. 2017). All these models are evaluated on
the XNLI benchmark (Conneau et al. 2018) involving 15
languages. Experimental results show that, averaged by the
15 languages, TMAN pushes XLM by an absolute gain of
0.5% accuracy, BERT by an absolute gain of 1.7% accuracy,
and ESIM by an absolute gain of 1.7% accuracy.

The main contributions of this work include:
(1) We propose an adversarial training framework for XNLI.
As far as we know, this is the first adaptation of adversarial
training to XNLI.
(2) We propose detailed methods for enhancing pre-trained
language models and classical NLI models with the pro-
posed framework.
(3) We conduct extensive experiments to verify the signifi-
cant improvements achieved by the proposed framework.

Related Work

In recent years cross-lingual language understanding (XLU)
is commonly achieved by aligning sentence embeddings
for different languages in neural models. The study (Her-
mann and Blunsom 2014) proposes a compositional vector
model for cross-lingual sentence classification. The stud-
ies (Schwenk and Douze 2017; España-Bonet et al. 2017;
Johnson et al. 2017) aim to build cross-lingual sequence-
to-sequence encoders for machine translation. The study
(Conneau et al. 2018) proposes to align sentence embed-
dings based on a cross-lingual similarity defined by paral-
lel data. The study (Artetxe and Schwenk 2019) proposes a
language-invariant Bi-LSTM (Hochreiter and Schmidhuber
1997) encoder for 93 languages, which is trained on pub-
licly available parallel corpora. Recently, in order to reduce
the requirement of annotated parallel data, a new strategy
for XLU is proposed. It often learns a cross-lingual lan-
guage model from large-scale multilingual corpora and fine-
tunes the model for downstream tasks. Typical methods us-
ing this strategy include multilingual BERT (Devlin et al.
2019) and XLM (Lample and Conneau 2019), where multi-
lingual BERT extends the basic BERT by training with mul-
tilingual corpora. By introducing the translation language

modeling (TLM) objective for improving cross-lingual pre-
training, XLM has achieved the best accuracy on the XNLI
benchmark (Conneau et al. 2018) prior to this work.

Adversarial networks (Goodfellow et al. 2014) have been
widely used in domain adaption. The study (Ganin et al.
2016) proposes an adversarial network to learn domain-
invariant features. The study (Chen et al. 2018) proposes
a domain adversarial network for cross-lingual sentiment
classification. The study (Wang and Pan 2018) proposes a
transition-based adversarial network for cross-lingual aspect
extraction. The study (Zou et al. 2018) proposes an adver-
sarial network for feature adaption in cross-lingual relation
classification. The study (Kang et al. 2018) proposes an ad-
versarial network for NLI which introduces an adversarial
example generator to compete against the NLI label discrim-
inator. Compared with the above studies, this work adapts
adversarial training to the XNLI problem in different ways.
Firstly, we enlarge the training data set by translating the
training data in the source language to the training data in the
target language. Secondly, we randomly mix the data in the
source language and the data in the target language in a train-
ing mini-batch, while existing studies use data in the same
language to compose a training mini-batch. Finally, in order
to better adapt a pre-trained language model to the XNLI
problem, we also exploit a transformer encoder (Vaswani
et al. 2017) to adjust the output of the pre-trained language
model. Our experiments (see Table 1) confirm that the above
alternations in our adversarial training framework lead to a
higher accuracy in predicting NLI labels than ordinary ways.

The TMAN Framework
The architecture of TMAN is shown in Figure 1. Given a set
of training tuples in the source language, TMAN translates
the training set to another set of tuples in the target language
and then merges these two sets to feed into an adversarial
network composed by two components. The first component
is an NLI model that generates the matching representation
between a premise and a hypothesis. The second component
consists of two discriminators that compete with each other,
where one classifies the inferential relationship (namely the
NLI label), and the other classifies the language used in the
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matching representation.

Formalization of TMAN

The training phase of TMAN is formalized in Algorithm 1.
For every training tuple (Pi, Hi, Ri, Li), where Pi denotes
the word sequence of the premise, Hi the word sequence of
the hypothesis, Ri the index of the NLI label, and Li the
index of the language, TMAN employs an NLI model G to
generate a matching representation between Pi and Hi, de-
noted by G(Pi, Hi). The NLI model is enhanced either by
a pre-trained language model or by a classical NLI model,
detailed in the next two subsections.

Inspired by the domain adversarial network (Ganin et
al. 2016), TMAN constructs two discriminators to cap-
ture language-invariant features in matching representations.
One discriminator Y is used to classify NLI labels, whereas
the other discriminator D is used to classify languages. Let
Nm denote the dimension of G(Pi, Hi) and Nr the number
of NLI labels, then the output of Y and the output of D are
respectively defined as

yi = softmax(Wy G(Pi, Hi) + by) (1)
di = softmax(Wd G(Pi, Hi) + bd) (2)

where Wy ∈ R
Nr×Nm and by ∈ R

Nr are trainable param-
eters in Y , and Wd ∈ R

2×Nm and bd ∈ R
2 are trainable

parameters in D.
In order to better capture language-invariant features in

the matching representations, every mini-batch used in the
training phase is required to consist of data from both the
source language and the target language. In this way the
implicit features related to different languages can probably
be updated simultaneously and aligned into the same space.
Given a mini-batch (Pi, Hi, Ri, Li)1≤i≤N of N tuples, the
two discriminators D and Y are respectively trained by min-
imizing the cross-entropy losses Ld and Ly:

Ld = −
N∑

i=1

2∑

j=1

I(j = Li) log di,j (3)

Ly = −
N∑

i=1

Nr∑

j=1

I(j = Ri) log yi,j (4)

where di,j and yi,j are respectively the jth element of di and
yi, and I(C) returns 1 if C is true or 0 otherwise.

The model is trained by minimizing Lg = Ly − λLd

for feature generation and Ld for language discrimination,
where λ is the hyper-parameter for trade-off between the two
losses. The sets of parameters θg for G, θy for Y as well as
θd for D can be found as either a stationary point or a point
after a specified number of epochs of the following updates,
where μ is the learning rate:

θg = θg − μ(
∂Ly

∂θg
− λ

∂Ld

∂θg
) (5)

θy = θy − μ
∂Ly

∂θy
(6)

θd = θd − μ(λ
∂Ld

∂θd
) (7)

Algorithm 1 The training phase of TMAN

Require: a translator from source language L1 to target lan-
guage L2, a set of training tuples S in L1, and the num-
ber of epochs T .

1: Translate S to a set of tuples T in L2
2: Divide S∪T into a set of mini-batches D where for each

mini-batch B ∈ D, B ∩ S �= ∅ and B ∩ T �= ∅
3: for epoch from 1 to T do
4: Shuffle D

5: for each mini-batch (Pi, Hi, Ri, Li)1≤i≤N in D do
6: Compute Ld and Ly by Eq. (3)–(4)
7: Update θg , θy and θd by Eq. (5)–(7)
8: end for
9: end for

During the test phase, for any test sentence pair, TMAN
predicts an NLI label for it through the NLI model G and the
discriminator Y .

Enhancing Pre-trained Language Models

Pre-trained language models have been successfully ap-
plied to NLI (Radford et al. 2018; Devlin et al. 2019;
Lample and Conneau 2019). To enhance these models for
XNLI, we propose a framework shown in Figure 2.
Lexicon Encoder. The input of the enhanced model is a
sentence pair (P , H), where P = (wp

1 , ..., w
p
n) and H =

(wh
1 , ..., w

h
m) are two sequences of words. Following (De-

vlin et al. 2019), we create a new sequence by first concate-
nating P and H and then adding a special token [CLS] in
front of the first token wp

1 , a special token [SEP] between
wp

n and wh
1 , and a [SEP] behind the last token wh

m. This new
sequence is fed into a lexical encoder, which can be a pre-
trained language model such as BERT (Devlin et al. 2019)
and XLM (Lample and Conneau 2019). By X ∈ R

t×d we
denote the output of the lexical encoder, where t is the num-
ber of tokens in the new sequence and d is the dimension of
an arbitrary token embedding.
Transformer Encoder. Inspired by the work (Liu et al.
2019), we apply a transformer encoder (Vaswani et al. 2017)
to X to obtain a more informative matching representation.
The transformer encoder first computes a position embed-
ding for every token in the new sequence.

Pi,2j = sin(i/10000
2j
d ) (8)

Pi,2j+1 = cos(i/10000
2j
d ) (9)

where i ∈ {1, ..., t} is the index of the token, and 2j ∈
{1, ..., d} and 2j + 1 ∈ {1, ..., d} are indices of the token
embedding.

The position embeddings of all tokens are then element-
wise added to the token embeddings, obtaining a position-
enriched representation X� for all tokens.

X� = X + P (10)
Afterwards, the position-enriched representation is fed

into a multi-head self-attention layer to obtain the contex-
tual representation O.

O = MultiHead(X�, X�, X�) (11)
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Input: a sentence pair in L1 or L2
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(BERT or XLM)

Transformer 

Encoder

Contextual embedding

…
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…

[CLS] token

Figure 2: The framework for enhancing pre-trained language
models.

where the multi-head self-attention layer is defined by

Att(Q,K, V ) = softmax(
QKT

√
d

)V (12)

Mi = Att(QWQ
i ,KWK

i , V WV
i ) (13)

MultiHead(Q,K, V ) = [M1; ...;Mh]W
O (14)

where h is the number of heads, WQ
i ∈ R

d× d
h , WK

i ∈
R

d× d
h , WV

i ∈ R
d× d

h and WO ∈ R
d×d are trainable pa-

rameters, and [;] denotes the concatenation operator.
The output of the multi-head self-attention layer is then

fed into a position-wise feed-forward network to generate
the final representation U .

Ui = ReLU(OiW1 + b1)W2 + b2 (15)

where i denotes the ith token, and W1 ∈ R
d×k, W2 ∈ R

k×d,
b1 ∈ R

k, and b2 ∈ R
d are trainable parameters. Following

(Vaswani et al. 2017) we set k = 4d in our experiments.
All parameters of the transformer encoder are initialized

randomly. Following (Devlin et al. 2019; Liu et al. 2019) we
use the contextual embedding of the [CLS] token namely U1

as the matching representation between P and H .

Enhancing Classical NLI Models

We take the well-known matching-based NLI model ESIM
(Chen et al. 2017) for example to demonstrate how to
enhance classical NLI models by the TMAN framework.
The Enhanced Sequential Inference Model ESIM (Chen
et al. 2017) exploits Bi-LSTM (Hochreiter and Schmidhu-
ber 1997) networks to encode sentences and utilizes a co-
attention mechanism to capture the interaction between two
sentences.

To adapt ESIM to XNLI, we need to align the word em-
beddings for the target language into the vector space for the
source language. To this end, we use the MUSE (Lample
et al. 2018) algorithm to align the FastText (Bojanowski et
al. 2017) word embeddings for the target language into the
vector space for the source language. The embedding of any
out-of-vocabulary (OOV) word is initialized randomly. All
word embeddings are updatable during training.

Experiments

We conducted experiments on the XNLI (Conneau et al.
2018) benchmark1, which extends the well-known MultiNLI
(Williams, Nangia, and Bowman 2018) benchmark to 15
languages with human-annotated development set and test
set. For each language, the training set comprises 393K an-
notated sentence pairs, whereas both the development set
and the test set comprise 7500 annotated sentence pairs each.
We applied TMAN to enhance two pre-trained models XLM
and multilingual BERT as well as one classical NLI model
ESIM. We call the enhanced models TMAN-XLM, TMAN-
BERT and TMAN-ESIM, respectively.2

For TMAN-XLM, the lexical encoder was initialized by
the pre-trained XLM model with 12 transformer layers,
which outputs 1024D token embeddings. The transformer
encoder was built with 8 heads. We applied dropout (Sri-
vastava et al. 2014) to each layer by setting the dropout rate
as 0.1. TMAN-XLM was trained by Adam (Kingma and Ba
2015) with initial learning rate 5e-6, mini-batch size 16, and
two training epochs.

For TMAN-BERT, the lexical encoder was initialized by
the pre-trained multilingual BERT model with 12 trans-
former layers, which outputs 768D token embeddings. The
transformer encoder was built with 12 heads. TMAN-BERT
was trained by Adam with the warmup mechanism (Devlin
et al. 2019) and two training epochs, where the initial learn-
ing rate was set as 5e-5, the warmup proportion as 10%, the
mini-batch size as 32, and the dropout rate as 0.1.

For TMAN-ESIM, the input word vectors were initialized
by 300D FastText (Bojanowski et al. 2017) word embed-
dings that were aligned by the MUSE (Lample et al. 2018)
algorithm. The bi-directional output dimension of all Bi-
LSTM (Hochreiter and Schmidhuber 1997) networks was
set as 200. The dimension of inference representations was
also set as 200. We applied dropout to each layer by set-
ting the dropout rate as 0.3. TMAN-ESIM was trained by
AdaDelta (Zeiler 2012) with initial learning rate 3.0, mini-
batch size 512, maximally 30 training epochs and the early
stopping strategy applied according to the performance on
the development set.

For above models, we set the hyper-parameter λ as 0.1
according to the performance on the development set. Every
sentence is truncated to 128 tokens. To make the results re-
producible, we used the translated data in XNLI instead of
constructing translated data by applying translators.

1http://www.nyu.edu/projects/bowman/xnli/
2The code of our implementations is available at https://github.

com/qikunxun/TMAN/.
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Target language en fr es de el bg ru tr ar vi th zh hi sw ur � σ
Machine translation baselines (TRANSLATE-TEST)
(Conneau et al. 2018) 73.7 70.4 70.7 68.7 69.1 70.4 67.8 66.3 66.8 66.5 64.4 68.3 64.2 61.8 59.3 67.2 3.7
Multilingual BERT 81.4 - 74.9 74.4 - - - - 70.4 - - 70.1 - - 62.1 - -
XLM 85.0 79.0 79.5 78.1 77.8 77.6 75.5 73.7 73.7 70.8 70.4 73.6 69.0 64.7 65.1 74.2 5.6
Machine translation baselines (TRANSLATE-TRAIN)
(Conneau et al. 2018) 73.7 68.3 68.8 66.5 66.4 67.4 66.5 64.5 65.8 66.0 62.8 67.0 62.1 58.2 56.6 65.4 4.2
ESIM† 72.0 67.6 68.7 70.4 70.8 70.5 67.8 66.8 66.0 69.2 66.0 68.5 63.8 62.6 58.1 67.3 3.6
ESIM‡ 72.5 71.1 71.1 71.3 70.1 70.6 68.6 67.8 67.3 68.2 66.3 69.1 63.8 62.8 58.3 67.9 3.8
Multilingual BERT 81.9 - 77.8 75.9 - - - - 70.7 - - 76.6 - - 61.6 - -
BERT† 81.9 77.0 77.8 75.9 73.0 73.6 72.6 70.7 70.7 73.2 65.8 76.6 65.4 63.8 61.6 72.0 5.7
XLM 85.0 80.2 80.8 80.3 78.1 79.3 78.1 74.7 76.5 76.6 75.5 78.6 72.3 70.9 63.2 76.7 5.1
XLM‡ 84.9 80.0 80.6 79.2 77.2 79.6 77.3 74.4 75.8 74.7 74.2 78.5 68.1 71.0 65.5 76.1 5.0
TMAN-ESIM 73.5 72.3 72.8 72.1 71.3 71.1 68.6 68.4 67.7 70.4 67.5 70.6 64.6 63.5 60.0 69.0 3.8
TMAN-BERT 82.3 78.2 78.5 77.4 75.1 75.8 74.5 72.7 72.0 74.6 67.3 77.5 67.8 67.4 64.3 73.7 5.1
TMAN-XLM (w/o mixing 2
languages in a mini-batch) 85.3 80.4 81.2 80.0 78.3 80.0 78.0 74.4 76.2 75.2 74.1 79.7 71.5 72.2 66.7 76.9 4.7

TMAN-XLM (w/o the
transformer encoder) 85.4 80.5 81.0 79.8 78.1 80.1 77.9 75.0 76.3 75.2 74.4 79.8 71.5 72.0 66.8 76.9 4.6

TMAN-XLM 85.6 80.8 81.5 80.2 78.2 80.3 78.1 75.0 76.8 75.6 74.8 79.9 71.8 72.4 66.9 77.2 4.6

Table 1: Comparison results under the TRANSLATE-TRAIN/TEST setting. Every value is the test accuracy in percent. ESIM†
is our implementation of the ESIM model using monolingual word embedding. ESIM‡ is the ESIM model that has no adversarial
network and is trained on the merged data. BERT† shows our evaluation results on multilingual BERT. XLM‡ is the XLM model
that has no adversarial network and is trained on the merged data. � is the average accuracy for 15 languages. σ is the standard
deviation of accuracy for 15 languages.

Main Results

TRANSLATE-TRAIN and TRANSLATE-TEST are two
popular settings for evaluating XNLI models. Both deal with
training data in the source language and test data in the tar-
get language. The difference between these two settings is
that TRANSLATE-TRAIN translates the training data to the
target language before training models on the training data,
and that TRANSLATE-TEST translates the test data to the
source language before evaluating models on the test data.
TMAN follows a variant of the TRANSLATE-TRAIN set-
ting where the training data are augmented with the original
data in the source language. Table 1 reports the results for
comparing TMAN-enhanced models with other XNLI mod-
els on the XNLI benchmark under the above settings, where
the source language is fixed as English (en) and the target
language is one of the 15 languages in the XNLI benchmark.

TMAN-ESIM achieves 69.0% accuracy on the XNLI test
set averaged by 15 target languages. The classical ESIM
model (denoted ESIM†) achieves 67.3% accuracy on the
XNLI test set on average. It implies that TMAN pushes
ESIM by an absolute gain of 1.7% accuracy on average. The
difference between TMAN-ESIM and ESIM† in average ac-
curacy is statistically significant with p-value 3.9e-5 by a
one-tailed t-test.

TMAN-BERT achieves 73.7% accuracy on the XNLI test
set averaged by 15 target languages. Multilingual BERT
(Devlin et al. 2019) only reported the results for 5 target
languages. In order to make the results complete, we con-
ducted experiments for multilingual BERT in other target
languages, shown by BERT†. It can be seen that BERT†
achieves 72.0% accuracy on the XNLI test set on average.
It implies that TMAN pushes multilingual BERT by an ab-
solute gain of 1.7% accuracy on average. The difference be-

tween TMAN-BERT and BERT† in average accuracy is sta-
tistically significant with p-value 6.2e-7 by a one-tailed t-
test.

TMAN-XLM achieves 77.2% accuracy on the XNLI test
set averaged by 15 target languages. As reported in (Lample
and Conneau 2019), XLM achieves 76.7% accuracy on the
XNLI test on average. It implies that TMAN pushes XLM
by an absolute gain of 0.5% accuracy on average. The dif-
ference between TMAN-XLM and XLM in average accu-
racy is statistically significant with p-value 4.8e-2 by a one-
tailed t-test. For four languages de, vi, th and hi, TMAN-
XLM achieves slightly lower accuracies than XLM. This
may be caused by the OOV problem, since XLM only pro-
vides models using the vocabulary of the XNLI test set. The
OOV rates in percent for all languages in the XNLI training
set are respectively en(9.77), fr(12.08), es(15.25), de(18.93),
el(23.29), bg(1.55), ru(3.48), tr(20.17), ar(1.33), vi(35.88),
th(32.95), zh(5.07), hi(30.46), sw(5.65) and ur(4.36). The
Pearson correlation coefficient between OOV rates and ac-
curacy differences between TMAN-XLM and XLM is -0.68.
This confirms our assumption that high OOV rates lead to
lower performance of TMAN-XLM for the four languages.

To verify the effectiveness of adversarial training, we also
evaluated the performance of ESIM and XLM when they are
trained on the merged data in both the source language and
target language, shown by ESIM‡ and XLM‡, respectively.
The difference between TMAN-ESIM and ESIM‡ in aver-
age accuracy is statistically significant with p-value 3.7e-6
by a one-tailed t-test. The difference between TMAN-XLM
and XLM‡ in average accuracy is statistically significant
with p-value 2.7e-5 by a one-tailed t-test. Although training
ESIM and XLM on the merged data may improve the perfor-
mance for some languages such as French (fr) for ESIM and
Urdu (ur) for XLM, the performance achieved by this way
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Target language en fr es de el bg ru tr ar vi th zh hi sw ur �en→x �en

Evaluation of cross-lingual sentence encoders
XLM (en) 85.0 78.7 78.9 77.8 76.6 77.4 75.3 72.5 73.1 76.1 73.2 76.5 69.6 68.4 67.3 - -
TMAN-XLM (en→fr) 84.7 80.8 80.4 79.0 77.2 78.5 77.1 73.3 74.6 76.5 74.1 76.4 70.9 70.5 67.0 75.0∗ 74.1
TMAN-XLM (en→es) 85.6 80.6 81.5 78.0 78.6 79.3 77.3 74.0 75.3 77.3 74.0 77.0 70.6 70.2 68.0 75.4∗ 74.0
TMAN-XLM (en→de) 84.7 79.4 79.4 80.2 77.4 78.0 75.9 72.3 73.4 75.1 73.1 75.7 69.8 70.0 66.8 74.3 74.1
TMAN-XLM (en→el) 84.4 78.9 79.6 77.9 78.2 78.3 76.1 71.7 73.9 75.1 72.4 76.1 70.5 69.0 66.9 74.3 74.2
TMAN-XLM (en→bg) 84.7 78.9 79.5 78.7 77.8 80.3 77.0 73.2 74.3 76.3 73.6 76.6 70.4 69.8 67.0 74.9∗ 74.2
TMAN-XLM (en→ru) 84.3 79.2 79.7 77.8 78.0 79.6 78.1 73.5 75.2 76.6 73.7 77.4 71.0 70.9 67.8 75.4∗ 74.3
TMAN-XLM (en→tr) 84.6 78.9 79.4 77.9 76.7 77.4 75.6 75.0 73.2 75.3 73.8 76.6 71.0 69.5 67.2 74.8∗ 74.5
TMAN-XLM (en→ar) 84.6 79.1 79.9 77.3 77.3 78.3 75.5 72.4 76.8 74.9 73.5 75.9 69.4 69.8 65.5 74.5 74.5
TMAN-XLM (en→vi) 84.1 78.2 78.5 76.9 76.2 76.2 74.7 71.5 72.1 75.6 70.4 74.3 68.9 68.5 65.9 73.3 74.3
TMAN-XLM (en→th) 83.7 78.3 78.8 76.4 76.9 77.6 75.3 71.7 73.4 75.9 74.8 76.2 69.2 69.9 66.2 74.3 74.5
TMAN-XLM (en→zh) 85.2 79.6 80.4 78.7 78.0 78.6 77.4 74.3 74.7 76.6 74.3 79.9 72.1 71.4 69.2 75.8∗ 74.2
TMAN-XLM (en→hi) 84.4 77.5 78.7 77.2 76.9 77.4 75.9 71.2 73.9 75.9 73.6 76.3 71.8 69.8 66.7 74.7 74.8
TMAN-XLM (en→sw) 83.9 78.3 79.1 77.6 76.8 77.5 75.8 72.8 73.7 74.7 73.2 75.9 70.0 72.4 67.1 74.8 74.8
TMAN-XLM (en→ur) 83.0 77.6 78.5 76.4 76.4 77.3 75.3 72.0 72.4 74.3 72.2 76.5 70.4 69.2 66.9 74.5 74.9

Table 2: Comparison results under the cross-lingual setting. Every value is the test accuracy in percent. �en→x and �en are
respectively the average accuracy of TMAN-XLM (en→ x) and the average accuracy of XLM (en) for 13 languages including
all but English and the target language x. Every average accuracy marked with ∗ is significantly higher than the average accuracy
of XLM (en) for the same 13 languages with p-value < 0.05 by a one-tailed t-test.

is still significantly lower than the performance achieved by
further adding an adversarial network.

We also verified the effectiveness of the special treatments
in our adversarial training framework that are different from
ordinary ways. The results obtained by restricting a mini-
batch to consist of data in a single language are shown by
TMAN-XLM (w/o mixing 2 languages in a mini-batch). It
can be seen that mixing different languages in a mini-batch
improves the performance for all 15 languages and achieves
an absolute gain of 0.3% accuracy on average. This im-
provement is statistically significant with p-value 2.0e-5 by a
one-tailed t-test. The results obtained by removing the trans-
former encoder are shown by TMAN-XLM (w/o the trans-
former encoder). It can be seen that adding the transformer
encoder also improves the performance for all 15 languages
and achieves an absolute gain of 0.3% accuracy on aver-
age. This improvement is also statistically significant with
p-value 5.0e-6 by a one-tailed t-test.

Language-invariant Evaluation

To evaluate whether an XNLI model has the ability for cap-
turing language-invariant features, a cross-lingual setting is
often used, which directly uses training data in the source
language and test data in the target language without trans-
lating either the training data or the test data. As reported by
(Lample and Conneau 2019), XLM achieves the best perfor-
mance in this setting prior to this work. To evaluate whether
TMAN advances this ability, a variant setting can be used
for TMAN-enhanced models, which augments the training
data in an auxiliary language by translating training data to
the auxiliary language.

Table 2 shows the comparison results between different
TMAN-XLM models that use different auxiliary languages
with the best XLM model reported by (Lample and Con-
neau 2019), which is denoted by XLM (en), under the cross-
lingual settings, where the source language is fixed as En-
glish (en) and the target language is one of the 15 lan-

Variant Model Avg acc. p-value
Original TMAN-ESIM 69.0 -
(1) W/o the TMAN framework
(aka ESIM†) 67.3 3.9e-5

(2) W/o the domain adversarial
network (aka ESIM‡) 67.9 3.7e-6

(3) Using fixed cross-lingual
word embeddings 68.7 4.7e-5

(4a) Using updatable mono-
lingual word embeddings 68.0 2.0e-9

(4b) Using fixed monolingual
word embeddings 67.7 2.4e-8

(5) Using random word
embeddings 62.0 9.5e-12

Table 3: Ablation study results on TMAN-ESIM.

guages in the XNLI benchmark. It can be seen that 10 out of
14 TMAN-XLM models using different auxiliary languages
perform at least as well as XLM (en), among which 6 models
significantly outperform XLM (en) with p-values < 0.05 by
one-tailed t-tests. In particular, when using Chinese (zh) as
the auxiliary language, TMAN-XLM achieves 75.8% aver-
age accuracy for 13 languages including all but English and
Chinese, pushing XLM (en) by an absolute gain of 1.6%
average accuracy for the same 13 languages. These results
show that, thanks to the introduction of augmented training
data and the introduction of the language discriminator to
compete against the NLI label discriminator, TMAN better
captures language-invariant features, giving more accurate
predictions on NLI labels under the cross-lingual setting.

Ablation Study on TMAN-ESIM

Table 3 shows the complete ablation study results on
TMAN-ESIM. Besides two variants of TMAN-ESIM
namely (1) ESIM† and (2) ESIM‡ whose results have been
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(a) Visualization of ESIM
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(b) Visualization of multilingual BERT
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(c) Visualization of XLM

(d) Visualization of TMAN-ESIM
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(e) Visualization of TMAN-BERT
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(f) Visualization of TMAN-XLM

Figure 3: Visualization of the matching representations.

reported in Table 1, we also evaluated other variants of
TMAN-ESIM that alter the usage of word embeddings. In
(3) we fixed the cross-lingual word embeddings in the course
of training. Results show that TMAN-ESIM achieves better
performance when the word embeddings are tuned during
training. In (4a) and (4b) we used monolingual word em-
beddings rather than cross-lingual word embeddings, where
in (4a) we tuned the monolingual word embeddings during
training and in (4b) we fixed the monolingual word embed-
dings. Results show that the usage of cross-lingual word em-
beddings achieves better performance than using monolin-
gual word embeddings no matter monolingual word embed-
dings are updatable or not during training. In (5) we used
random word embeddings that can be updated in the course
of training. Results show that the use of random word em-
beddings leads to the worst performance among all variants
of TMAN-ESIM.

Visualization Analysis

To clarify why our proposed adversarial training framework
improves the accuracy in predicting NLI labels, we visual-
ize the matching representations generated by an original
model and that by the corresponding enhanced model in
Figure 3, where each point stands for the matching repre-
sentation of a premise-hypothesis pair, points marked “o”
correspond to pairs in English, points marked “+” corre-
spond to pairs in Urdu, blue points correspond to pairs with
label “entailment”, red points correspond to pairs with la-
bel “neutral”, and green points correspond to pairs with la-
bel “contradiction”. The figures were obtained by randomly
selecting 500 premise-hypothesis pairs in English and 500
pairs in Urdu from the development set and by using t-SNE
(Rauber, Falcão, and Telea 2016) to reduce the dimension

of the data for visualization. Compared with the original
model, the model enhanced by TMAN yields clearer distinc-
tion between different labels and more confusion between
different languages. This implies that our proposed adver-
sarial training framework encourages to align matching rep-
resentations in different languages into the same space, re-
sulting in more accurate predictions on NLI labels.

Conclusions and Future Work
In this paper we have proposed an adversarial training
framework namely TMAN for cross-lingual natural lan-
guage inference. TMAN enhances existing neural models
for NLI mainly by training on merged data from both the
source language and the target language and by introducing
a language discriminator to compete against the NLI label
discriminator. Experimental results show that TMAN pushes
three existing NLI models namely ESIM, BERT and XLM
by a significant absolute gain in classification accuracy on
the XNLI benchmark. Our ablation study further confirms
that all enhancements introduced by TMAN contribute to
the performance improvement on the XNLI benchmark.

Our future work is two-fold. On one hand, we plan to ex-
tend TMAN to train on data from three or more different
languages and to evaluate the effects. On the other hand, we
plan to enhance TMAN with external multilingual resources
such as BabelNet (Navigli and Ponzetto 2012) and Concept-
Net (Speer, Chin, and Havasi 2017).
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