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Abstract

Entrainment is the propensity of speakers to begin behav-
ing like one another in conversation. While most entrain-
ment studies have focused on dyadic interactions, researchers
have also started to investigate multi-party conversations. In
these studies, multi-party entrainment has typically been esti-
mated by averaging the pairs’ entrainment values or by av-
eraging individuals’ entrainment to the group. While such
multi-party measures utilize the strength of dyadic entrain-
ment, they have not yet exploited different aspects of the
dynamics of entrainment relations in multi-party groups. In
this paper, utilizing an existing pairwise asymmetric entrain-
ment measure, we propose a novel graph-based vector rep-
resentation of multi-party entrainment that incorporates both
strength and dynamics of pairwise entrainment relations. The
proposed kernel approach and weakly-supervised represen-
tation learning method show promising results at the down-
stream task of predicting team outcomes. Also, examining the
embedding, we found interesting information about the dy-
namics of the entrainment relations. For example, teams with
more influential members have more process conflict.

1 Introduction

Entrainment is the propensity of speakers to begin behav-
ing like one another in conversation. Evidence of entrain-
ment has been found for multiple aspects of speech, in-
cluding lexical choice (Brennan and Clark 1996; Metz-
ing and Brennan 2003; Niederhoffer and Pennebaker 2002;
Danescu-Niculescu-Mizil, Gamon, and Dumais 2011; Gon-
zales, Hancock, and Pennebaker 2010; Pennebaker, Fran-
cis, and Booth 2001; Beňuš, Levitan, and Hirschberg 2012;
Rahimi et al. 2017; Friedberg, Litman, and Paletz 2012) in
both human-human and human-computer dialogues. In ad-
dition, the strength of entrainment has been shown to be as-
sociated with numerous social and conversational qualities,
such as the cohesiveness of speech (Lubold and Pon-Barry
2014; Natale 1975; Rahimi and Litman 2018; Beňuš et al.
2014; Danescu-Niculescu-Mizil et al. 2012).

While entrainment studies have largely focused on two-
party conversations, recent studies have estimated entrain-
ment in multi-party conversations by averaging pairs’ en-
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trainment values, or by averaging individuals’ entrainment
to the group (Gonzales, Hancock, and Pennebaker 2010;
Nenkova, Gravano, and Hirschberg 2008; Friedberg, Lit-
man, and Paletz 2012; Danescu-Niculescu-Mizil et al. 2012;
Doyle and Frank 2016; Rahimi and Litman 2018). How-
ever, the entrainment structure of multi-party groups con-
sists of many pairwise relations with different strengths and
directions. To the best of our knowledge, almost no exist-
ing multi-party entrainment measures utilize the structure of
pairwise entrainment relations in groups. Measuring conver-
gence, Rahimi and Litman (2018) introduced a weighting
based on entrainment behaviors (converging, diverging, or
maintaining) in groups to decrease the influence of outliers.
Although this is an attempt to utilize the structure of group
entrainment relations, it encodes only one aspect of these
relations.

In this paper, utilizing the adaptive pairwise entrainment
measure (Danescu-Niculescu-Mizil et al. 2012), which mea-
sures how much a speaker adapts her language to another
one in a local turn-by-turn basis, we propose a graph-based
vector representation of multi-party entrainment to encode
the strength and structure of pairwise interactions in multi-
party groups. Weighted directed entrainment graphs repre-
sent the structure of pairwise entrainment relations and their
strength. Learning embedding for the entrainment graphs,
we represent multi-party entrainment in vector-space where
groups with similar graphs have close vectors.

Learning dense vector representations for nodes, edges, or
sub-graphs from a large-scale sparse graph has been studied
by researchers and applied to social or knowledge graphs
(Luo et al. 2015; Tang et al. 2015; Grover and Leskovec
2016; Zhou et al. 2017; Hamilton, Ying, and Leskovec
2017). The intuition is similar to word2vec (Mikolov et al.
2013). Similar nodes in a graph should have vector represen-
tations that are close to each other. Similarity can be defined
as having similar neighbors or similar structural roles.

Inspired by these methods and by paragraph2vec (Le and
Mikolov 2014), we learn vectors for small graphs where
similarity is defined as having a similar graph structure.
To encode the structure of small graphs/groups (only about
4 nodes/speakers), we propose to initialize the node and
graph embeddings by applying a set of graph algorithms
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where each encodes a distinctive property of the graph. As
the supervision, we propose to employ the domain-specific
task of predicting real versus randomly permuted conversa-
tions, which has been utilized in the entrainment domain
to verify the validity of measures (De Looze et al. 2014;
Lee et al. 2011; Jain et al. 2012; Rahimi and Litman 2018).
Experimental evaluations demonstrate that the group en-
trainment embedding improves performance for the down-
stream task of predicting group outcomes compared to the
state-of-the-art methods.

2 Group Entrainment Graphs

Influence networks or graphs have been introduced and
investigated in other domains such as the social analysis
literature (Friedkin and Johnsen 2011; Tang et al. 2009;
Romero et al. 2011). We propose to apply a similar idea
to build multi-party entrainment graphs. First, we estimate
pairwise entrainment values using an existing probabilistic
directional (i.e., asymmetric) method (Danescu-Niculescu-
Mizil et al. 2012), where the entrainment of speaker b
to speaker a on a lexical category or linguistic feature c,
Entc(a, b), is defined as in Equation 1 1:

Entc(a, b) = p(eb|ea)− p(eb) (1)

Let Uab be the set of all (ub, ua) utterance pairs where
speaker a’s utterance (ua) immediately precedes speaker b’s
utterance (ub). eb/ea is the indicator that the desired event
(e.g., presence of lexical category c) occurs in the corre-
sponding utterances ub/ua from set Uab respectively. The
directionality of this entrainment measure means that the
entrainment of speaker a towards b is not the same as the
entrainment of speaker b towards a.

Next, we define the multi-party entrainment graph G =
(V,E,W ). Each node v ∈ V represents a speaker from the
group. The directed edges in E represent the presence and
the weights in W represent the strength of entrainment be-
tween the source and destination node, which are measured
using Equation 1. We define an edge from node a to b if and
only if Entc(a, b) is positive. Equation 1 measures adapta-
tion in language and negative values imply no adaptation.
In other words, a negative value implies that speaker b uses
the linguistic feature c in response to speaker a more than
in response to speaker a’s speech with linguistic feature c.
So, to simplify the problem, we decide to consider the neg-
ative values as no entrainment. There are other pairwise en-
trainment measures where the sign is more meaningful and
cannot be simply ignored, such as convergence (Levitan and
Hirschberg 2011). In future work, we will investigate con-
sidering both positive and negative values. The direction of
the edge implies that the source node influences the desti-
nation node, while the edge weight represents the amount
of this influence (entrainment). Consider a group with three
speakers: A,B,C. Suppose that the entrainment of pairs on
a lexical feature are as follows:

1Defining a new pairwise entrainment measure is not the contri-
bution of this paper. The contribution is to define a new multi-party
measure, using an existing state-of-the art (Danescu-Niculescu-
Mizil et al. 2012) pairwise measure.

Figure 1: An example multi-party entrainment graph.

Ent(A,B) = 0.5, Ent(B,A) = −0.1,

Ent(A,C) = 0.9, Ent(C,A) = 0.2,

Ent(C,B) = −0.5, Ent(B,C) = 0.

The entrainment graph that would then be constructed for
this group is shown in Figure 1.

Entrainment graphs contain interesting information about
the dynamics of the entrainment relations. For example, we
could learn the structural roles of the speakers, such as who
are the influencers, connectors, or passive speakers. Also,
we could learn about indirect entrainment relations. If A in-
fluences B and B influences C, there is an indirect influ-
ence from A to C. This information could potentially help
us have a better understanding of multi-party entrainment. In
the graph from Figure 1, we observe that A is an influential
speaker and C could potentially influence B although there
is no edge between them. This information will be lost if we
simply average pairs’ entrainment values.

In the next section, we propose three different approaches
to learn entrainment vector representations from such en-
trainment graphs.

3 From Graphs to Vector Representation

3.1 Directly Estimating the Vectors

Given the entrainment graphs, the goal is to represent group
entrainment in a vector-space where groups with similar en-
trainment dynamics have close vectors. As the most obvi-
ous and straightforward approach, we apply a set of graph
algorithms to capture distinctive and informative proper-
ties of the graphs. Applying d functions, each node in the
graph (i.e., conversational participant) is represented with a
d-dimensional vector. Then, the vector representation of the
entrainment graph (i.e., the group of participants) is a simple
average of its nodes’ vectors.

Following are all ten kernel functions that we utilized. We
tried to be inclusive but we did not perform an experiment
to obtain the best list by pruning it or by adding other al-
gorithms. For convenience, we call these functions kernels
in the rest of this paper. All these functions are well-known
graph algorithms, so we explain them minimally here. Given
a weighted directed graph G = (V,E,W ), our 10 kernels
are as follows:

K1= Closeness Centrality (Wasserman and Faust 1994)
of a node u is “the ratio of the fraction of reachable nodes,
to the reciprocal average distance from the reachable node”:

C(u) =
n− 1

N − 1

n− 1
∑n−1

v=1 d(v, u)
(2)
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The distance function d(v, u) is defined as the length of the
shortest-path from node v to u. And, n is the number of
nodes that can reach u. N is the total number of nodes. In
our work, we are interested in finding the highly influen-
tial nodes which can reach to many nodes. This is opposite
of the Closeness Centrality definition. For this purpose, for
each entrainment graph G, we build and use the reversed
graph GR in which the edges are the reverse of G’s edges.
Thus, the reachable nodes of u in GR are the ones that can be
reached starting from u in the original graph G. So, highly
influential nodes in G have high closeness centrality score.

K2 = Betweenness Centrality (Brandes 2001) of node u
is the fraction of all-pairs shortest paths that pass through u
to all the all-pairs shortest paths. σ(s, t) is the number of
shortest (s, t)-paths, and σ(s, t|u) is the number of those
paths passing through node u other than s, t. If s = t,
σ(s, t) = 1, and if u ∈ {s, t}, σ(s, t|u) = 0.

CB(u) =
∑

s,t∈V

σ(s, t|u)
σ(s, t)

(3)

A node has a high betweenness centrality if its role in the
graph is a connector.

K3 =PageRank (Page et al. 1999) is one of the most well-
known algorithms which was originally designed to rank
web pages. It outputs a probability distribution for nodes
based on the score of their neighbours. “PageRank works
by counting the number and quality of links to a node to
determine a rough estimate of how important the node is.
The underlying assumption is that more important nodes are
likely to receive more links from other nodes.” We use the
weighted reversed graph GR and the weighted algorithm
(Xing and Ghorbani 2004) to measure PageRank probability
distribution of the nodes.

K4 , K5 = HITS (Kleinberg 1999) computes two numbers
for a node. Authority score is based on the incoming links
(“a good authority is a node that is linked by many different
hubs”). Hub score is based on outgoing links (“a good hub
is a node that points to many other nodes”).

K6 = Maximum Flow (Ford and Fulkerson 2009) of node
u is the sum of all single-commodity max flow values (i.e.,
net outflow) from the source node u to all other nodes in the
capacity graph Gc = (V c, E, C) where each edge has only
a single attribute, capacity C, which is equal to the weight
attribute in the original graph G.

MaxFlow(u) =
∑

v∈V c

max flow(u, v, C) (4)

The Maximum Flow is the sum of all direct and indirect en-
trainment influences that a node has on all other nodes in the
graph.

K7 = Katz Centrality (Katz 1953) computes centrality
for a node u based on centrality of its neighbors:

KATZu = α
∑

j

AijKATZj + β (5)

where A is the adjacency matrix of graph G with eigenval-
ues λ. The parameter β controls the initial centrality and
α < 1

λmax
. “Katz centrality computes the relative influence

of a node within a network by measuring the number of the
immediate neighbors and also all other nodes in the network
that connect to the node under consideration through these
immediate neighbors.”

K8 = Weighted In degree of a node is the sum of the
weights of all incoming edges to it. This indicates how much
direct influence the node gets from other nodes in the graph.

K9 = In degree Centrality of a node is the fraction of
nodes to which its incoming edges are connected. This mea-
sure indicates how many influencers a node has.

K10 = Degree Centrality of a node is the fraction
of nodes that it is connected to (sum of in degree and
out degree centrality). This measure indicates the ratio of
all the nodes that entrain directly to/from the corresponding
node.

3.2 Learning Embedding: The Self-Supervised
Approach

Given the entrainment graphs, the goal is to learn a d-
dimensional embedding of nodes and graphs where nodes
with similar structural roles and graphs with similar struc-
ture have close vectors. We employ the node2vec (Grover
and Leskovec 2016) and paragraph2vec (Le and Mikolov
2014) methods and define our problem as follows.

Our embedding learning is a maximum likelihood opti-
mization. We define G as the set of all graphs and U as the
set of all nodes (vocabulary) from all graphs. Then, for a
given graph g = (V,E,W ), the nodes of the graph, V , are
its context, C(g) = V .2 We seek to optimize the objective
function in Equation 6 which maximizes the log-probability
of observing the context of the graph g, conditioned on vec-
tor representation of g, given by f(g):

maxf

∑

g∈G

log p(C(g)|f(g)) (6)

Assuming conditional independence of observing each
node in the context given the vector representation of the
graph, the conditional probability of Equation 6 is defined
by:

P (C(g)|f(g)) =
∏

v∈C(g)

p(v|f(g)) (7)

Let W be the matrix of graph embedding and Z be the
matrix of node embedding. Every unique graph g is mapped
to a unique vector Wg and every unique node is mapped to
a unique vector Zv . The probability in Equation 7 is defined
as the softmax probability normalized by all the nodes in U :

p(v|f(g)) = exp(ZT
v .Wg)∑

u∈U exp(ZT
u .Wg)

(8)

Given Equations 6, 7, and 8, and approximating the nor-
malization of the softmax, which is a sum over all nodes
of all graphs, with negative sampling (Mikolov et al. 2013;
Grover and Leskovec 2016). the loss function of the opti-
mization problem is:

2The term context is used to better understand our approach
with respect to (Le and Mikolov 2014).
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L =
∑

g∈G

∑

v∈C(g)

(− log σ(ZT
v .Wg)+

∑

u∈C′(g)

log σ(ZT
u .Wg))

(9)
The dot product measures the similarity of a node and a

graph in the vector-space. For all nodes in the context of a
graph, the vector representations of the nodes and the graph
should be close in the vector space. C ′(g) is a set of random
nodes which do not belong to the graph g. σ is the sigmoid
function.

Initializing Embedding: As discussed before, we want
graphs with similar structure and nodes with similar struc-
tural roles to be close in vector space. To achieve this, we
need to encode these structures in the vectors. Approaches
like random walks (Grover and Leskovec 2016) are not ap-
propriate for such small graphs of about 4 nodes. For this
purpose, we utilize the proposed kernel approach from Sec-
tion 3.1 to initialize the node and graph embedding matrices.
So, the vector of each node or graph indicates their struc-
tural properties and similarity of vectors indicates similarity
of their structures.

Domain-Specific Negative Sampling: To build the set
C ′(g) in Equation 9, one approach similar to word2vec is
to randomly sample nodes that are not in the context of
the graph (i.e., that are from other graphs). But, this might
not be a good approach for our problem as several graphs
might have the same structure. So, randomly choosing nodes
from other graphs does not serve our purpose well. We want
our negative samples to have different vector representations
from the context of the graph.

Entrainment is a phenomena that occurs in the course of
conversation. So, randomly generated conversations should
not show strong entrainment relations. Distinguishing be-
tween real and randomly permuted fake conversations is a
validation task in the entrainment literature (De Looze et al.
2014; Lee et al. 2011; Jain et al. 2012; Rahimi et al. 2017).
We thus propose to use the permuted version of each con-
versation to build the corresponding fake graphs and use
the nodes of these fake graphs to build C ′(g). So, the size
of C ′(g) is equal to C(g) and the nodes in C ′(g) are the
permuted version of the nodes in C(g). The fake conver-
sations were generated by randomly permuting the speech
and silence intervals of each speaker in the group. Using this
method, we make sure that the negative and positive samples
have different structures. At the same time, we make sure
they are not too distinct since we do not change the content
of the conversations but only randomly permute the content.
For example, the distribution of the lexical categories are the
same in both negative and positive samples of a graph.

Network Structure and Algorithm: As in word2vec
(Mikolov et al. 2013), our network is a shallow two-layer
neural net. It has two embedding look-up tables, one for the
nodes and one for the graphs. The second (output) layer in-
cludes a sigmoid activation function applied on the dot prod-
uct of the two vectors from the first layer. The input is a pair
of node index and graph index. Given the input indexes and
the embedding matrices, we look up the two vectors for the
given node and graph. Then, we simply get the dot product

of the two vectors to calculate their similarity. We apply a
sigmoid activation function on the result of the dot product
to calculate the probability of the output. This probability is
used to predict if the node is from the context of this graph
(a positive sample) or is from the corresponding fake graph
(a negative sample). So, we have a simple binary prediction
and we use binary cross entropy loss function and a stochas-
tic gradient decent optimization algorithm. After completing
the training, we get the learned graph embedding matrix as
our representation of multi-party entrainment.

3.3 Learning Embedding: The
Weakly-Supervised Approach

The self-supervised approach employs the randomly per-
muted conversations to generate the negative samples for
an optimization task that tries to maximize the likelihood of
observing the context nodes. A different approach is to di-
rectly employ the validation task of real-vs-permuted predic-
tion as supervision. Given vector representations of a node
and a graph, we predict if the input is from a real conver-
sation or a fake conversation. We train the graph embed-
ding while we optimize this classifier. We call this method
weakly supervised since the supervision is not on the main
task of interest which is predicting social outcomes. Simi-
lar to the self-supervised approach, we construct a randomly
permuted conversation for each real conversation and build
its corresponding entrainment graph. Then, unlike the self-
supervised approach, we predict if a given input graph is real
or permuted. The objective is to minimize a binary cross en-
tropy loss function or maximize the likelihood of observing
the data using a gradient descent optimization.

Like before, we employ two embedding matrices for the
nodes and the graphs although the size of the graph embed-
ding is doubled (by including the fake graphs). We initial-
ize the two matrices with the kernel approach to encode the
structure of the graphs. Assuming that the kernel initializa-
tion is good at encoding the underlying structure, to reduce
the number of trainable parameters, we fix the node em-
bedding with the initialization, and train the graph embed-
ding. We utilize the same shallow network as in the self-
supervised method. After training the graph embedding, the
subset of the graph embedding which is from the real graphs
represents our entrainment vectors.

4 Experiments and Results

4.1 Data

To evaluate the utility of our entrainment representations,
we use them to measure entrainment in the freely available
Teams Corpus (Litman et al. 2016). The corpus includes au-
dio files and transcripts for 62 teams of 3 or 4 individuals
playing a cooperative board game in two sessions. The total
number of transcripts across sessions for all teams is 1193.
The teams are disjoint in participants.

Individually taken self-reported pre- and post-game sur-
veys are available for both sessions, including: (1) favorable

3Not 124 as a few transcripts are not yet available.

8684



social outcome measures (perceptions of cohesion, satisfac-
tion, potency/efficacy and perceptions of shared cognition),
and (2) conflict measures (task, process, and relationship
conflicts). Following prior works using the Teams corpus
(Rahimi and Litman 2018; Yu and Litman 2019), we cre-
ated a team-level Favorable measure by z-scoring and aver-
aging all the highly correlated favorable measures and aver-
aging them for each team. We followed the prior work and
z-scored the process conflict measure and averaged it in the
groups to construct a team-level Conflict measure. Given the
small size of data, binary Favorable and Conflict measures,
split at the median, will be used to evaluate the quality of the
different entrainment vector representations from Section 3.

4.2 Experimental Setups

For consistency with prior work (Danescu-Niculescu-Mizil
et al. 2012; Doyle and Frank 2016), we measure lexical
entrainment on eight LIWC-derived categories of function
words (Pennebaker, Francis, and Booth 2001) that have little
semantic meaning and are more relevant to style than con-
tent. These eight categories are: articles, auxiliary verbs,
conjunctions, high-frequency adverbs, impersonal pro-
nouns, personal pronouns, prepositions, and quantifiers
(451 lexemes total). Transcripts are pre-processed before ex-
tracting lexical terms by removing punctuation marks, con-
verting all words to lower case, removing noises such as
laughter, and removing any part of the transcript indicated
as not fully understood by transcribers.

The size of the input data for training the networks is
about 6500 instances4. We have minimum 100 and maxi-
mum 150 epochs and stop early if the training loss is smaller
than 0.1 to avoid overfitting. The batch size is set to 20.
RMSProp optimization algorithm is used with learning rate
equal to 0.001. These hyper-parameters are chosen with re-
gards to the small training data size and should be optimized
in the future. It should be emphasized that we do not require
any manually labeled data for training the self-supervised or
weakly-supervised models.

After learning the entrainment embedding, similar to prior
works (De Looze et al. 2014; Lee et al. 2011; Jain et al. 2012;
Rahimi et al. 2017; Doyle, Yurovsky, and Frank 2016;
Lee et al. 2011) which have evaluated entrainment extrin-
sically in terms of predicting outcomes, we evaluate its util-
ity at the downstream task of predicting Favorable and Con-
flict team outcomes. We use support vector machines with
RBF kernel and perform leave-one-out cross validation. The
size of the data for this experiment is 119 since we predict
the outcomes for each team and each session. We compare
the utility of the proposed embedding with two local adap-
tive baselines from the literature: SCP (Danescu-Niculescu-
Mizil et al. 2012) which is a probabilistic measure and its
pairwise version is utilized in this paper, and HAM (Doyle
and Frank 2016) which is a generative hierarchical align-
ment model argued to outperform SCP. The HAM base-
line is fit using the same hyper-parameters as in (Doyle and
Frank 2016). But, it is fit with 2000 iterations of the sampler

4119 sessions * (3 or 4) speakers * 8 LIWC categories * 2 (fake
or real)

(1000 as warm-ups) and four chains since our data is small.
The output is a probability distribution for each group. So,
we utilize the mean, upper and lower bounds of the 95%
highest posterior density.

4.3 Results and Discussion

First, we utilize the entrainment embedding of all 8 lexical
categories as features. So, the total number of features is 80
which for 119 instances of data is a lot and might cause our
model to overfit. So, it is important to employ feature se-
lection. We employ a model-based feature selection using
LASSO. The feature selection is performed inside the cross
validation loop, so the number of selected features might be
slightly different at each fold. We also set a threshold on
minimum number of features to avoid underfitting. The reg-
ularization parameter is tuned with regards to this threshold.
The threshold itself is tuned in each fold.

The results are in Table 1. The middle part of the table
shows the accuracies of the three proposed approaches us-
ing their best configurations at two tasks of predicting Fa-
vorable and Conflict outcomes using all features or by em-
ploying feature selection. Predicting Conflict, the embed-
ding of weakly-supervised approach when utilizing feature
selection outperforms the best SCP result significantly and
the best HAM result. Feature selection has a greater effect
on the proposed approaches since the number of features in
these models are more than baselines. SCP has only 8 fea-
tures and HAM has 24 features. Predicting Favorable out-
come, the embedding of weakly-supervised approach with
or without feature selection outperforms the best SCP re-
sult significantly and the best HAM result with a trending
p-value (< 0.1). Comparing the three proposed approaches,
the weakly-supervised approach outperforms the other two
models on both tasks. This shows that training the embed-
ding improved the initial kernel vectors although the initial
kernel vectors, which does not require any training, performs
comparable, if not better, to the computationally expensive
HAM baseline.

The last part of Table 1 presents other evaluated configu-
rations for the weakly-supervised and the self-supervised ap-
proaches. First, we investigate the importance of the kernel
initialization for the self-supervised approach by compar-
ing it to a default Uniform initialization. Results in Table 1
show that the two Self Kernel approaches outperform the
Self Uniform approaches which indicates the importance of
a good initialization.

Second, for the self-supervised approach with negative
sampling, we evaluate the effect of the proposed negative
sampling approach. So, we compare our proposed domain-
specific Permuted negative samples (self * Permuted) with
a Random negative sampling approach (self * Random)
where we select random nodes from other graphs rather than
from paired permuted graphs. The results in Table 1 show
that the proposed negative sampling approach outperforms
the random configuration.

For the weakly-supervised approach, the best configura-
tion has Not Trainable (NT) node embedding and only trains
the graph embedding rather than Training both embedding
matrices. This is beneficial since it reduces the number of
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Features Conflict-All Conflict-FS Favorable-All Favorable-FS

Baselines
Majority 53.78 53.78 50.42 50.42
SCP 63.02 63.86 51.26 50.42
HAM 68.90 69.74 53.78 51.26

Best Proposed
Kernel 57.14 69.74 62.18(∗,) 62.18(∗,)

WeakS Kernel Permuted NT 59.66 74.79(∗,) 63.86(∗,+) 63.86(∗,+)

Self Kernel Permuted 63.02 73.95(+,) 57.14 58.82

Other Configurations

WeakS Kernel Permuted T 58.82 63.86 56.30 57.14
Self Kernel Random 63.02 66.38 56.30 55.46
Self Uniform Permuted 49.58 63.86 39.49 52.94
Self Uniform Random 52.94 57.93 58.82 55.46

Table 1: Accuracy of predicting Conflict and Favorable outcomes. The features are entrainment values/vectors from all 8 LIWC
categories. The pair of signs in parenthesis indicates the result of significant test comparing the corresponding accuracies with
the best of SCP and HAM in order. “*” indicates significance (p-value < 0.05), “+” indicates trending result (p-value < 0.1).

Task Features ipron article auxverb conj adverb ppron preps quant

Conflict

HAM 68.06 69.74 63.86 68.06 61.34 67.22 64.70 65.54
Kernel 62.18 63.86 58.82 64.70 61.34 66.38 60.50 65.54
WeakS Kernel Permuted NT 57.98 57.14 65.54 67.23 56.30 60.50 59.66 72.27
Self Kernel Permuted 68.06 54.62 63.02 57.14 58.82 53.78 55.46 71.42

Favorable

HAM 50.42 54.62 45.37 43.69 40.33 47.05 37.81 51.26
Kernel 63.02 63.02 61.34 58.82 55.46 52.94 63.02 54.62
WeakS Kernel Permuted NT 58.82 66.39 57.14 57.14 55.46 51.26 63.03 57.98
Self Kernel Permuted 57.14 53.78 48.73 63.86 54.62 51.26 47.05 49.58

Table 2: Accuracy of predicting Conflict and Favorable outcomes. The features are entrainment values/vectors from a single
lexical category.

trainable parameters of the model. Also, we employ the
best initialization method from self supervised experiments
(kernel initialization). Also, the weakly supervised approach
does not include negative sampling. But, the task is to pre-
dict whether a graph is real or fake.

In a second experiment, we predict the Favorable and
Conflict outcomes using the embedding of each lexical cat-
egory. So, we have 8 prediction tasks for each outcome.
At each prediction task, the number of features is equal to
the size of the vector (10). So, we do not need to employ
feature selections in this experiment. The results are in Ta-
ble 2. We only experiment with the best methods from the
first experiment. For predicting Conflict, we observe that the
HAM baseline is more robust across different lexical cat-
egories than the embedding approaches. But, the proposed
approaches outperform the HAM baseline on all categories
when predicting favorable outcome. So, the entrainment em-
bedding is more robust across the two tasks.

Given the promising results of the proposed vector rep-
resentations, there are two more questions that we further
investigate. First, does the proposed vector representation
of entrainment learn anything beyond team size? 5 Sec-
ond, which dimensions (kernels) are more predictive? To
answer these questions, we take a closer look at each dimen-

5We specially need to answer this question for the Kernel ap-
proach, since average of PageRank and HITS scores over the nodes
of the graph is the ratio of the number of nodes. This is not an issue
for the learned embedding.

sion of the kernel vectors. In the future, we need to expand
this experiment and investigate the outperforming weakly-
supervised embedding to better understand why learned em-
bedding outperforms the estimated kernels. We pick one of
the experiments where the kernel vector representation out-
performed baselines on a individual category: kernel model
predicting process conflict on the LIWC category of “quan-
titative”. We perform a hierarchical regression analysis. The
z-scored team-level process Conflict is the dependent vari-
able. We enter team-size as an independent variable to the
first level. In the second level, we add all ten dimensions of
the entrainment vector on the LIWC category of quantita-
tive.

The results are in Table 3. We remove all the dimensions
that did not have a significant or trending coefficient from
the final model. The amount of variance explained by Ker-
nel dimensions is significantly above and beyond team size
entered in Model 1, ΔR2 = 0.216, ΔF (4, 113) = 8.763,
p = 0.000. So, the answer to our first question is yes. The
proposed model learns predictive dimensions above and be-
yond the effect of team size. To answer the second question,
we look at the selected dimensions with significant coeffi-
cients. Closeness Centrality has a positive significant corre-
lation with process conflict which means teams with higher
average closeness centrality have higher conflict. In other
words, teams with fewer influential members, have less con-
flict. Maximum flow has a significant negative correlation
which indicates teams with higher average maximum flow,
have less conflict. In other words, the more is the direct and
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Model 1 Model 2
B SEB β B SEB β

Team Size 0.613 0.180 0.300* 0.510 0.210 0.250*
K1 = Closeness Centrality 18.922 9.201 4.509*
K2 = Betweenness Centrality -5.942 3.563 -0.526+
K6 = Maximum Flow -4.280 1.763 -0.268*
K10 = Degree Centrality -8.281 4.588 -3.584+
Model R2 0.09 0.306
Model F 11.609* 9.948*

Table 3: Summary of hierarchical regression analysis for variables predicting process conflict on quantitatives using Kernel
approach. B , SEB, and β are the unstandardized coefficients, coefficients Std. Error, and standardized coefficients. * p < .05.
+ p < .1 n = 119.

indirect entrainment in the team, the less is the process con-
flict. One main advantage of the proposed vector represen-
tation compared to the baselines is the ability to present all
these pieces of information about the dynamics of entrain-
ment in groups.

5 Conclusion and Future Work

In this paper, we proposed group entrainment embedding,
a vector representation for multi-party entrainment to en-
code the underlying entrainment dynamics in the groups.
We proposed three approaches to learn the vector represen-
tation from entrainment graphs built by utilizing existing di-
rectional pairwise entrainment measures. We concluded that
the vector representation learned by our proposed weakly-
supervised approach outperforms the baselines and the other
proposed approaches. Beside performance, this approach
has other advantages. First, encoding the underlying struc-
ture of the entrainment graphs in the vectors provides useful
information. For example, we found that teams with more
influential (in terms of entrainment) members or higher av-
erage closeness centrality have more Process Conflict. Sec-
ond, proposed approaches are computationally less expen-
sive than the best performing baseline: the generative HAM
model. Finally, the weakly supervised approach requires
training data similar to HAM. But, the proposed kernel ap-
proach when performance is comparable to the weakly su-
pervised approach does not require any training data and di-
rectly estimates entrainment of groups.

We did not perform any parameter tuning on the parame-
ters of the neural network such as number of epochs, batch
size, or learning rate. We also chose a simple two layer net-
work. Other network structures might perform better espe-
cially for the weakly-supervised approach. Further investi-
gation is required to optimize the list of the graph algorithms
(kernels) to best encode the structure of the graphs. We will
also investigate incorporating the Graph Convolutional Net-
works to encode the graphs. Some other future directions are
investigating addition of negative edges to the graphs, under-
standing the embedding dimensions, utilizing other linguis-
tic features, and incorporating other pair-level entrainment
measures. In general, the results are promising and might be
even further improved by exploring these paths. Since the
Teams corpus is small, the proposed approaches should be
validated on a bigger dataset. Also, the team size in Teams

corpus is three or four. Larger groups might benefit more
from the proposed approaches.

6 Acknowledgements
This work is supported by the National Science Foundation
under Grant Nos. 1420784 and 1420377. We thank Omid
Kashefi for his valuable comments.

References
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