
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Solving Sequential Text Classification as Board-Game Playing

Chen Qian
Tsinghua University

qc16@mails.tsinghua.edu.cn

Fuli Feng
National University of Singapore

fulifeng93@gmail.com

Lijie Wen∗
Tsinghua University

wenlj@tsinghua.edu.cn

Zhenpeng Chen
Peking University
czp@pku.edu.cn

Li Lin
Tsinghua University

veralin1994@gmail.com

Yanan Zheng
Tsinghua University

zhengyanan932@gmail.com

Tat-Seng Chua
National University of Singapore

chuats@comp.nus.edu.sg

Abstract

Sequential Text Classification (STC) aims to classify a se-
quence of text fragments (e.g., words in a sentence or sen-
tences in a document) into a sequence of labels. In addi-
tion to the intra-fragment text contents, considering the inter-
fragment context dependencies is also important for STC.
Previous sequence labeling approaches largely generate a se-
quence of labels in left-to-right reading order. However,
the need for context information in making decisions varies
across different fragments and is not strictly organized in a
left-to-right order. Therefore, it is appealing to label the frag-
ments that need less consideration of context information first
before labeling the fragments that need more. In this paper,
we propose a novel model that labels a sequence of fragments
in jumping order. Specifically, we devise a dedicated board-
game to develop a correspondence between solving STC and
board-game playing. By defining proper game rules and de-
vising a game state evaluator in which context clues are in-
jected, at each round, each player is effectively pushed to find
the optimal move without position restrictions via consider-
ing the current game state, which corresponds to producing
a label for an unlabeled fragment jumpily with the consid-
eration of the contexts clues. The final game-end state is
viewed as the optimal label sequence. Extensive results on
three representative datasets show that the proposed approach
outperforms the state-of-the-art methods with statistical sig-
nificance.

Introduction
Sequential Text Classification (STC) is a fundamental and
critical research problem in natural language processing
(NLP) (Lee and Dernoncourt 2016). The goal of STC is to
classify a sequence of text fragments into a sequence of la-
bels. STC involves different text granularities (e.g., words in
a sentence or sentences in a document) and serves dual pur-
poses: 1) improving the accuracy of single text classification
by incorporating context information (Lee and Dernoncourt
2016); and 2) mining informative text clues at different lev-
els of granularity (Qian et al. 2019). STC can benefit a diver-
sity of NLP tasks, such as the part-of-speech tagging (Rat-
naparkhi 1996), dialog act recognition (Liu, Han, and others

∗Lijie Wen is the corresponding author.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Two minutes later, add some sugar, and warm milk, until boiling.
f1 (CD) f2 (AI) f4 (CD)

f1 f2 f3 f4

CD

f1 f2 f3 f4

CD AI

f1 f2 f3 f4

CD AI IO

f1 f2 f3 f4

CD AI IO CD

CD Condition AI Action and Ingredient IO Ingredient Only → Context Flow

CD AI AI CD

f1 f2 f3 f4

CD AI CD

f2f1 f2 f3 f4

CD

f1 f3 f4

AI CD

f1 f2 f3 f4

f3 (AI)

Figure 1: Traditional successive labeling (above) produces
a sequence of labels in left-to-right order, while our pro-
posed jump labeling (below) produces a sequence of labels
in jumping order.

2017), fine-grained sentiment analysis (Wang et al. 2018)
and clause-level aspect classification (Friedrich, Palmer, and
Pinkal 2016).

The key challenge of STC is how to effectively capture
and utilize context information because the label of a frag-
ment would be better forecasted if we consider the text in-
formation and label information of other fragments (Yang
et al. 2016; Lee and Dernoncourt 2016). Recent studies
show that the use of both the bidirectional language repre-
sentation models to encode the contextual text information
and sequence labeling models to model the contextual label
dependencies is a promising solution (Kumar et al. 2018;
Al-Zaidy, Caragea, and Giles 2019). However, in the la-
beling process, almost all of methods impose the Markov
assumption (Rabiner 1989) that the current state is condi-
tionally dependent upon the previous state(s); thus, they la-
bel a sequence in the left-to-right reading order (referred to
as successive labeling). This restricts their ability to capture
more beneficial context clues. The upper part of Figure 1
gives an example that illustrates the processes by which a
linear-chain conditional random field (LCRF) model classi-
fies a sequence of clause-level fragments. We can see that
the LCRF classifies the four fragments in the left-to-right
order. In such a case, it might misclassify the third fragment
“and warm milk” as IO (instead of AI) without consider-
ing the backward clue from the subsequent neighbor “until
boiling”.

Must the label generation process be following the left-

8640

Board-Game
PlayingLinear CRF

L1 LnL2 L3 Li

Jump Labeling (direction-free)

T3T1 T2 Tn

EncodeEncode Encode Encode

EmbedEmbed Embed Embed

L1 LnL2 L3 Li

Successive Labeling (direction-aware)

T3

EmbedEmbed

T2

Embed

Tn

EncodeEncode Encode Encode

Embed

T1

Figure 2: Mainstream STC framework (left) and our pro-
posed model GuGo (right).

to-right reading order? In this paper, we explore a new
paradigm that labels the sequential fragments in jumping
order (referred to as jump labeling). Our intuition is that
the need for context information in making decisions varies
across different fragments. The order of fragments accord-
ing to the need for context information needs not be strictly
organized in the left-to-right order. Take the bottom part
of Figure 1 as an example, the fourth fragment that in-
cludes the word “until” could be easily classified as CD in
advance without considering any context information. Af-
ter the fourth fragment is labeled, the third fragment (“and
warm milk”) could be correctly classified as AI by consid-
ering the additional context - “until boiling” and CD. There-
fore, a potential solution is to pre-predict the fragments that
need less advance consideration of context information to
provide more context clues for those fragments that need
more. As such, the performance of jump labeling largely re-
lies on the order of labeling sequential fragments (referred
to as labeling order). Considering that the number of possi-
ble labeling orders grows exponentially with the number of
fragments, i.e., the state space explosion problem (Groote,
Kouters, and Osaiweran 2015), it is challenging to perform
jump labeling properly and effectively.

In this paper, we propose a game-based jump labeling
model (GuGo) equipped with an efficient jump labeling
mechanism to solve the STC task. The key idea is to
map the act of classifying fragments to the act of playing
a board-game. By defining proper game rules and devising
a game state evaluator in which the intra-fragment and inter-
fragment context clues are fully injected as the game state
evaluation factors, the game will push each player to play
the optimal move (i.e., produce a label for a certain frag-
ment) at each round with the best usage of the current game
state (i.e., the injected context clues). The final game-end
state is viewed as the optimal label sequence of the STC
task. Transforming the STC problem into playing a board-
game provides our model with three advantages: 1) the way
in which players place pieces without position restrictions
naturally corresponds to producing labels for unlabeled frag-
ments jumpily in STC; 2) the way in which players evaluate
a candidate move from global checkerboard layouts natu-
rally corresponds to bidirectional context incorporation in
STC; and 3) utilizing efficient game tree search effectively
avoids the state space explosion problem.

Figure 2 shows the architectures of the mainstream STC

framework and the proposed model. In our model, an em-
bedding layer is first used to learn a semantic representation
for each fragment. These representations are then fed into an
encoding layer that implicitly encodes contextual text infor-
mation. Finally, a game-playing layer performs jump label-
ing by explicitly taking into consideration the context clues.
In summary, we make the following main contributions:
• We propose the idea of jump labeling and devise a new

model equipped with the jump labeling mechanism for
STC. As compared with successive labeling, jump label-
ing can choose a better labeling order, providing various
degrees of context information for different fragments. To
our knowledge, we are the first study that performs the
(direction-free) jump labeling paradigm.

• We propose a new operator that performs jump labeling in
a board-game-playing manner. By utilizing the efficient
game tree search and the proposed speedup strategies, our
approach can effectively avoid the state space (i.e., the
labeling order) explosion problem.

• The experimental results on three representative datasets
show that our proposed approach significantly outper-
forms the state-of-the-art methods, validating the ef-
fectiveness of the proposed method and the jump la-
beling mechanism. The code is publicly available at
https://github.com/qianc62/GuGo.

Related Work

STC has been studied extensively within various NLP tasks
with different text granularities, including part-of-speech
(POS) tagging (Ratnaparkhi 1996), named entity recogni-
tion (NER) (Zhou and Su 2002), semantic roles labeling
(SRL) (Gildea and Jurafsky 2002) and dialogue act tagging
(Ji and Bilmes 2005). Some feature-based methods classify
each fragment independently, i.e., each fragment is viewed
as an individual text (Blatat, Mrakova, and Popelinsky 2004;
Yeung and Lee 2015). However, this strategy relies on a set
of handcrafted features and/or does not take into account the
inherent dependencies across fragments.

To remedy this, STC solutions were explored in deep
learning frameworks to incorporate contextual text informa-
tion. For example, (Santos and Zadrozny 2014) proposed a
deep neural network that learns character-level representa-
tion to perform POS tagging. (Kalchbrenner and Blunsom
2013) investigated the possibility of using CNN for dialogue
act classification. In addition, (Lee and Dernoncourt 2016)
presented a model based on RNN+CNN to incorporate con-
texts for short text classification.

To further incorporate the contextual label information,
linear statistical methods were widely studied, including
the hidden Markov models (HMM) (Stolcke et al. 2000;
Venkataraman et al. 2003), maximum entropy models
(MEM) (Ratnaparkhi 1996) and conditional random fields
(CRF) (Kim, Cavedon, and Baldwin 2010; Quarteroni,
Ivanov, and Riccardi 2011). More recently, some studies
combined deep-learning-based representation models and
the linear statistical models to incorporate both the contex-
tual text and label information. For example, (Al-Zaidy,
Caragea, and Giles 2019) combined BiLSTM+CRF model

8641

for keyphrase extraction and (Ye and Ling 2018) for se-
quence labeling. (Ma and Hovy 2016) introduced a network
that benefits from both the word-level and character-level
representations by using the BiLSTM+CNN+CRF model
for POS tagging and NER. (Wu et al. 2019) introduced a
CNN+LSTM+CRF architecture to capture local and long-
distance contexts.

As combining bidirectional representation models and the
linear statistical models together, especially BiLSTM+CRF,
can effectively capture context information, the STC task
has gradually come to be regarded as the sequence labeling
problem. However, almost all of sequence labeling tech-
niques are limited to left-to-right order. In this paper, we
eliminate the traditional successive labeling paradigm via
jump labeling.

Methodology

We first formulate the STC problem: given a sequence of
text fragments F = 〈F1, F2, · · · , Fn〉 and a predefined cate-
gory set C, the goal of STC is to predict a sequence of labels
L = 〈L1, L2, · · · , Ln〉 such that each Li ∈ C (1 ≤ i ≤ n)
describes the category of Fi. Note that a fragment Fi ∈ F
can be any text content, e.g., a sentence, a clause or a word.

We propose a game-based jump labeling model (GuGo)
to predict sequential fragments in a jumping manner. The
high-level overview of GuGo is shown in Figure 2. GuGo
consists of three main phases: 1) given a sequence of frag-
ments, a pretrained language model, BERT (Devlin et al.
2019), is first used to learn fragment embeddings by pool-
ing word embeddings; 2) these representations are then fed
into a BiLSTM encoding layer (Melamud, Goldberger, and
Dagan 2016) to implicitly encode the contextual text infor-
mation and an MLP to project each fragment embedding to
a preliminary probability; 3) the encoded vectors are then
passed to the game-playing layer for jump labeling.

Specifically, the game-playing layer: 1) maps each en-
coded vector (one vector per fragment) into a prior proba-
bility over categories via a pretrained multilayer perceptron
(MLP) (Trischler et al. 2016); and 2) utilizes these proba-
bilities as factors to evaluate game states and produce the
refined predictions (L̂) jumpily. In the following, we will
demonstrate how we perform jump labeling to shed light on
its rationale. First, we compare the processes of labeling
sequential fragments to the processes of playing a board-
game (for jump labeling). Then, we design a new board-
game (for problem transformation). Finally, we utilize an
efficient game search to play the game (to find the optimal
label sequence).

Problem Mapping

First, we map the processes of STC to the processes of
board-game playing for jump labeling. Typically, there are
three main steps in playing the board-game: 1) the game
starts when all squares are empty; 2) players place pieces
on empty squares iteratively; and 3) the game ends when
all squares are occupied. As in the game-playing process,
there are three main phases in sequence labeling: 1) the to-
be-predicted fragments are initialized with unlabeled states;

2) the labeler fills labels for unlabeled fragments iteratively;
and 3) the process terminates when all fragments are labeled.

23
1 3

23
1

2
1

2

⟨C1 C3 C3 C2⟩⟨C1 ‒ C3 C2⟩⟨C1 ‒ ‒ C2⟩⟨‒ ‒ ‒ C2⟩⟨‒ ‒ ‒ ‒⟩
Board 321 Pieces ⟨× × × ×⟩

Sequential
LabelsSquares

Empty
State‒ LabelsCx Position

Mapping: : : : : : :

Figure 3: Graphical illustration of the process mapping be-
tween board-game playing and sequence labeling.

Based on this observation, we map n fragments of a se-
quence to n squares of a checkerboard, to establish the one-
to-one mapping between a sequence and a checkerboard (see
Figure 3). In this way, labeling a sequence can be trans-
formed into playing a board game, and placing pieces with-
out position restrictions naturally corresponds to producing
labels jumpily, i.e., jump labeling.

Game Design

Given a sequence of text fragments F = 〈F1, F2, · · · , Fn〉
and a category set C, we design a new board-game for prob-
lem transformation. The key of such board-game is to de-
sign appropriate game rules that make the final game-end
state correspond to the optimal solution of STC.

Game Elements. There is a checkerboard with n squares
arranged in an �

√
n� × �

√
n� grid1, |C| kinds of pieces and

two players2. The ith fragment in a sequence is mapped to
a square coordinate (j, k) of a checkerboard using ψn(i) =
(j, k) = (� i√

n
�, i − (� i√

n
� − 1)�

√
n�), i.e., map n frag-

ments to n squares of the checkerboard in row-major order.
It should be noted that although we employ the row-major
order to facilitate the presentation and illustration, any one-
to-one mapping (or any board shape) is acceptable.

Game Rules. Given these game elements, we define three
main game rules. 1) The game starts when all squares are
empty and ends when all are occupied. 2) Each player be-
gins with an unlimited amount of |C| kinds of pieces. At
each round, each player places one piece on an unoccupied
square (this action is also referred to as making a move),
after which the players take alternate turn. 3) After each
move, the player can earn a bonus that is dependent on the
quality of that move. The quality of a move is defined as how
well the current game state is considered, which involves the
intra-fragment features and the inter-fragment dependencies
(detailed below). The goal of each player is to maximize
his/her total bonuses in the whole game. The final game-end
state is viewed as the labeling output of the STC task.

1�x� rounds x up to an integer, i.e., the ceiling operation. When
n is not a square number, i.e., �√n� × �√n� > n, we can easily
remove the last �√n� × �√n� − n redundant squares.

2Actually, the game can be designed with multiple versions
to solve jump labeling, including 1 player, 2 players and even n
(#piece types) players. Under different versions, the game rules
should be correspondingly changed to achieve the desired labeling
sequence.

8642

Select Expand Evaluate Backpropagate PlaypExpandp p p gBackpropagatep p g

7
1

2

3
1

4

2

3
1

4

5 2

3
1

4
5

2

3
1

2

3
1

4

5 2

3
1

4
5

2

3
1

4

2

3
1

4

2

3
1

2

3
1

4

2

3
1

4

2

3
1

2

3
1

4

2

3
1

4

2

3
1

4

5
6

W =W + ξ(·)

5 2
6
34

e(·)

t(·)

N = 0
W = 0
Q = 0

u1 ∈ A(u)

uT

argmax ε(u1|u)

P = 1
|A(ut)|

7
8

9

9
8

8
5 2

1 6
34 7

9

33332222222222222221
2

3
1

4
Game State

Checkerboard

Pieces

Emission
Feature

Transition
Feature

u

N = N + 1

Q =W/N

Figure 4: The architecture of searching for the best move. Each simulation traverses the tree by selecting the best potential
candidate move. Then, the leaf node is expanded and evaluated before the edge statistics are updated in a backward fashion.
Once the search is complete, the best move is selected to play.

The reason why we set two players for the game is to con-
form with the Minimax principle used in game theory (Straf-
fin 1993) that each player has to logically analyze and make
his/her best move at each round, given that another player is
logically analyzing the best way to achieve his/her ends. Be-
sides, by designing the game state evaluator in which intra-
fragment features and inter-fragment dependencies are fully
injected as the evaluation factors, two players will fight for
moves with higher chance to earn more bonuses by appro-
priately utilizing the current game state. For STC, the game
rules would push each player to find the optimal label for a
certain unlabeled fragment at each round with the best usage
of both intra-fragment and inter-fragment information.

Playing the Game

Inspired by the remarkable success of Monte Carlo Tree
Search (MCTS) in board-games (Silver et al. 2017), we em-
ploy MCTS to find the best move to obtain the most bonus
for a player at each round. Technically, each node in the
MCTS tree represents a specific game state that consists of
all square status (could be empty or a specific type of piece).
At each iteration, given the game state u of current round,
MCTS searches for the best subsequent move from u. Typ-
ically, MCTS constructs a search tree evaluated by random
sampling of the game state space (i.e., by random simulat-
ing the future game states). Figure 4 shows one iteration of
executing the five actions iteratively:

• Select. Given a game state u, it selects child nodes that
represent states leading to better overall outcome.

• Expand. If a selected node u1 (the subscript denotes the
according timestep) is not a terminal node, i.e. there ex-
ists at least one unoccupied square in u1, it runs random
simulations from u1 to a terminal3 node uT .

3Different from the final game-end node (after playing), the ter-
minal node denotes the simulated game-end state (in playing).

• Evaluate. For each expansion, MCTS evaluates the ter-
minal node uT as the simulation result.

• Backpropagate. MCTS uses the simulation result to up-
date statistics in the edges on the path from uT to u1.

• Play. MCTS estimates the quality of each child node of
u using simulated statistics and then selects the best child
node to make the move.
Specifically, in the simulation process, to record the sta-

tistical information, each node (u) in the tree contains edges
(u, v) for all legal moves v ∈ A(u). Each edge (u, v) stores
a set of statistics {N(u, v),W (u, v), Q(u, v), P (u, v)}
where N(u, v) is the number of simulated times, W (u, v) is
the overall value of simulations, Q(u, v) is the mean value
of simulations and P (u, v) denotes the probability to be se-
lected.

Select Each simulation begins at a child node u1 and fin-
ishes when the random simulation reaches a terminal node
uT . At each of these timesteps, t < T , the best potential
child ut+1 from ut is selected according to its statistics:

ut+1 = argmax
v∈A(ut)

(
Q(ut, v)+cP (ut, v)

√∑
v′∈A(ut)

N(ut, v′)

1 +N(ut, v)

)

(1)
where c is a constant determining the level of exploration.
From the perspective of STC, the select phase helps to se-
lect an unlabeled fragment and produce the most promising
candidate label for it at each round.

Expand A node ut is randomly expanded, and each edge
(ut, ut+1) is initialized toN(ut, ut+1) = 0, W (ut, ut+1) =
0, Q(ut, ut+1) = 0 and P (ut, ut+1) = 1

A(ut)
. For STC,

the expand phase simulates the future labeling of unlabeled
fragments.

Evaluate Evaluating the terminal game state uT aims to
offer bonus for a player. For a good game, a proper bonus

8643

… “until” …

TIME

0.90

TOOL INGREDIENT TIMEACTION
0.85

ACTION INGREDIENT TIME
0.90

WHEN WHAT0.55

WHERE0.40WHEN

Figure 5: Examples of linguistic clues, including an emis-
sion feature, two first-order transition features and two high-
order transition features. The observed probabilities are used
as the confidences of the clues.

evaluation would push each player to find the optimal la-
bel for a certain unlabeled fragment at each round. In other
words, the value of bonus should reflect whether the ter-
minal game state (i.e., a labeling result) properly consid-
ers the intra-fragment and inter-fragment information. Here
we mine two kinds of linguistic clues to evaluate the usage
of intra-fragment and inter-fragment information, respec-
tively. Specifically, for the intra-fragment information, we
mine emission features which quantify the probability of a
label conditioned on the text content of a fragment. Note
that triggering an emission feature means that the corre-
sponding fragment can be easily classified. For the inter-
fragment information, we mine the kth-order transition fea-
tures which quantify the probability of a label conditioned
on k labels (see Figure 5). Note that triggering a transition
feature means the game state successfully captures a context
dependency pattern. Apart from manually defined features,
we additionally employ the chi-square test to obtain the sig-
nificance of a linguistic clue in the training data (Sharma
et al. 2018). We retain these distinguishing linguistic clues
whose testing values exceed a threshold and use their cor-
responding observed probabilities as the confidences of the
clues.

By injecting the linguistic clues into the game state evalu-
ator, after many random expansions, each terminal node uL
can be quantitatively evaluated:

ξ(uT ,F) =

n∑
m=1

|e|∑
i=1

ei(uT (ψn(m))|Fm)+

|F|−1∑
k=1

|tk|∑
j=1

tkj (uT)

(2)
where e(·) and tk(·) denote the emission features and the
kth-order transition features, respectively; u(ψn(i)) denotes
the type of the piece located at the position ψn(i) in u. In
summary, the evaluation value denotes the cumulative con-
fidence of all the triggered features, returning a larger value
if more features are triggered.

Backpropagate The evaluated value of each terminal
node uT is then backpropagated. The edge statistics are up-
dated in a backward pass from uT to u1 for the next decision.
The simulation counts are incremented, N(ut, ut+1) =
N(ut, ut+1) + 1, and the simulated value is updated to
the mean value, W (ut, ut+1) = W (ut, ut+1) + ξ(uT ,F),
Q(ut, ut+1) = W (ut, ut+1)/N(ut, ut+1). For STC, the
backpropagate phase updates statistics for the decision at
the next iteration.

Play At each round, MCTS selects the best child of u that
leads to the “most victories” through many simulations. The

overall confidence of a node is proportional to the product of
its exponentiated simulated value and the prior probability of
each placed piece:

ε(u1|u) =
Q(u, u1)

1
τ∑

v∈A(u)Q(u, v)
1
τ

·
n∏

i=1

π
(
u1(ψn(i))

)
(3)

where τ controls the level of exploration and π(a) is the
prior probability of the piece a when given Ti obtained via
the pretrained MLP module. For STC, the play phase pro-
duces the most confident label for an unlabeled fragment.

At each round, the search tree is reused at subsequent
timesteps: the child node corresponding to the played move
becomes the new root node, and the subtree below this child
is retained along with all its statistics, while the remainder
of the tree is discarded. Players iteratively place pieces until
the game ends. At that point, the optimal sequential labels
can be derived accordingly from the final game-end state u∗:

L̂ = 〈u∗(ψn(1)), u∗(ψn(2)), · · · , u∗(ψn(n))〉 (4)

Heuristic Speedup Strategies

We now suggest some heuristic speedup strategies to further
shorten the search time of the game without much perfor-
mance penalty. 1) In the select phase, we only select one
candidate move for extension even if the maximum (Equa-
tion 1) corresponds to multiple candidates. 2) In the expand
phase, we only generate the child nodes whose neighbors
contain at least one occupied square, to avoid unnecessary
space search. We also expand a state to at most four deeper
layers (i.e., an observable game state can be evaluated in-
stead of expanding to a terminal state). 3) In the evaluate
phase, we use memory-augmented MCTS (Xiao, Mei, and
Muller 2018) to reduce the unneeded recalculations. 4) In
chi-square testing, we randomly use 10% of the training data
to test whether a linguistic clue is significant. If so, we retest
it on all the training data.

Evaluation
We conduct extensive experiments to answer the following
three research questions:
RQ1 Does our proposed approach, GuGo, outperform the

currently state-of-the-art STC solutions?
RQ2 How do the different labeling orders and the speedup

strategies affect performance?
RQ3 What are the main differences between jump labeling

and successive labeling apart from the labeling order?

Datasets We use three real-world datasets of maintenance
manuals (MAM), cooking recipes (COR) and customer re-
views (WeBis) to test the methods in different domains.
• MAM (Qian et al. 2019) contains manuals from a wiki-

based site4 to teach people to fix various devices such as
phones, cameras, cars, etc. For each manual, MAM con-
tains the word-level labels (PERFORMER, ACTION, DE-
VICE and OTHER) that describe the semantic role of each
word.
4https://www.ifixit.com

8644

Table 1: Statistics of the datasets used. #D, #T and #C
denote the number of text sequences, fragments and cate-
gories, respectively. @W/T denotes the the average number
of words.
Dataset Domain Granularity #D #T #C @W/T

MAM Maintenance Word 2,636 20,605 4 1.00
COR Cooking Clause 1,005 2,636 5 5.41
WeBis User Review Sentence 3,097 10,660 3 22.84

• COR (Feng, Zhuo, and Kambhampati 2018) is a collec-
tion of user-generated recipes with textual descriptions of
cooking procedures from a food-focused social network5.
The clause-level labels (e.g., repairing tools, actions and
empirical suggestions) are provided.

• WeBis (Chen et al. 2019) contains various consumer re-
views6 of movies, books, restaurants, etc. It is collected
from Amazon, Yelp, YouTube and Google News. For ev-
ery sentence in a review, WeBis has a sentiment polarity
label (i.e., POSITIVE, NEUTRAL and NEGATIVE).

The statistics of the datasets are summarized in Table 1.
These datasets are representative since they cover: 1) dif-
ferent domains; 2) various degrees of context dependencies
(finer-grained fragments tend to need more context informa-
tion); and 3) short and long samples, in which the average
length varies from 1.00 (i.e., word-level fragments) to 22.84
(i.e., sentence-level fragments). For comparison, all datasets
are divided into train/dev/test sets using an 8:1:1 ratio.

Metrics We follow Kim et al. (2019) and employ two har-
monic metrics, Macro-F1 (MaF1) and Micro-F1 (MiF1) to
report the performance of STC. MaF1 is the average F1-
score of each category and is strongly influenced by the per-
formance of categories with fewer documents. MiF1 is the
F1-score over the whole dataset and depends on the perfor-
mance of categories with a large number of documents.

Baselines We choose three-group representative base-
lines:

• Single Text Classifiers. This group of methods classi-
fies each fragment separately. It includes a CNN based
text classifier (WordCNN) that utilizes word-level con-
volution filters and multiscale region sizes (Zhang and
Wallace 2017); and the state-of-the-art short text classi-
fier (RWMDCC) that uses the semantic centroid distance
in word mover’s space (Li, Ouyang, and Li 2019).

• Sequential Text Classifiers. This group of methods
solves STC with consideration of context information. It
includes a parsing-based classifier (PARPOS) that uses
the parse tree patterns and POS tags as text features (Ye-
ung and Lee 2015); a two-layer RNN+CNN network
(TLRCN) that incorporates context information (Lee and
Dernoncourt 2016); and the state-of-the-art STC solution
(CNNDAC) that uses a hierarchical CNN+RNN model
for dialog act classification (Liu, Han, and others 2017).

5https://www.recipe.com
6https://webis.de

Table 2: Experimental results of all methods on the three
datasets. � and 	 indicate the best and the second-best
performing baselines, respectively. The best performance
among all methods is highlighted in boldface. ∗ means
GuGo achieves significant improvement over the baseline
(p ≤ 0.05).

Methods MAM COR WeBis
MaF1 MiF1 MaF1 MiF1 MaF1 MiF1

WordCNN 0.476∗ 0.531∗ 0.431∗ 0.561∗ 0.626∗ 0.623∗
RWMDCC 0.430∗ 0.560∗ 0.457∗ 0.598∗ 0.703∗ 0.704∗
PARPOS 0.529∗ 0.689∗ 0.622∗ 0.726∗ 0.786∗ 0.786∗
TLRCN 0.676�

∗ 0.769∗ 0.752∗ 0.832∗ 0.767∗ 0.767∗
CNNDAC 0.694�

∗ 0.790�
∗ 0.793�

∗ 0.903�
∗ 0.802∗ 0.802∗

SASLNN 0.570∗ 0.654∗ 0.697∗ 0.775∗ 0.803�
∗ 0.803�

∗
BiLCRF 0.670∗ 0.774�

∗ 0.852�
∗ 0.920�

∗ 0.812�
∗ 0.813�

∗
GuGo 0.764 0.832 0.886 0.952 0.835 0.834

• General Sequence Labelers. This group of methods is
designed for general sequence labeling. It includes an
attention-based neural network (SASLNN) that can effec-
tively capture the important semantic roles in a sequence
(Tan et al. 2018); and the state-of-the-art general sequence
labeler (BiLCRF) that employs a CRF layer to label gen-
eral sequential data (Al-Zaidy, Caragea, and Giles 2019).

Implementation Details We use BERT (Devlin et al.
2019) as the language model and perform average pooling to
obtain the fragment embeddings with dimension of 768. For
the encoding layer, we also set its output dimension as 768.
In the game-playing layer, we set a hard threshold (α=0.05)
in chi-squared testing to select emission and transition fea-
tures for game bonus evaluation (Equation 2). In order to ob-
tain the prior probability of each fragment (Equation 3), we
use a one-hidden-layer MLP (the size of hidden layer is 200)
with ReLU as an activation function and the Adam optimizer
(Kingma and Ba 2015) with learning rate 10−4. The training
process includes two main steps: 1) We pretrain the encod-
ing layer and the MLP module with at most 5,000 epochs, a
mini-batch size of 32 and the cross entropy as the loss func-
tion. Note that the parameters of the BERT language model
are not updated; and 2) We use emission features, transi-
tion features and the prior probabilities obtained from the
pretrained parameters to evaluate the game states for game
playing. If not otherwise specified, all our proposed speedup
strategies are employed. We implement GuGo via Python
3.7.3 and Pytorch 1.0.1. All of our experiments are run on
a machine equipped with an Intel Core i7 processor, 32 GB
of RAM, and an NVIDIA GeForce-GTX-1080-Ti GPU. We
report the average performance over 5 different initiations
and the results of two-tailed paired t-test (Dror et al. 2018)
when necessary.

Performance Comparison (RQ1)

Table 2 presents the performance of the proposed GuGo and
the compared baselines on the three datasets w.r.t. MaF1 and
MiF1. From the table, we have several key observations:

• In all cases, our proposed model GuGo significantly out-
performs all baselines. In particular, GuGo, compared

8645

with the strongest baseline, improves MaF1 by 7.0% and
MiF1 4.2% on MAM, and MaF1 by 3.4% and MiF1 by
3.2% on COR. These results validate the effectiveness of
the proposed method.

• Specifically, GuGo outperforms BiLCRF that achieves
relatively satisfying performance with first-order transi-
tion features considered in a left-to-right manner. The im-
provements could be attributed to a better usage of context
information, indicating the use of jump labeling.

• GuGo achieves smaller performance improvements on
the WeBis dataset as compared to the MAM and COR
datasets. This is reasonable since the fragments in We-
Bis are at sentence-level which might require less con-
text clues than the word-level (MAM) and clause-level
(COR) scenarios (Lee and Dernoncourt 2016). Never-
theless, GuGo still outperforms all methods on WeBis,
improving MaF1 and MiF1 by 2.3% and 2.1%, respec-
tively. This is promising since the weak-dependent sce-
narios face the context deficiency problem (Lee and Der-
noncourt 2016), which could harm the performance if the
context information is not properly incorporated. The re-
sults verify that GuGo can facilitate STC regardless of the
degrees of text granularities (or context dependencies).

• Among the baselines, the single text classifiers (Word-
CNN, RWMDCC) achieve worse performance than the
other methods, which show the necessity of considering
the context information among fragments. The sequential
text classifiers (PARPOS, TLRCN, CNNDAC) perform
slightly better than the single text classifiers, suggesting
that the context encoding could help to capture inherent
clues among fragments. However, the sequential text clas-
sifiers perform worse than BiLCRF in most cases, which
shows the merit of explicitly considering context informa-
tion in the labeling process.

Since GuGo achieves state-of-the-art results in terms
of F1-score and consistent performance across all datasets
with varying text granularities, we conclude that the de-
signed board-game and the jump labeling mechanism pro-
vide GuGo with high accuracy and good generalizability.

Jump Labeling vs. Successive Labeling (RQ2)

We investigate the effectiveness of jump labeling by com-
paring GuGo with its two variants that are imposed with the
left-to-right (�L2R) and right-to-left (�R2L) direction re-
strictions for game playing. Such restrictions downgrade
jump labeling to successive labeling, i.e., the variants that
label the fragments in left-to-right and right-to-left order, re-
spectively. The results in Table 3 show the performance of
GuGo, GuGo�L2R, and GuGo�R2L on the three datasets.

We can observe that downgrading the jump labeling to
successive labeling causes severe performance drops. For
example, as compared to GuGo, GuGo�L2R decreases the
MaF1 and MiF1 by 4.3% and 2.5%, respectively, on COR.
GuGo�R2L behaves even worse and decreases the MaF1

and MiF1 by 11.8% and 10.4%, respectively, on COR. The
main reasons include that 1) the long-history and the future-
context information are not fully captured under successive

Table 3: Performance comparison between GuGo and its
two successive labeling variants. The best performance is
highlighted in boldface. The statistical significance (two-
tailed paired t-test) is indicated with ∗ (p ≤ 0.05).

Variants MAM COR WeBis
MaF1 MiF1 MaF1 MiF1 MaF1 MiF1

GuGo 0.764 0.832 0.886 0.952 0.835 0.834

GuGo�L2R 0.712∗ 0.794∗ 0.843∗ 0.927∗ 0.814∗ 0.814∗
GuGo�R2L 0.669∗ 0.761∗ 0.768∗ 0.848∗ 0.781∗ 0.782∗

labeling; 2) GuGo can predict the fragments that need less
consideration of context information in advance, which en-
ables it to provide bidirectional clues for those fragments
that need more consideration of context information. Thus,
jump labeling is beneficial to help sequence labeler choose
a better labeling order.

Moreover, we investigate the computation overhead of
jump labeling and the effects of the proposed speedup strate-
gies. Figure 6 shows the average running time curves. We
can conclude the following: 1) Vanilla jump labeling tends
to spend much more time than successive labeling, the main
reason is discussed in the following section. 2) The model
with speedup strategies is much faster than that without
speedup strategies. The speedup strategies are able to reduce
the runtime by approximately three-quarter on average. As a
result, it is nearly double or triple the time of successive la-
beling, instead of exponentially. This demonstrates that our
proposed speedup strategies effectively shrinks the search
spaces and avoids the state space explosion problem to some
extent. 3) Although employing the proposed speedup strate-
gies shrinks many search spaces, it does not cause much
performance degradation. Therefore, we suggest applying
the proposed speedup strategies in real-world applications
where a fast response is required.

GuGo without Speedup Strategies
GuGo with Speedup Strategies
GuGo ⟲ L2R

GuGo without Speedup Strategies
GuGo with Speedup Strategies
GuGo ⟲ L2R

GuGo without Speedup Strategies
GuGo with Speedup Strategies
GuGo ⟲ L2R

10

5.0

7.5

2.5

min 16.0

8.0

12.0

4.0

min

0% 50% 100%75%25%

min20.0

10.0

15.0

5.0

0.0 0.00% 50% 100%75%25% 0% 50% 100%75%25%0.0

MAM COR WeBis

MiF1MiF1MiF1

Figure 6: Time costs with/without using the speedup strate-
gies. The point (x, y) on these curves indicates that the
model has duration y when it first achieves the MiF1 point
x.

Discussion (RQ3)

To answer RQ3, we conduct a case study for intuitive anal-
ysis. A representative cooking recipe from COR is chosen,
and the processes of jump labeling are shown in Figure 7.
The example intuitively illustrates that jump labeling via
board-game playing provides another two advantages:

• GuGo searches four unlabeled fragments and selects the
most confident label T for the fifth fragment at Step 1. It
then searches three unlabeled fragments and selects the
second-most confident label C for the first fragment at
Step 2. Generally, in board-game playing, when deciding

8646

In a large bowl, whisk together seafood, spaghetti,
and dry macaroni, until the flavors have blended.

⟨‒ ‒ ‒ ‒ T⟩ ⟨C ‒ ‒ ‒ T⟩ ⟨C ‒ I ‒ T⟩ ⟨C A I ‒ T⟩

T
C IA
IT

C IA

⟨C A I I T⟩

T T
C

T
C I

A Action+IngredientAAC ContainerCC I Ingredient OnlyII T CONDITIONTT

Triggered Emission Features Triggered Transition Features

Step 1. Step 2. Step 3. Step 4. Step 5.

Figure 7: Case study: A representative example to explain
why jump labeling via board-game playing is helpful.

the next move, a player simulates playing moves on all un-
occupied squares and selects the best one to play for more
bonuses. The action naturally corresponds to simulating
predicting candidate labels for all unlabeled fragments in
STC, i.e., the next prediction takes into consideration all
possible unlabeled fragments, rather than only the succes-
sive one. In this way, in contrast with traditional succes-
sive labeling that searches only one successive unlabeled
fragment at each step, GuGo enlarges the search spaces to
all unlabeled fragments at each step.

• Owing to jump labeling, the fourth fragment (Step 5)
takes the long-distance dependency from the second frag-
ment and the backward dependency from the fifth frag-
ment into consideration. Thus, GuGo is more confident in
classifying the fourth fragment into I (“dry” as an adjec-
tive) instead of A (“dry” as a verb). Generally, successive
labeling usually imposes the Markov assumption, which
would leave out those right-to-left clues and those left-
to-right clues beyond the assumptive scope. In contrast,
jump labeling initially prefers to predict the fragments
that need less advance consideration of context informa-
tion, since there are no labeled fragments to consider at
the beginning. However, it asymptotically prefers to pre-
dict the fragments that need more contexts, since there
are enough labeled fragments as additional context clues,
which makes it possible to provide bidirectional and far-
ther context clues for the latter ones.

Conclusion and Future Work

We originally proposed the direction-free jump labeling
mechanism. In addition, we designed a new board-game by
defining proper game rules and suggesting some heuristic
speedup strategies. The proposed approach obtains satisfy-
ing results in terms of the F1-score, with better generalizabil-
ity and effectiveness. We draw two main conclusions. First,
compared with traditional successive labeling, jump label-
ing is more powerful by: a) enlarging the search spaces to
choose a better labeling order, and b) equipping the ability to
provide various degrees of context information for different
fragments. Second, our designed game and speedup strate-
gies are effective for problem transformation, enabling it to
utilize game search to find the optimal labeling order with
the avoidance of state space explosion problem.

In the future, we would like to formally prove that succes-
sive labeling is a linearized variant of jump labeling. We are
also interested in applying jump labeling to classify sequen-
tial video frames and general sequential data.

Acknowledgments

We thank the three anonymous reviewers for their valu-
able suggestions. The work was supported by the Na-
tional Nature Science Foundation of China (No.71690231,
No.61472207), Tsinghua BNRist and NExT++ research
supported by the National Research Foundation, Prime Min-
ister’s Office, Singapore under its IRC@SG Funding Initia-
tive.

References

Al-Zaidy, R. A.; Caragea, C.; and Giles, C. L. 2019. Bi-
LSTM-CRF Sequence Labeling for Keyphrase Extraction
from Scholarly Documents. In the World Wide Web Con-
ference (WWW).
Blatat, J.; Mrakova, E.; and Popelinsky, L. 2004. Fragments
and Text Categorization. In Annual Conference of the Asso-
ciation for Computational Linguistics (ACL).
Chen, Z.; Shen, S.; Hu, Z.; et al. 2019. Emoji-Powered
Representation Learning for Cross-Lingual Sentiment Clas-
sification. In the World Wide Web Conference (WWW).
Devlin, J.; Chang, M.-W.; Lee, K.; et al. 2019. BERT: Pre-
training of Deep Bidirectional Transformers for Language
Understanding. In the North American Chapter of the Asso-
ciation for Computational Linguistics (NAACL).
Dror, R.; Baumer, G.; Shlomov, S.; et al. 2018. The Hitch-
hiker’s Guide to Testing Statistical Significance in Natural
Language Processing. In Annual Conference of the Associ-
ation for Computational Linguistics (ACL).
Feng, W.; Zhuo, H. H.; and Kambhampati, S. 2018. Ex-
tracting Action Sequences from Texts Based on Deep Rein-
forcement Learning. In the International Joint Conference
on Artificial Intelligence (IJCAI).
Friedrich, A.; Palmer, A.; and Pinkal, M. 2016. Situation
Entity Types: Automatic Classification of Clause-level As-
pect. In Annual Conference of the Association for Compu-
tational Linguistics (ACL).
Gildea, D., and Jurafsky, D. 2002. Automatic Labeling of
Semantic Roles. In Computational linguistics.
Groote, J. F.; Kouters, T. W.; and Osaiweran, A. 2015.
Specification Guidelines to Avoid the State Space Explosion
Problem. In Software Testing, Verification and Reliability.
Ji, G., and Bilmes, J. 2005. Dialog Act Tagging us-
ing Graphical Models. In the International Conference on
Acoustics, Speech and Signal Processing (ICASSP).
Kalchbrenner, N., and Blunsom, P. 2013. Recurrent Con-
volutional Neural Networks for Discourse Compositionality.
In arXiv:1306.3584.
Kim, K.-M.; Kim, Y.; Lee, J.; et al. 2019. From Small-scale
to Large-scale Text Classification. In the World Wide Web
Conference (WWW).

8647

Kim, S. N.; Cavedon, L.; and Baldwin, T. 2010. Classify-
ing Dialogue Acts in One-on-one Live Chats. In the Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP).
Kingma, D. P., and Ba, J. L. 2015. Adam: A Method for
Stochastic Optimization. In the International Conference on
Learning Representations (ICLR).
Kumar, H.; Agarwal, A.; Dasgupta, R.; et al. 2018. Di-
alogue Act Sequence Labeling Using Hierarchical Encoder
with CRF. In the AAAI Conference on Artificial Intelligence
(AAAI).
Lee, J. Y., and Dernoncourt, F. 2016. Sequential Short-
Text Classification with Recurrent and Convolutional Neural
Networks. In the North American Chapter of the Association
for Computational Linguistics (NAACL).
Li, C.; Ouyang, J.; and Li, X. 2019. Classifying Ex-
tremely Short Texts by Exploiting Semantic Centroids in-
Word Mover’s Distance Space. In the World Wide Web Con-
ference (WWW).
Liu, Y.; Han, K.; et al. 2017. Using Context Informa-
tion for Dialog Act Classification in DNN Framework. In
the Conference on Empirical Methods in Natural Language
Processing (EMNLP).
Ma, X., and Hovy, E. 2016. End-to-end Sequence Label-
ing via Bi-directional LSTM-CNNs-CRF. In Annual Con-
ference of the Association for Computational Linguistics
(ACL).
Melamud, O.; Goldberger, J.; and Dagan, I. 2016. Con-
text2Vec: Learning Generic Context Embedding with Bidi-
rectional LSTM. In the SIGNLL Conference on Computa-
tional Natural Language Learning (CoNLL).
Qian, C.; Wen, L.; Long, M.; et al. 2019. Extracting Pro-
cess Graphs from Texts via Multi-Granularity Text Classifi-
cation. In arXiv:1906.02127.
Quarteroni, S.; Ivanov, A. V.; and Riccardi, G. 2011. Si-
multaneous Dialog Segmentation and Classification from
Human-human Spoken Conversations. In the International
Conference on Acoustics, Speech and Signal Processing
(ICASSP).
Rabiner, L. R. 1989. A Tutorial on Hidden Markov Models
and Selected Applications in Speech Recognition. In IEEE.
Ratnaparkhi, A. 1996. A Maximum Entropy Model for
Part-Of-Speech Tagging. In the Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Santos, C. N. D., and Zadrozny, B. 2014. Learn-
ing Character-level Representations for Part-of-Speech Tag-
ging. In the International Conference on Machine Learning
(ICML).
Sharma, R.; Bhattacharyya, P.; Dandapat, S.; et al. 2018.
Identifying Transferable Information Across Domains for
Cross-domain Sentiment Classification. In Annual Con-
ference of the Association for Computational Linguistics
(ACL).
Silver, D.; Schrittwieser, J.; Simonyan, K.; et al. 2017. Mas-
tering the Game of Go without Human Knowledge. In Na-
ture.

Stolcke, A.; Ries, K.; Coccaro, N.; et al. 2000. Dialogue
Act Modeling for Automatic Tagging and Recognition of
Conversational Speech. In Computational linguistics.
Straffin, P. D. 1993. Game Theory and Strategy. In The
Mathematical Association of America.
Tan, Z.; Wang, M.; Xie, J.; et al. 2018. Deep Semantic Role
Labeling with Self-Attention. In the AAAI Conference on
Artificial Intelligence (AAAI).
Trischler, A.; Ye, Z.; Yuan, X.; et al. 2016. A Parallel-
Hierarchical Model for Machine Comprehension on Sparse
Data. In Annual Conference of the Association for Compu-
tational Linguistics (ACL).
Venkataraman, A.; Ferrer, L.; Stolcke, A.; et al. 2003.
Training a Prosody based Dialog Act Tagger from Unlabeled
Data. In the International Conference on Acoustics, Speech
and Signal Processing (ICASSP).
Wang, S.; Mazumder, S.; Liu, B.; et al. 2018. Target-
Sensitive Memory Networks for Aspect Sentiment Classi-
fication. In Annual Conference of the Association for Com-
putational Linguistics (ACL).
Wu, F.; Liu, J.; Wu, C.; et al. 2019. Neural Chinese Named
Entity Recognition via CNN-LSTM-CRF and Joint Training
with Word Segmentation. In the World Wide Web Confer-
ence (WWW).
Xiao, C.; Mei, J.; and Muller, M. 2018. Memory-
Augmented Monte Carlo Tree Search. In the AAAI Con-
ference on Artificial Intelligence (AAAI).
Yang, Z.; Yang, D.; Dyer, C.; He, X.; et al. 2016. Hierar-
chical Attention Networks for Document Classification. In
the North American Chapter of the Association for Compu-
tational Linguistics (NAACL).
Ye, Z.-X., and Ling, Z.-H. 2018. Hybrid semi-Markov CRF
for Neural Sequence Labeling. In Annual Conference of the
Association for Computational Linguistics (ACL).
Yeung, C. Y., and Lee, J. 2015. Automatic Detection of Sen-
tence Fragments. In Annual Conference of the Association
for Computational Linguistics (ACL).
Zhang, Y., and Wallace, B. C. 2017. A Sensitivity Anal-
ysis of (and Practitioners’ Guide to) Convolutional Neural
Networks for Sentence Classification. In arXiv:1510.03820.
Zhou, G., and Su, J. 2002. Named Entity Recognition using
an HMM-based Chunk Tagger. In Annual Conference of the
Association for Computational Linguistics (ACL).

8648

