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Abstract

The Winograd Schema Challenge (WSC) (Levesque, Davis,
and Morgenstern 2011), a benchmark for commonsense rea-
soning, is a set of 273 expert-crafted pronoun resolution prob-
lems originally designed to be unsolvable for statistical models
that rely on selectional preferences or word associations. How-
ever, recent advances in neural language models have already
reached around 90% accuracy on variants of WSC. This raises
an important question whether these models have truly ac-
quired robust commonsense capabilities or whether they rely
on spurious biases in the datasets that lead to an overestimation
of the true capabilities of machine commonsense.
To investigate this question, we introduce WINOGRANDE,
a large-scale dataset of 44k problems, inspired by the origi-
nal WSC design, but adjusted to improve both the scale and
the hardness of the dataset. The key steps of the dataset con-
struction consist of (1) a carefully designed crowdsourcing
procedure, followed by (2) systematic bias reduction using a
novel AFLITE algorithm that generalizes human-detectable
word associations to machine-detectable embedding associ-
ations. The best state-of-the-art methods on WINOGRANDE
achieve 59.4 – 79.1%, which are ∼15-35% (absolute) below
human performance of 94.0%, depending on the amount of
the training data allowed (2% – 100% respectively).
Furthermore, we establish new state-of-the-art results on five
related benchmarks — WSC (→ 90.1%), DPR (→ 93.1%),
COPA(→ 90.6%), KnowRef (→ 85.6%), and Winogender
(→ 97.1%). These results have dual implications: on one hand,
they demonstrate the effectiveness of WINOGRANDE when
used as a resource for transfer learning. On the other hand,
they raise a concern that we are likely to be overestimating
the true capabilities of machine commonsense across all these
benchmarks. We emphasize the importance of algorithmic bias
reduction in existing and future benchmarks to mitigate such
overestimation.

1 Introduction

The Winograd Schema Challenge (WSC) (Levesque, Davis,
and Morgenstern 2011), proposed as an alternative to the
Turing Test (Turing 1950), has been used as a benchmark for
evaluating commonsense reasoning. WSC are designed to
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be pronoun resolution problems (see examples in Figure 1)
that are trivial for humans but hard for machines that merely
rely on statistical patterns without true capabilities of com-
monsense reasoning. However, recent advances in neural
language models have already reported around 90% accu-
racy on a variant of WSC dataset.1 This raises an important
question:

Have neural language models successfully acquired com-
monsense or are we overestimating the true capabilities of
machine commonsense?

This question about the potential overestimation leads to an-
other crucial question regarding potential unwanted biases
that the large-scale neural language models might be exploit-
ing, essentially solving the problems right, but for wrong rea-
sons. While WSC questions are expert-crafted, recent studies
have shown that they are nevertheless prone to incidental bi-
ases. Trichelair et al. (2018) have reported word-association
(13.5% of the cases, see Figure 1 for examples) as well as
other types of dataset-specific biases. While such biases and
annotation artifacts are not apparent for individual instances,
they get introduced in the dataset as problem authors subcon-
sciously repeat similar problem-crafting strategies.

To investigate this question about the true estimation of
the machine commonsense capabilities, we introduce WINO-
GRANDE, a new dataset with 44k problems that are inspired
by the original design of WSC, but modified to improve both
the scale and hardness of the problems. The key steps in
WINOGRANDE construction consist of (1) a carefully de-
signed crowdsourcing procedure, followed by (2) a novel
algorithm AFLITE that generalizes human-detectable biases
based on word occurrences to machine-detectable biases
based on embedding occurrences. The key motivation of our
approach is that it is difficult for humans to write problems
without accidentally inserting unwanted biases.

While humans find WINOGRANDE problems trivial with
94% accuracy, best state-of-the-art results, including those
from RoBERTa (Liu et al. 2019) are considerably lower,

1https://github.com/pytorch/fairseq/tree/master/examples/
roberta. We note that this variant aggregates the original WSC,
PDP (Morgenstern, Davis, and Ortiz 2016) and additional PDP-style
examples, and recasts them into True/False binary problems.
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Twin sentences Options (answer)

� (1)
a The trophy doesn’t fit into the brown suitcase because it’s too large. trophy / suitcase
b The trophy doesn’t fit into the brown suitcase because it’s too small. trophy / suitcase

� (2)
a Ann asked Mary what time the library closes, because she had forgotten. Ann / Mary
b Ann asked Mary what time the library closes, but she had forgotten. Ann / Mary

� (3)
a The tree fell down and crashed through the roof of my house. Now, I have to get it removed. tree / roof
b The tree fell down and crashed through the roof of my house. Now, I have to get it repaired. tree / roof

� (4)
a The lions ate the zebras because they are predators. lions / zebras
b The lions ate the zebras because they are meaty. lions / zebras

Figure 1: WSC problems are constructed as pairs (called twin) of nearly identical questions with two answer choices. The
questions include a trigger word that flips the correct answer choice between the questions. Examples (1)-(3) are drawn from
WSC (Levesque, Davis, and Morgenstern 2011) and (4) from DPR (Rahman and Ng 2012)). Examples marked with � have
language-based bias that current language models can easily detect. Example (4) is undesirable since the word “predators” is
more often associated with the word “lions”, compared to “zebras”

ranging between 59.4% - 79.1% depending on the amount
of training data provided (from 800 to 41k instances), which
falls 15 - 35% (absolute) below the human-level performance.

Furthermore, we also demonstrate that WINOGRANDE
provides transfer learning to other existing WSC and related
benchmarks, achieving new SOTA performances on five of
them, including the original WSC (Levesque, Davis, and
Morgenstern 2011) (→ 90.1%), DPR (Rahman and Ng 2012)
(→ 93.1%), COPA (Roemmele, Bejan, and Gordon 2011)
(→ 90.6%), KnowRef (Emami et al. 2019) (→ 85.6%), and
Winogender (Rudinger et al. 2018) (→ 97.1%).

Although the improvements of SOTA over multiple chal-
lenging benchmarks are exciting, we cautiously note that
these positive results must be taken with a grain of salt. The
result might also indicate the extent to which spurious ef-
fects are prevalent in existing datasets, which runs the risk of
overestimating the true capabilities of machine intelligence
on commonsense reasoning. More generally, human-crafted
problems and tasks (regardless of whether they are crowd-
sourced or by experts) contains annotation artifacts in many
cases, and algorithmic bias reduction such as AFLITE is
essential to mitigate such dataset-specific bias.

2 Crowdsourcing WINOGRANDE at Scale
WSC problems have been considered challenging to craft by
crowdsourcing due to the structural constraints of twins and
the requirement of linguistic knowledge (Table 1). Neverthe-
less, we present an effective approach to creating a large-scale
dataset (WINOGRANDE) of WSC problems while maintain-
ing its original properties – i.e. trivial for humans but hard for
AI systems. Our approach consists of a carefully designed
crowdsourcing task followed by a novel adversarial filtering
algorithm (§3) that systematically removes biases in the data.

Enhancing Crowd Creativity Creating twin sentences
from scratch puts a high cognitive load on crowd workers
who thereby subconsciously resort to writing pairs that are
lexically and stylistically repetitive. To encourage creativity
and reduce their cognitive load, we employed creativity from
constraints (Stokes 2005) – a psychological notion which
suggests that appropriate constraints can help structure and
drive creativity. In practice, crowd workers are primed by a

randomly chosen topic as a suggestive context (details be-
low), while they are asked to follow precise guidelines on the
structure of the curated data.

Crowdsourcing Task We collect WINOGRANDE prob-
lems via crowdsourcing on Amazon Mechanical Turk
(AMT).2 Workers are asked to write twins sentences (as
shown in Table 1) that meet the requirements for WSC prob-
lems (e.g., avoiding word association, non-zero but small edit
distance). To avoid repeating the same topics, workers were
instructed to randomly pick an anchor word(s) from a ran-
domly assigned WikiHow article3 and to ensure that the twin
sentences contain the anchor word. The anchor word does
not have to be a trigger word, but we ensured that it is not a
function word such as the, it, he, of. In our pilot experiments,
we found that this constraint drastically improves worker’s
creativity and diversity of topics. Additionally, workers were
instructed to keep twin sentence length in between 15 and 30
words while maintaining at least 70% word overlap between
a pair of twins.4 Following the original WSC problems, we
aimed to collect twins in two different domains – (i) social
commonsense: a situation involving two same gender people
with contrasting attributes, emotions, social roles, etc., and
(ii) physical commonsense: a context involving two physical
objects with contrasting properties, usage, locations, etc. In
total, we collected 77k questions (i.e., 38k twins).

Data Validation We validate each collected question
through a distinct set of three crowd workers. Following a rig-
orous process, a question is deemed valid if (1) the majority
of the three workers chooses the correct answer option, (2)
they agree that the two answer options are unambiguous (one
option is clearly more plausible than the other) and (3) the
question cannot be answered simply by word association in
which local context around the target pronoun is given (e.g.,
“because it was going so fast.” (race car / school bus)).5 As a

2Our datasets, crowdsourcing interface, and models are available
at http://winogrande.allenai.org.

3https://www.wikihow.com/Special:Randomizer
4The workers met minimum qualification in AMT: 99% ap-

proval rate, 5k approvals. The reward was $0.4 per twin sentences.
5For each sentence validation, workers were paid $0.03.
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result, 68% of the questions (53k) were deemed valid and we
discarded the invalid questions.

While our crowdsourcing procedure addresses some
amount of instance-level biases like word association, it is
still possible that the constructed dataset has dataset-specific
biases – especially after it has been scaled up. To address this
challenge, we propose a method for systematic bias reduc-
tion.

3 Algorithmic Data Bias Reduction

Several recent studies (Gururangan et al. 2018; Poliak et al.
2018; Tsuchiya 2018; Niven and Kao 2019; Geva, Goldberg,
and Berant 2019) have reported the presence of annotation
artifacts in large-scale datasets. Annotation artifacts are unin-
tentional patterns in the data that leak information about the
target label in an undesired way. State-of-the-art neural mod-
els are highly effective at exploiting such artifacts to solve
problems correctly, but for incorrect reasons. To tackle this
persistent challenge with dataset biases, we propose AFLITE –
a novel algorithm that can systematically reduce biases using
state-of-the-art contextual representation of words.

Light-weight adversarial filtering Our approach builds
upon the adversarial filtering (AF) algorithm proposed by
Zellers et al. (2018), but makes two key improvements: (1)
AFLITE is much more broadly applicable (by not requiring
over generation of data instances) and (2) it is considerably
more lightweight (not requiring re-training a model at each it-
eration of AF). Overgenerating machine text from a language
model to use in test instances runs the risk of distributional
bias where a discriminator can learn to distinguish between
machine generated instances and human-generated ones. In
addition, AF depends on training a model at each iteration,
which comes at extremely high computation cost when being
adversarial to a model like BERT (Devlin et al. 2018).6

Instead of manually identified lexical features, we
adopt a dense representation of instances using their pre-
computed neural network embeddings. In this work, we use
RoBERTa (Liu et al. 2019) fine-tuned on a small subset of the
dataset. Concretely, we use 6k instances (5k for training and
1k for validation) from the dataset (containing 53k instances
in total) to fine-tune RoBERTa (referred to as RoBERTaembed).
We use RoBERTaembed to pre-compute the embeddings for
the rest of the instances (47k) as the input for AFLITE. We
discard the 6k instances from the final dataset.

Next, we use an ensemble of linear classifiers (logistic re-
gressions) trained on random subsets of the data to determine
whether the representation used in RoBERTaembed is strongly
indicative of the correct answer option. If so, we discard the
corresponding instances and proceed iteratively.

Algorithm 1 provides the implementation of AFLITE. The
algorithm takes as input the pre-computed embeddings X
and labels y, along with the size n of the ensemble, the train-
ing size m for the classifiers in the ensemble, the size k of

6AFLITE is designed for filtering instances so that the resulting
dataset is less biased, whereas the original AF algorithm (Zellers
et al. 2018) is designed for “generating and modifying” individual
instances, such as by creating better distractors. AFLITE and AF are
therefore different in their goals and difficult to compare directly.

Algorithm 1: AFLITE

Input: dataset D = (X,y), ensemble size n, training set
size m, cutoff size k, filtering threshold τ

Output: dataset D′
1 D′ = D
2 while |D′| > m do

// Filtering phase
3 forall e ∈ D′ do
4 Initialize the ensemble predictions E(e) = ∅
5 for iteration i : 1..n do
6 Random partition (Ti,Vi) of D′ s.t. |Ti| = m
7 Train a linear classifier L on Ti
8 forall e = (x, y) ∈ Vi do
9 Add L(x) to E(e)

10 forall e = (x, y) ∈ D′ do

11 score(e) = |{p∈E(e) s.t. p=y}|
|E(e)|

12 Select the top-k elements S in D′ s.t. score(e) ≥ τ
13 D′ = D′ \ S
14 if |S| < k then
15 break

16 return D′

the filtering cutoff, and the filtering threshold τ . At each
filtering phase, we train n linear classifiers on different ran-
dom partitions of the data and we collect their predictions
on their corresponding validation set. For each instance, we
compute its score as the ratio of correct predictions over
the total number of predictions. We rank the instances ac-
cording to their score and remove the top-k instances whose
score is above threshold τ . We repeat this process until we
remove fewer than k instances in a filtering phase or there are
fewer than m remaining instances. When applying AFLITE
to WINOGRANDE, we set m = 10, 000, n = 64, k = 500,
and τ = 0.75.

This approach is also reminiscent of recent work in NLP
on adversarial learning (Chen and Cardie 2018; Belinkov et
al. 2019; Elazar and Goldberg 2018). Belinkov et al. (2019)
propose an adversarial removal technique for NLI which
encourages models to learn representations that are free of
hypothesis-only biases. When proposing a new benchmark,
however, we cannot enforce that any future model will pur-
posefully avoid learning spurious correlations in the data. In
addition, while the hypothesis-only bias is an insightful bias
in NLI, we make no assumption about the possible sources of
bias in WINOGRANDE. Instead, we adopt a more proactive
form of bias reduction by relying on state-of-the-art (statisti-
cal) methods to uncover undesirable dataset shortcuts.

Assessment of AFLITE We assess the impact of AFLITE
relative to two baselines: random data reduction and PMI-
based filtering. In random data reduction, we randomly sub-
sample the dataset to evaluate how a decrease in dataset size
affects the bias. In PMI-based filtering, we compute the dif-
ference (f ) of PMIs for each twin (t) as follows:

f(t1, t2) =
∑

w∈t1

PMI(y = 1;w)−
∑

w∈t2

PMI(y = 1;w).
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