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Abstract

Do state-of-the-art models for language understanding al-
ready have, or can they easily learn, abilities such as boolean
coordination, quantification, conditionals, comparatives, and
monotonicity reasoning (i.e., reasoning about word substitu-
tions in sentential contexts)? While such phenomena are in-
volved in natural language inference (NLI) and go beyond ba-
sic linguistic understanding, it is unclear the extent to which
they are captured in existing NLI benchmarks and effectively
learned by models. To investigate this, we propose the use of
semantic fragments—systematically generated datasets that
each target a different semantic phenomenon—for probing,
and efficiently improving, such capabilities of linguistic mod-
els. This approach to creating challenge datasets allows di-
rect control over the semantic diversity and complexity of the
targeted linguistic phenomena, and results in a more precise
characterization of a model’s linguistic behavior. Our exper-
iments, using a library of 8 such semantic fragments, reveal
two remarkable findings: (a) State-of-the-art models, includ-
ing BERT, that are pre-trained on existing NLI benchmark
datasets perform poorly on these new fragments, even though
the phenomena probed here are central to the NLI task; (b) On
the other hand, with only a few minutes of additional fine-
tuning—with a carefully selected learning rate and a novel
variation of “inoculation”—a BERT-based model can master
all of these logic and monotonicity fragments while retaining
its performance on established NLI benchmarks.

Introduction

Natural language inference (NLI) is the task of detecting
inferential relationships between natural language descrip-
tions. For example, given the pair of sentences All dogs
chased some cat and All small dogs chased a cat shown
in Figure 1, the goal for an NLI model is to determine that
the second sentence, known as the hypothesis sentence, fol-
lows from the meaning of the first sentence (the premise
sentence). Such a task is known to involve a wide range
of reasoning and knowledge phenomena, including knowl-
edge that goes beyond basic linguistic understanding (e.g.,
elementary logic). As one example of such knowledge, the
inference in Figure 1 involves monotonicity reasoning (i.e.,
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premise: All↑ dogs↓ chased↑ some↑ cat↑
hypothesis: (entails) All small dogs chased a cat

(Linguistically interesting issue, e.g., monotonicity)

Formal Specification: Fragment with Idealized NLI examples

challenge dataset (NLI pairs)

1. Is this fragment learnable using existing NLI architectures?
2. How do pre-trained NLI models perform on this fragment?
3. Can models be fine-tuned/re-trained to master this fragment?

Construct

Generate

Empirical Questions

Figure 1: An illustration of our proposed method for study-
ing NLI model behavior through semantic fragments.

reasoning about word substitutions in context); here the po-
sition of dogs in the premise occurs in a downward mono-
tone context (marked as ↓), meaning that it can be special-
ized (i.e., substituted with a more specific concept such as
small dogs) to generate an entailment relation. In contrast,
substituting dogs for a more generic concept, such as ani-
mal, has the effect of generating a NEUTRAL inference.

In an empirical setting, it is desirable to be able to measure
the extent to which a given model captures such types of
knowledge. We propose to do this using a suite of controlled
dataset probes that we call semantic fragments.

While NLI has long been studied in linguistics and logic
and has focused on specific types of logical phenomena
such as monotonicity inference, attention to these topics
has come only recently to empirical NLI. Progress in em-
pirical NLI has accelerated due to the introduction of new
large-scale NLI datasets, such as the Stanford Natural Lan-
guage Inference (SNLI) dataset (Bowman et al. 2015) and
MultiNLI (MNLI) (Williams, Nangia, and Bowman 2018),
coupled with new advances in neural modeling and model
pre-training (Conneau et al. 2017; Devlin et al. 2019). With
these performance increases has come increased scrutiny of
systematic annotation biases in existing datasets (Poliak et
al. 2018b; Gururangan et al. 2018), as well as attempts to
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build new challenge datasets that focus on particular lin-
guistic phenomena (Glockner, Shwartz, and Goldberg 2018;
Naik et al. 2018; Poliak et al. 2018a). The latter aim to more
definitively answer questions such as: are models able to ef-
fectively learn and extrapolate complex knowledge and rea-
soning abilities when trained on benchmark tasks?

To date, studies using challenge datasets have largely been
limited by the simple types of inferences that they included
(e.g., lexical and negation inferences). They fail to cover
more complex reasoning phenomena related to logic, and
primarily use adversarially generated corpus data, which
sometimes makes it difficult to identify exactly the particular
semantic phenomena being tested for. There is also a focus
on datasets that are easily able to be constructed and/or ver-
ified using crowd-sourcing techniques. Adequately evaluat-
ing a model’s competence on a given reasoning phenomena,
however, often requires datasets that are hard even for hu-
mans, but that are nonetheless based on sound formal prin-
ciples (e.g., reasoning about monotonicity where, in contrast
to the simple example in Figure 1, several nested downward
monotone contexts are involved to test the model’s capacity
for compositionality, cf. Lake and Baroni (2017)).

In contrast to existing work on challenge datasets, we
propose using semantic fragments—synthetically generated
challenge datasets, of the sort used in linguistics, to study
NLI model behavior. Semantic fragments provide the ability
to systematically control the semantic complexity of each
new challenge dataset by bringing to bear the expert knowl-
edge excapsulated in formal theories of reasoning, making it
possible to more precisely identify model performance and
competence on a given linguistic phenomenon. While our
idea of using fragments is broadly applicable to any linguis-
tic or reasoning phenomena, we look at eight types of frag-
ments that cover several fundamental aspects of reasoning in
NLI, namely, monotonicity reasoning using two newly con-
structed challenge datasets as well as six other fragments
that probe into rudimentary logic using new versions of the
data from Salvatore, Finger, and Hirata Jr (2019).

As illustrated in Figure 1, our proposed method works in
the following way: starting with a particular linguistic frag-
ment of interest, we create a formal specification (or a for-
mal rule system with certain guarantees of correctness) of
that fragment, with which we then automatically generate a
new idealized challenge dataset, and ask the following three
empirical questions. 1) Is this particular fragment learnable
from scratch using existing NLI architectures (if so, are the
resulting models useful)? 2) How well do large state-of-the-
art pre-trained NLI models (i.e., models trained on all known
NLI data such as SNLI/MNLI) do on this task? 3) Can exist-
ing models be quickly re-trained or re-purposed to be robust
on these fragments (if so, does mastering a given linguistic
fragment affect performance on the original task)?

We emphasize the quickly part in the last question; given
the multitude of possible fragments and linguistic phenom-
ena that can be formulated and that we expect a wide-
coverage NLI model to cover, we believe that models should
be able to efficiently learn and adapt to new phenomena as
they are encountered without having to learn entirely from
scratch. In this paper we look specifically at the question: are

there particular linguistic fragments (relative to other frag-
ments) that are hard for these pre-trained models to adapt to
or that confuse the model on its original task?

On these eight fragments, we find that while existing NLI
architectures can effectively learn these particular linguis-
tic pheneomena, pre-trained NLI models do not perform
well. This, as in other studies (Glockner, Shwartz, and Gold-
berg 2018), reveals weaknesses in the ability of these mod-
els to generalize. While most studies into linguistic prob-
ing end the story there, we take the additional step to see
if attempts to continue the learning and re-fine-tune these
models on fragments (using a novel and cheap inoculation
(Liu, Schwartz, and Smith 2019) strategy) can improve per-
formance. Interestingly, we show that this yields mixed re-
sults depending on the particular linguistic phenomena and
model being considered. For some fragments (e.g., compar-
atives), re-training some models comes at the cost of de-
grading performance on the original tasks, whereas for other
phenomena (e.g., monotonicity) the learning is more stable,
even across different models. These findings, and our tech-
nique of obtaining them, make it possible to identify the
degree to which a given linguistic phenomenon stresses a
benchmark NLI model, and suggest a new methodology for
quickly making models more robust.

Related Work
The use of semantic fragments has a long tradition in log-
ical semantics, starting with the seminal work of Mon-
tague (1973), as well as earlier work on NLI (Cooper et al.
1996). We follow Pratt-Hartmann (2004) in defining a se-
mantic fragment more precisely as a subset of a language
equipped with semantics which translate sentences in a for-
mal system such as first-order logic. In contrast to work on
empirical NLI, such linguistic work often emphasizes the
complex cases of each phenomena in order measure com-
petence (see Chomsky (1965) for a discussion about com-
petence vs. performance). For our fragments that test basic
logic, the target formal system includes basic boolean alge-
bra, quantification, set comparisons and counting (see Fig-
ure 2), and builds on the datasets from Salvatore, Finger, and
Hirata Jr (2019). For our second set of fragments that fo-
cus on monotonicity reasoning, the target formal system is
based on the monotonicity calculus of van Benthem (1986)
(see review by Icard and Moss (2014)). To construct these
datasets, we build on recent work on automatic polarity pro-
jection (Hu and Moss 2018; Hu, Chen, and Moss 2019;
Hu et al. 2019).

Our work follows other attempts to learn neural mod-
els from fragments and small subsets of language, which
includes work on syntactic probing (McCoy, Pavlick, and
Linzen 2019; Goldberg 2019), probing basic reasoning (We-
ston et al. 2015; Geiger et al. 2018; 2019) and probing other
tasks (Lake and Baroni 2017; Chrupała and Alishahi 2019;
Warstadt et al. 2019). Geiger et al. (2018) is the closest
work to ours. However, they intentionally focus on artifi-
cial fragments that deviate from ordinary language, whereas
our fragments (despite being automatically constructed and
sometimes a bit pedantic) aim to test naturalistic subsets of
English. In a similar spirit, there have been other attempts
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Fragments Example (premise,label,hypothesis) Genre Vocab. Size # Pairs Avg. Sen. Len.

Negation Laurie has only visited Nephi, Marion has only visited Calistoga.
CONTRADICTION Laurie didn’t visit Calistoga

Countries/Travel 3,581 5,000 20.8

Boolean Travis, Arthur, Henry and Dan have only visited Georgia
ENTAILMENT Dan didn’t visit Rwanda

Countries/Travel 4,172 5,000 10.9

Quantifier Everyone has visited every place
NEUTRAL Virgil didn’t visit Barry

Countries/Travel 3,414 5,000 9.6

Counting Nellie has visited Carrie, Billie, John, Mike, Thomas, Mark, .., and Arthur.
ENTAILMENT Nellie has visited more than 10 people.

Countries/Travel 3,879 5,000 14.0

Conditionals Francisco has visited Potsdam and if Francisco has visited Potsdam
then Tyrone has visited Pampa ENTAILMENT Tyrone has visited Pampa.

Countries/Travel 4,123 5,000 15.6

Comparatives John is taller than Gordon and Erik..., and Mitchell is as tall as John
NEUTRAL Erik is taller than Gordon.

People/Height 1,315 5,000 19.9

Monotonicity All black mammals saw exactly 5 stallions who danced ENTAILMENT
A brown or black poodle saw exactly 5 stallions who danced

Animals 119 10,000 9.38

SNLI+MNLI During calf roping a cowboy calls off his horse.
CONTRADICTION A man ropes a calf successfully.

Mixed 101,110 942,069 12.3

Figure 2: Information about the semantic fragments considered in this paper, where the top four fragments test basic logic
(Logic Fragments) and the last fragment covers monotonicity reasoning (Mono. Fragment).

to collect datasets that target different types of inference
phenomena (White et al. 2017; Poliak et al. 2018a), which
have been limited in linguistic complexity. Other attempts to
study complex phenomena such as monotonicity reasoning
in NLI models has been limited to training data augmenta-
tion (Yanaka et al. 2019b), whereas we create several new
challenge test sets to directly evaluate NLI performance on
each phenomenon (see Yanaka et al. (2019a) for closely re-
lated work that appeared concurrently with our work).

Unlike existing work on building NLI challenge datasets
(Glockner, Shwartz, and Goldberg 2018; Naik et al. 2018),
we focus on the trade-off between mastering a particular lin-
guistic fragment or phenomena independent of other tasks
and data (i.e., Question 1 from Figure 1), while also main-
taining performance on other NLI benchmark tasks (i.e.,
related to Question 3 in Figure 1). To study this, we in-
troduce a novel variation of the inoculation through fine-
tuning methodology of Liu, Schwartz, and Smith (2019),
which emphasizes maximizing the model’s aggregate score
over multiple tasks (as opposed to only on challenge tasks).
Since our new challenge datasets focus narrowly on partic-
ular linguistic phenomena, we take this in the direction of
seeing more precisely the extent to which a particular lin-
guistic fragment stresses an existing NLI model. In addition
to the task-specific NLI models looked at in Liu, Schwartz,
and Smith (2019), we inoculate with the state-of-the-art pre-
trained BERT model, using the fine-tuning approach of De-
vlin et al. (2019), which itself is based on the transformer
architecture of Vaswani et al. (2017).

Some Semantic Fragments

As shown in Figure 1, given a particular semantic fragment
or linguistic phenomenon that we want to study, our starting
point is a formal specification of that fragment (e.g., in the
form of a set of templates/formal grammar that encapsulate
expert knowledge of that phenomenon), which we can sam-
ple in order to obtain a new challenge set. In this section,
we describe the construction of the particular fragments we

investigate in this paper, which are illustrated in Figure 2.
While these particular fragments seem to capture many of
the core phenomena involved in NLI, we emphasize that any
arbitrary linguistic fragment of interest could be constructed
and subjected to the sets of experiments we describe in the
next section.

The Logic Fragments The first set of fragments probe
into problems involving rudimentary logical reasoning. Us-
ing a fixed vocabulary of people and place names, individual
fragments cover boolean coordination (boolean reasoning
about conjunction and), simple negation, quantification
and quantifier scope (quantifier), comparative rela-
tions, set counting, and conditional phenomena all
related to a small set of traveling and height relations.

These fragments (with the exception of the conditional
fragment, which was built specially for this study) were
first built using the set of verb-argument templates first de-
scribed in Salvatore, Finger, and Hirata Jr (2019). Since
their original rules were meant for 2-way NLI classifica-
tion (i.e., ENTAILMENT and CONTRADICTION), we re-
purposed their rule sets to handle 3-way classification, and
added other inference rules, which resulted in some of the
simplified templates shown in Figure 3. For each fragment,
we uniformly generated 3,000 training examples and re-
served 1,000 examples for testing. As in Salvatore, Finger,
and Hirata Jr (2019), the people and place names for test-
ing are drawn from an entirely disjoint set from training. We
also reserve 1,000 for development. While we were capable
of generating more data, we follow Weston et al. (2015) in
limiting the size of our training sets to 3,000 since our goal
is to learn from as little data as possible, and found 3,000
training examples to be sufficient for most fragments and
models.

As detailed in Figure 2, these new fragments vary in com-
plexity, with the negation fragment (which is limited to
verbal negation) being the least complex in terms of linguis-
tic phenomena. We also note that all other fragments include
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Logic Fragment Rule Template: [ premise ], { hypothesis1, ... } ⇒ label; Labeled Examples (simplified)

Negation

[only-did-p(x)], ¬p(x) ⇒ CONTRADICTION Davex has only visited Israelp , Davex didn’t¬ visit Israelp
[only-did-p(x)], ¬p’(x) ⇒ ENTAILMENT Davex has only visited Israelp , Davex didn’t¬ visit Russiap′

[only-did-p(x)], ¬p(x′) ⇒ NEUTRAL Davex has only visited Israelp , Billx didn’t¬ visit Israelp

Boolean

[p(x1) ∧ ...∧p(xn)], ¬p(xj) ⇒ CONTRADICTION Dustinx1
, Miltonx2

, ... have only visited Equadorp ; Dustinx1 didn’t¬ visit Equadorp
[p1(x1) ∧ ...∧pn(xn)], ¬pj(x

′) ⇒ NEUTRAL Dustinx only visitedp Portugal1 and Spain2 ; Jamesx′ didn’t¬ visitp Spain′

[p1(x) ∧ ...∧pn(x)], ¬p′(x) ⇒ ENTAILMENT Dustinx only visitedp Portugal1 and Spain2 ; Dustinx didn’t¬ visitp Germany′

Conditional

[(p → q) ∧ p], q ⇒ ENTAILMENT Dave visited Israelp and if Dave visited Israelp then→ Bill visited Russiaq ; Bill visited Russiaq .

[(p → q) ∧ p], ¬q ⇒ CONTRADICTION Dave visited Israelp and if Dave visited Israelp then→ Bill visited Russiaq ; Bill didn’t visit Russiap .

[(p → q) ∧ ¬p], {q,¬q} ⇒ NEUTRAL Dave didn’t visit Israelp , and if Dave visited Israelp then→ Bill visited Russiaq ; Bill visited Russiap .

Quantifier

[∀x.∀y. p(x, y)], ∃x.ιy. ¬p(x, y) ⇒ CONTRADICTION Everyone∀x visitedp every∀ countryy ; Someone∃x didn’t¬ visitp Jordanιy
[∃x.∀y. p(x, y)], ιx.∃y. {¬p(x, y),p(x, y)} ⇒ NEUTRAL Someone∃x visitedp every∀ persony ; Timιx didn’t¬ visitp someone∃y
[∃x.∀y. p(x, y)], ∃x.ιy. p(x, y) ⇒ ENTAILMENT Someone∃x visitedp every∀ persony ; A person∃x visitedp Markιy

Figure 3: A simplified description of some of the templates used for 4 of the logic fragments (stemming from Salva-
tore, Finger, and Hirata Jr (2019)) expressed in a quasi-logical notation with predicates p,q,only-did-p and quantifiers
∃ (there exists), ∀ (for all), ι (there exists a unique) and boolean connectives (∧ (and), → (if-then), ¬ (not)).

basic negation and boolean operators, which we found to
help preserve the naturalness of the examples in each frag-
ment. As shown in last column of Figure 2, some of our frag-
ments (notably, negation and comparatives) have,
on average, sentence lengths that exceed that of benchmark
datasets. This is largely due to the productive nature of some
of our rules. For example, the comparatives rule set al-
lows us to create arbitrarily long sentences by generating
long lists of people that are being compared (e.g., In John is
taller than .., we can list up to 15 people in the subsequent
list of people).

Whenever creating synthetic data, it is important to en-
sure that one is not introducing into the rule sets particular
annotation artifacts (Gururangan et al. 2018) that make the
resulting challenge datasets trivially learnable. As shown in
the top part of Table 1, which we discuss later, we found
that several strong baselines failed to solve our fragments,
showing that the fragments, despite their simplicity and con-
strained nature, are indeed not trivial to solve.

The Monotonicity Fragments The second set of frag-
ments cover monotonicity reasoning, as first discussed in the
introduction. This fragment can be described using a regular
grammar with polarity facts according to the monotonicity
calculus, such as the following: every is downward mono-
tone/entailing in its first argument but upward monotone/en-
tailing in the second, denoted by the ↓ and ↑ arrows in the
example sentence every↑ small↓ dog↓ ran↑. We have manu-
ally encoded monotonicity information for 14 types of quan-
tifiers (every, some, no, most, at least 5, at most 4, etc.) and
negators (not, without) and generated sentences using a sim-
ple regular grammar and a small lexicon of about 100 words.
We then use the system described by Hu and Moss (2018)1

to automatically assign arrows to every token (see Figure 4,
note that = means that the inference is neither monotoni-
cally up or down in general). Because we manually encoded
the monotonicity information of each token in the lexicon
and built sentences via a controlled set of grammar rules,
the resulting arrows assigned by Hu and Moss (2018) can be
proved to be correct.

1https://github.com/huhailinguist/ccg2mono

Once we have the sentences with arrows, we use the al-
gorithm of Hu, Chen, and Moss (2019) to generate pairs of
sentences with ENTAIL, NEUTRAL or CONTRADICTORY
relations, as exemplified in Figure 4. Specifically, we first
define a knowledge base that stores the relations of the lexi-
cal items in our lexicon, e.g., poodle ≤ dog ≤ mammal ≤ an-
imal; also, waltz ≤ dance ≤ move; and every ≤ most ≤ some
= a. For nouns, ≤ can be understood as the subset-superset
relation. For higher-type objects like the determiners above,
see Icard and Moss (2013) for discussion. Then to gener-
ate entailments, we perform substitution (shown in Figure 4
in blue). That is, we substitute upward entailing tokens or
constituents with something “greater than or equal to” (≥)
them, or downward entailing ones with something “less than
or equal to” them. To generate neutrals, substitution goes
the reverse way. For example, all↑ dogs↓ danced↑ ENTAIL
all poodles danced, while all↑ dogs↓ danced↑ NEUTRAL all
mammals danced. This is due to the facts which we have
seen: poodle ≤ dog ≤ mammal. Simple rules such as “re-
place some/many/every in subjects by no” or “negate the
main verb” are applied to generate contradictions.

Using this basic machinery, we generated two sepa-
rate challenge datasets, one with limited complexity (e.g.,
each example is limited to 1 relative clause and uses an
inventory of 5 quantifiers), which we refer to through-
out as monotonicity (simple), and one with more
overall quantifiers and substitutions, or monotonicity
(hard) (up to 3 relative clauses and a larger inventory of
14 unique quantifiers). Both are defined over the same set of
lexical items (see Figure 2).

Experimental Setup and Methodology

To address the questions in Figure 1, we experiment with
two task-specific NLI models from the literature, the ESIM
model of Chen et al. (2017) and the decomposable-attention
(Decomp-Attn) model of Parikh et al. (2016) as imple-
mented in the AllenNLP toolkit (Gardner et al. 2018), and
the pre-trained BERT architecture of Devlin et al. (2019).2

2We use the BERT-base uncased model in all experiments,
as implemented in HuggingFace: https://github.com/huggingface/
pytorch-pretrained-BERT.
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premise: All↑ black↓ mammals↓
saw↑ exactly= 5= stallions= who= danced=

All↑ black↓ dogs↓
saw↑ exactly= 5= stallions=

who= danced=

All↑ black↓ doodles↓
saw↑ exactly= 5= stallions=

who= danced=

Some↑ black↑ mammal↑
saw↑ exactly= 5= stallions=

who= danced=

Some↑ mammal↑
saw↑ exactly= 5= stallions=

who= danced=

Figure 4: Generating ENTAILMENT for monotonicity frag-
ments starting from the premise (top). Each node in the
tree shows an entailment generated by one substitution
(in blue). Substitutions are based on a hand-coded knowl-
edge base with information such as: all ≤ some/a, poo-
dle ≤ dog ≤ mammal, and black mammal ≤ mammal.
CONTRADICTION examples are generated for each infer-
ence using simple rules such as “replace some/many/every
in subjects by no”. NEUTRALs are generated in a reverse
manner as the entailments.

When evaluating whether fragments can be learned from
scratch (Question 1), we simply train models on these frag-
ments directly using standard training protocols. To evaluate
pre-trained NLI models on individual fragments (Question
2), we train BERT models on combinations of the SNLI and
MNLI datasets from GLUE (Wang et al. 2018), and use pre-
trained ESIM and Decomp-Attn models trained on MNLI
following Liu, Schwartz, and Smith (2019).

To evaluate whether a pre-trained NLI model can be re-
trained to improve on a fragment (Question 3), we employ
the recent inoculation by fine-tuning method (Liu, Schwartz,
and Smith 2019). The idea is to re-fine-tune (i.e., continue
training) the models above using k pieces of fragment train-
ing data, where k ranges from 50 to 3,000 (i.e., a very small
subset of the fragment dataset to the full training set; see
horizontal axes in Figures 5, 6, and 7). The intuition is that
by doing this, we see the extent to which this additional
data makes the model more robust to handle each fragment,
or stresses it, resulting in performance loss on its original
benchmark. In contrast to re-training models from scratch
with the original data augmented with our fragment data,
fine-tuning on only the new data is substantially faster, re-
quiring in many cases only a few minutes. This is consistent
with our requirement discussed previously that training ex-
isting models to be robust on new fragments should be quick,
given the multitude of fragments that we expect to encounter
over time. For example, in coming up with new linguistic
fragments, we might find newer fragments that are not rep-
resented in the model; it would be prohibitive to re-train the
model each time entirely from scratch with its original data
(e.g., the 900k+ examples in SNLI+MNLI) augmented with
the new fragment.

Our approach to inoculation, which we call lossless in-
oculation, differs from Liu, Schwartz, and Smith (2019) in
explicitly optimizing the aggregate score of each model on

both its original and new task. More formally, let k de-
note the number of examples of fragment data used for
fine-tuning. Ideally, we would like to be able to fine-tune
each pre-trained NLI model architecture a (e.g., BERT) to
learn a new fragment perfectly with a minimal k, while—
importantly—not losing performance on the original task
that the model was trained for (e.g., SNLI or MNLI). Given
that fine-tuning is sensitive to hyper-parameters,3 we use
the following methodology: For each k we fine-tune J

variations of a model architecture, denoted Ma,k
j for j ∈

{1, . . . , J}, each characterized by a different set of hyper-
parameters. We then identify a model Ma,k

∗ with the best
aggregated performance based on its score Sfrag

(
Ma,k

j

)
on

the fragment dataset and Sorig
(
Ma,k

j

)
on the original dataset.

For simplicity, we use the average of these two scores as the
aggregated score.4 Thus, we have:

Ma,k
∗ = argmax

M∈{Ma,k
1 ,...,Ma,k

J }
AVG

(
Sfrag(M), Sorig(M)

)

By keeping the hyper-parameter space consistent among all
fragments, the point is to observe how certain fragments be-
have relative to one another.

Additional Baselines To ensure that the challenge
datasets that are generated from our fragments are not triv-
ially solvable and subject to annotation artifacts, we imple-
mented variants of the Hypothesis-Only baselines from Po-
liak et al. (2018b), as shown at the top of Table 1. This in-
volves training a single-layered biLSTM encoder for the hy-
pothesis side of the input, which generates a representation
for the input using max-pooling over the hidden states, as
originally done in Conneau et al. (2017). We used the same
model to train a Premise-Only model that instead uses the
premise text, as well as an encoder that looks at both the
premise and hypothesis (Premise+Hyp.) separated by an ar-
tificial token (for more baselines, see Salvatore, Finger, and
Hirata Jr (2019)).

Results and Findings

We discuss the different questions posed in Figure 1.

Answering Questions 1 and 2. Table 1 shows the perfor-
mance of baseline models and pre-trained NLI models on
our different fragments. In all cases, the baseline models did
poorly on our datasets, showing the inherent difficulty of our
challenge sets. In the second case, we see clearly that state-
of-the-art models do not perform well on our fragments,
consistent with findings on other challenge datasets. One re-
sult to note is the high accuracy of BERT-based pre-trained

3We found all models to be sensitive to learning rate, and per-
formed comprehensive hyper-parameters searches to consider dif-
ferent learning rates, # iterations and (for BERT) random seeds.

4Other ways of aggregating the two scores can be substi-
tuted. E.g., one could maximize Sfrag

(
Ma,k

j

)
while requiring that

Sorig
(
Ma,k

j

)
is not much worse relative to when the model’s hyper-

parameters are optimized directly for the original dataset.
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Modeltrain data SNLI Test Logic Fragments (Avg. of 6) Mono. Fragments (Avg. over 2) Breaking NLI

Random/Trained Baselines
Majority Baseline 34.2 34.6 34.0 –
Hypothesis-Only biLSTM 69.0 49.3 56.7 –
Premise-Only biLSTM – 44.3 57.4 –
Premise+Hyp. biLSTM – 52.0 59.1 –

Pre-Trained NLI Models
BERTSNLI+MNLI 91.0 47.3 62.8 95.8
BERTSNLI 90.7 46.1 56.8 94.3
Decomp-AttnSNLI 86.4 42.1 48.4 49.9
ESIMSNLI 88.5 44.3 62.8 68.7

MNLI Dev (Avg.) Re-Trained Models with Fragments (frag)
BERTSNLI+MNLI+frag 83.7 (↓ 1.3) 98.0 97.8 -
ESIMMNLI+frag 72.0 (↓ 5.9) 86.4 96.5 -
Decomp-AttnMNLI+frag 66.1 (↓ 6.7) 71.7 93.5 -

Table 1: Baseline models and model performance (accuracy %) on NLI benchmarks and challenge test sets (before and after
re-training), including the Breaking NLI challenge set from Glockner, Shwartz, and Goldberg (2018). The arrows ↓ in the last
section show the average drop in accuracy on MNLI benchmark after re-training with the fragments.

Figure 5: Dev. results on training NLI models from scratch
on the different fragments and architectures.

models on the Breaking NLI challenge set of Glockner,
Shwartz, and Goldberg (2018), which previously proved to
be a difficult benchmark for NLI models. This result, we be-
lieve, highlights the need for more challenging NLI bench-
marks, such as our new datasets.

Figure 5 shows the results of training NLI models from
scratch (i.e., without NLI pre-training on other benchmarks)

on the different fragments. In nearly all cases, it is possible
to train a model to master a fragment (with counting be-
ing the hardest fragment to learn). In other studies on learn-
ing fragments (Geiger et al. 2018; Salvatore, Finger, and Hi-
rata Jr 2019), this is the main result reported, however, we
also show that the resulting models perform below random
chance on benchmark tasks, meaning that these models are
not by themselves very useful for general NLI. This even
holds for results on the GLUE diagnostic test (Wang et al.
2018), which was hand-created and designed to model many
of the logical phenomena captured in our fragments.

We note that in the monotonicity examples, we included
results on a development set (in dashed green) that was built
by systematically paraphrasing all the nouns and verbs in
the fragment to be disjoint from training. Even in this case,
when lexical variation is introduced, the BERT model is ro-
bust (see Rozen et al. (2019) for a more systematic study of
this type of generalization using BERT for NLI in different
settings).

Answering Question 3. Figures 6 and 7 show the results
of the re-training study. They compare the performance of a
retrained model on the challenge tasks (dashed lines) as well
as on its original benchmark tasks (solid lines)5. We discuss
here results from the two illustrative fragments depicted in
Figure 6. All 4 models can master Monotonicity Reasoning
while retaining accuracy on their original benchmarks. How-
ever, non-BERT models lose substantial accuracy on their
original benchmark when trying to learn comparatives,
suggesting that comparatives are generally harder for mod-
els to learn. In Figure 7, we show the results for all other
fragments, which show varied, though largely stable, trends
depending on the particular linguistic phenomena.

At the bottom of Table 1, we show the resulting accu-
racies on the challenge sets and MNLI bechmark for each
model after re-training (using the optimal model Ma,k

∗ , as
described previously). In the case of BERTSNLI+MNLI+frag,
we see that despite performing poorly on these new chal-

5For MNLI, we report results on the mismatched dev. set.
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Figure 6: Inoculation results for two illustrative semantic fragments, Monotonicity Reasoning (left) and Comparatives (right),
for 4 NLI models shown in different colors. Horizontal axis: number of fine-tuning challenge set examples used. Each point
represents the model M∗

k trained using hyperparameters that maximize the accuracy averaged across the model’s original
benchmark dataset (solid line) and challenge dataset (dashed line).

Figure 7: Inoculation results for 6 semantic fragments not included in Figure 6, using the same setup.

lenge dataset before re-training, it can learn to master these
fragments with minimal losses to performance on its origi-
nal task (i.e., it only loses on average about 1.3% accuracy
of the original MNLI dev set). In other words, it is possi-
ble teach BERT (given its inherent capacity) a new frag-
ment quickly through re-training without affecting its orig-
inal performance, assuming however that time is spent on
carefully finding the optimal model.6 For the other mod-
els, there is more of a trade-off; Decomp-Attn on average
never quite masters the logic fragments (but does master
the Monotonicity Fragments), and incurs an average
6.7% loss on MNLI after re-training. In the case of compara-
tives, the inability of the model to master this fragment likely
reveals a certain architectural limitation of the model given

6We note that models without optimal aggregate performance
are often prone to catastrophic forgetting.

that it is not sensitive to word-order. Given such losses, per-
haps in such cases a more sophisticated re-training scheme
is needed in order to optimally learn particular fragments.

Discussion and Conclusion

We explored the use of semantic fragments—systematically
controlled subsets of language—to probe into NLI models
and benchmarks. Our investigation considered 8 particular
fragments and new challenge datasets that center around ba-
sic logic and monotonicity reasoning. In answering the ques-
tions first introduced in Figure 1, we found that while exist-
ing NLI architectures are able to learn these fragments from
scratch, the resulting models are of limited interest. Further,
pre-trained models perform poorly on these new datasets
(even relative to other available challenge benchmarks), re-
vealing the weaknesses of these models. Interestingly, how-
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ever, we show that many models can be quickly re-tuned
(e.g., often in a matter of minutes) to master these different
fragments using a novel variant of the inoculation through
fine-tuning strategy (Liu, Schwartz, and Smith 2019) that we
introduce called lossless inoculation.

Our results suggest the following methodology for im-
proving models: Given a particular linguistic hole in an NLI
model, one can plug this hole by simply generating syn-
thetic data and using it to re-train a model. This method-
ology comes with some caveats, however: Depending on
the model and particular linguistic phenomena, there may
be some trade-offs with the model’s original performance,
which should first be looked at empirically and compared
against other linguistic phenomena. Our work is one small
step in trying to gather an inventory of NLI phenomena and
look rigorously at model performance, which follows earlier
work on NLI (see Zaenen, Karttunen, and Crouch (2005)).

Can we find more difficult fragments? Despite differ-
ences across various fragments, we largely found NLI mod-
els to be robust when tackling new linguistic phenomena
and easy to quickly re-purpose (especially with BERT). This
generally positive result begs the question: Are there more
challenging fragments and linguistic phenomena that we
should be studying?

The ubiquity of logical and monotonicity reasoning pro-
vides a justification for our particular fragments, and we
take it as a positive sign that models are able to solve these
tasks. As we emphasize throughout, however, our general
approach is amenable to any linguistic phenomena, and fu-
ture work may focus on developing more complicated frag-
ments that capture a wider range of linguistic phenomena
and inference. This could include, for example, efforts to
extend to fragments in a way that moves beyond elementary
logic to systematically target the types of commonsense rea-
soning known to be common in existing NLI tasks (LoBue
and Yates 2011). We believe that semantic fragments are a
promising way to introspect model performance generally,
and can also be used to forge interdisciplinary collaboration
between neural NLP research and traditional linguistics.

Benchmark NLI annotations and judgements are of-
ten imperfect and error-prone (cf. Kalouli, de Paiva, and
Real (2017), Pavlick and Kwiatkowski (2019)), partly due
to the loose way in which the task is traditionally defined
(Dagan, Glickman, and Magnini 2005). For models trained
on benchmarks such as SNLI, understanding model perfor-
mance not only requires probing how each target model
works, but also probing the particular flavor of NLI that is
captured in each benchmark. We believe that our variant of
inoculation and overall framework can also be used to more
systematically look at these issues, as well as help identify
annotation errors and artifacts.

What are Models Actually Learning? One open ques-
tion concerns the extent to which models trained on nar-
row fragments can generalize beyond them. Newer analysis
methods that attempt to correlate neural activation patterns
and target symbolic patterns (Chrupała and Alishahi 2019)

might help determine the extent to which models are truly
generalizing, and provide insights into alternative ways of
training more robust and generalizable models.

A key feature of our lossless inoculation strategy, which
differs from the original proposal of Liu, Schwartz, and
Smith (2019), is that each time we teach the model some-
thing new, we explicitly take into account how much loss
this same model has on its original task, and balance the
two scores accordingly. The fact that models such as BERT
can effectively learn new tasks with minimal loss on their
original tasks gives some indication that, even if the models
are not generalizing too far beyond the provided challenge
tasks, one way to increase generalization is by continuously
feeding models new challenge tasks. This type of continuous
or never-ending learning scenario is one promising area for
future work that one may pursue by looking at more robust
methods for model inoculation and fine-tuning.
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