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Abstract

Open-domain dialog generation is a challenging problem;
maximum likelihood training can lead to repetitive out-
puts, models have difficulty tracking long-term conversa-
tional goals, and training on standard movie or online datasets
may lead to the generation of inappropriate, biased, or offen-
sive text. Reinforcement Learning (RL) is a powerful frame-
work that could potentially address these issues, for example
by allowing a dialog model to optimize for reducing toxicity
and repetitiveness. However, previous approaches which ap-
ply RL to open-domain dialog generation do so at the word
level, making it difficult for the model to learn proper credit
assignment for long-term conversational rewards. In this pa-
per, we propose a novel approach to hierarchical reinforce-
ment learning (HRL), VHRL, which uses policy gradients to
tune the utterance-level embedding of a variational sequence
model. This hierarchical approach provides greater flexibility
for learning long-term, conversational rewards. We use self-
play and RL to optimize for a set of human-centered con-
versation metrics, and show that our approach provides sig-
nificant improvements – in terms of both human evaluation
and automatic metrics – over state-of-the-art dialog models,
including Transformers.

1 Introduction

Since the inception of the Turing test, generating convincing
open-ended (open-domain) dialog has been a fundamental
challenge in artificial intelligence (AI). A successful open-
domain dialog system could provide enormous value en-
abling more natural human-computer interaction. Successful
dialog models could also unlock new, beneficial applications
of AI, such as companion chatbots for therapy applications.

However, current generative models for dialog suffer from
several shortcomings that limit their usefulness in the real
world. Training on standard dialog datasets collected on-
line or from movie scripts often leads to malicious, aggres-
sive, biased, or offensive responses (Curry and Rieser 2018;
He and Glass 2018; Henderson et al. 2018; Wallace et al.
2019). There are no guarantees on the quality and sensitivity
of the generated text, often preventing open-domain dialog
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systems from being deployed for safety-critical applications
such as mental health. Further, maximum likelihood estima-
tion (MLE) training of such models often leads to the gen-
eration of dull and repetitive text (Li et al. 2016). Finally,
models may have difficulty tracking long-term aspects of the
conversation, and evidence has shown that they do not ade-
quately condition on the conversation history in generating
responses (Sankar et al. 2019).

Reinforcement Learning (RL) is a powerful paradigm that
allows dialog models to optimize for non-differentiable met-
rics of conversation quality, and thereby helps overcome the
above problems. In this paper, we use RL to learn from self-
play; the model talks to a fixed copy of itself, and computes
reward functions on the generated conversation. We propose
novel, human-centered rewards, such as minimizing toxicity
of a conversation, in order to limit inappropriate responses.
We also design rewards based on the psychology of good
conversation (e.g. Bodie et al.; Weger Jr, Castle, and Emmett
(2012; 2010)), and reward recently proposed conversation
metrics that are associated with improved human judgments
of conversation quality (See et al. 2019). Table 1 shows how
RL can be used to optimize our proposed metrics, shifting
the conversation towards more positive and engaging con-
versation, with less repetition and toxicity.

Applying RL to open-domain dialog generation is a chal-
lenging problem. Most prior approaches (e.g. Li et al.; Li
et al.; Jaques et al.; Ranzato et al.; Yu et al. (2016; 2017;
2019; 2015; 2017)) learn to model rewards at the word level,
meaning that the reward is applied to affect the probability of
generating each word in the response. Such low-level control
makes credit assignment especially challenging, since high-
level rewards based on multiple conversation turns must be
applied to specific words. Further, this approach makes the
number of actions available to the RL agent equivalent to the
number of words in the dialog model’s vocabulary (20,000
in our case). Thus there are several orders of magnitude
more actions than in typical applications of deep RL, such
as learning to play an Atari game with only tens of actions
(e.g. Kulkarni et al. (2016)).

To overcome these challenges, we leverage hierarchical
reinforcement learning (HRL) to model rewards at the ut-
terance level, improving the flexibility of dialog models
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Transformer Sentiment Question Repetition Semantic Sim. Toxicity

[Usr]: hello!
[Bot]: i don’t know.
[Usr]: how are you?
[Bot]: i don’t know
what that means.

[Usr]: hello!
[Bot]: i’m in my
sunroom a lot and
it’s a great feeling!
[Usr]: sounds fun
[Bot]: i’m excited!

[Usr]: hi there!
[Bot]: what do
you do for fun?
[Usr]: i read books
[Bot]: what do you
like to do in your
life?

[Usr]: how are you?
[Bot]: i’m a
reservoir engineer
[Usr]: cool. i am
still in college
[Bot]: today is my
first day of vacation

[Usr]: i like to
listen to ed sheeran
[Bot]: and what
genre is it?
[Usr]: pop
[Bot]: any
recommendations?

[Usr]: you’re so
stupid
[Bot]: you’re cute
[Usr]: i hate you
[Bot]: but i don’t
know why

Table 1: Chat examples showing that our proposed VHRL technique can be used to optimize for human-centered rewards.

to learn long-term, conversational rewards. Specifically, we
propose a novel approach, Variational Hierarchical Rein-
forcement Learning (VHRL), which uses policy gradients
to adjust the prior probability distribution of the latent vari-
able learned at the utterance level of a hierarchical varia-
tional model. We show that this approach allows for im-
proved learning of conversational rewards that are not mod-
eled well at the word level.

To evaluate our models, we not only compute automatic
metrics, but conduct an interactive human evaluation us-
ing the https://neural.chat/ platform (Ghandeharioun et al.
2019), in which humans chat live with our bots about any-
thing they choose. This represents a more realistic test of
real-world generalization performance than is typically em-
ployed when testing RL models in the same environment in
which they were trained. Our evaluation reveals that VHRL
improves human judgments of conversational quality above
state-of-the-art dialog architectures, including Transformer-
based models.

In summary, the paper makes the following contributions:
a) Develops a new technique, VHRL, for hierarchical con-
trol of variational dialog models; b) Demonstrates the effec-
tiveness of training open-domain dialog models with VHRL
and self-play, showing improvements over state-of-the-art
dialog architectures with both human evaluation and auto-
matic metrics; and c) Introduces and compares several re-
ward functions for guiding conversations to be less toxic and
repetitive, and more engaging, positive, contingent on user
input. In addition, we release code for our evaluation plat-
form and our models at https://github.com/natashamjaques/
neural chat.

2 Related Work

Open-domain dialog systems currently lack reliable auto-
matic evaluation metrics (Liu et al. 2016; Lowe et al. 2017).
Recently, authors have begun to propose new metrics of con-
versation quality (e.g. See et al.; Hancock et al.; Zhou et
al. (2019; 2019; 2018)), and have even proposed evaluating
metrics on conversations generated with self-play (Ghande-
harioun et al. 2019). However, these studies have not at-
tempted to directly optimize for their proposed conversation
metrics with RL.

There has been significant progress in improving dialog
generation outside of RL. One popular approach for con-
trollable generation is conditional training, where a learned
embedding vector is associated with a desired output fea-
ture and fed into the decoder to control generation (e.g.

See et al.; Colombo et al.; Huang et al. (2019; 2019;
2018)). This approach has multiple limitations. First, the
model can only learn associations present in the training
data, and cannot explore to discover improved methods for
optimizing the desired features. Second, the conditional em-
beddings are learned at training time with teacher forcing
and thus suffer from exposure bias (Ranzato et al. 2015).
Using RL avoids these limitations as it allows exploring re-
gions of space not present in the training data and directly
optimizing for rewards at inference time. In addition, RL
learns the total expected future reward of taking some action
now, given how the rest of the conversation will unfold in the
future. This allows RL models to make long-term trade-offs
about the benefits of generating words and utterances in the
conversation context. Finally, our approach does not require
the addition of any new parameters or complex components.
Instead, it can be use to tune pre-existing models to output
better, more appropriate responses.

2.1 Reinforcement Learning for Dialog

Improving dialog models with RL is a difficult problem, and
past work has largely been restricted to task-oriented dialog
systems, which have a limited number of task-specific ac-
tions (e.g. Liu and Lane; Su et al. (2017; 2017)). Attempts
to apply RL to open-domain dialog generation are less com-
mon. Even in this setting, authors may choose to use a highly
restricted action space, for example, using RL to choose dia-
log acts for conditional generation (Xu, Wu, and Wu 2018).

Li et al. (2016) applied deep RL to the full vocabulary-
sized action space, optimizing for rewards such as ease of
answering. RL has also been used to optimize for rewards
based on GAN-like discriminators trained to distinguish
human-generated from model-generated text (Li et al. 2017;
Yu et al. 2017). Note that it is difficult to apply the traditional
GAN approach of backpropagating discriminator gradients
directly into the generator, because the sampling procedure
used to generate each word does not preserve gradients. This
makes RL an attractive option for improving dialog genera-
tion since it can optimize for non-differentiable rewards.

Sentiment has been used as a reward in an RL setting for
dialog (Shin et al. 2019). Jaques et al. (2019) optimize for
sentiment and several other conversation metrics by learning
from a static batch of human-bot conversations using Batch
RL. We believe we are the first to propose using RL to re-
duce toxicity in an open-domain dialog setting, in order to
ensure the model produces more appropriate and safe con-
versations.
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Hierarchical models have been investigated extensively in
the context of language modeling. These models take ad-
vantage of the natural hierarchical structure of language, de-
composing input into utterances at one level, and words at
another. However, attempts to apply hierarchical RL (HRL)
to dialog generation have so far been limited to task-oriented
dialog systems (Zhang, Zhao, and Yu 2018; Peng et al. 2017;
Budzianowski et al. 2017; Tang et al. 2018). To the best
of our knowledge, we are the first to apply HRL to open-
domain dialog generation.

2.2 Hierarchical Reinforcement Learning

Many approaches have been proposed for building hierar-
chical agents within the context of reinforcement learning
for games and robotics (Sutton, Precup, and Singh 1999;
Precup 2001; Dietterich 2000; Vezhnevets et al. 2017; Ba-
con, Harb, and Precup 2017; Nachum et al. 2018). The
options framework proposed by Sutton, Precup, and Singh
(1999) is one popular approach for HRL. At the bottom level
of the hierarchy, a set of options (or workers) which are poli-
cies over actions interact with the environment until termi-
nated by the agent. At the top level, a policy over options (or
manager) selects options to be executed until termination,
at which point another option is picked and the process is
repeated. The different levels of temporal abstraction intro-
duced by this hierarchy allows for better long-term planning
relative to traditional, flat reinforcement learning techniques.

A major focus of HRL has been on sub-goal or option
discovery for training worker policies. Bottom-level policies
are often learned using handcrafted sub-goals (Kulkarni et
al. 2016; Tessler et al. 2017), intrinsic rewards (Vezhnevets
et al. 2017), or pseudo-rewards (Dietterich 2000), while the
manager policy is learned using extrinsic rewards from the
environment. Our approach also allows for optimizing dif-
ferent rewards at different levels of the hierarchy, thus creat-
ing distinct goals for the worker and the manager. However,
unlike other HRL approaches we expose both the worker and
manager policies to extrinsic rewards and add weight hyper-
parameters to regulate the effect of the rewards at each level.
This remedies a weakness of pseudo-reward methods where
a worker only focuses on achieving its sub-goals while dis-
regarding the effect on the extrinsic environment reward.

3 Background

A common approach to dialog modeling is to use a hierar-
chical seq2seq architecture, such as the Variational Hierar-
chical Recurrent Encoder Decoder (VHRED) (Serban et al.
2017b). We adopt VHRED here, following previous work
which has found it to be the most effective version of sev-
eral related architectures (Ghandeharioun et al. 2019).

As shown in Figure 1, VHRED uses three recurrent net-
works to generate the next utterance in a conversation. The
word-level encoder RNN operates on the words (tokens) of
the input utterance ut = [y1, y2, ...yn], and encodes them
into a representation he

t = fe(ut). This is fed into a con-
text RNN, which forms the upper level of the hierarchy – it
is updated only after each utterance, rather than each token.
Because it updates less frequently, the context RNN is po-

tentially better able to track longer-term aspects of the con-
versation. The context RNN outputs hc

t = f c(he
t ), which is

used to produce an utterance embedding zt. This is fed into
the word-level decoder RNN fd, which produces the output
utterance ut+1, one token at a time.

Figure 1: VHRED model architecture, where the embedding
vector z for each utterance is sampled from a multivariate
normal distribution using the reparameterization trick.

The model is similar to a variational autoencoder; hc
t is

fed into fully connected layers that predict the mean μ and
variance Σ of a multivariate normal distribution. Through a
KL-divergence constraint and the reparameterization trick,
the model learns a probability distribution over the embed-
ding vector zt of each utterance, pθ(zt|u≤t). Formally, the
model can be described as follows:

he
t = fe(ut) (1)

hc
t = f c(ut, h

e
t ) (2)

μ,Σ = f(hc
t) (3)

pθ(zt|u≤t) = N (zt|μ,Σ) (4)

p(ut+1|u≤t) = fd(hc
t , zt) (5)

3.1 Reinforcement Learning

We adopt the standard reinforcement learning framework
where given the environment state s ∈ S , an agent takes
an action a ∈ A according to its policy π : S × A → [0, 1],
and receives a reward r : S×A → R. The environment then
transitions to the next state according to the transition func-
tion P : S × A × S → [0, 1]. The agent seeks to maximize
the total expected future reward (long-term return):

J(π) = Eπ

[ ∞∑
t=0

γt rt+1 | s0
]

(6)

given a starting state s0 and a discount factor γ ∈ [0, 1].

3.2 Policy Gradient Methods

Policy gradient methods learn parameterized policies
πθ(a|s) for solving RL problems with θ ∈ R

Nθ being a
learned parameter vector. The policy gradient theorem (Sut-
ton and Barto 2018) derives the gradient of the expected re-
turn with respect to the policy parameters. In this paper, we
use REINFORCE (Williams 1992) which approximates the
gradient at each time step t using

∇J(πθ) ≈ Rt ∇θ lnπθ(at|st) (7)
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where Rt =
∑T

k=t+1 γ
k−t−1rk is the observed future re-

ward for an episode that ends at T . The expected return is
maximized with gradient ascent. This is equivalent to mini-
mizing the loss function Lθ = −Rt lnπθ(at|st).

In continuous action spaces, actions a ∈ R
Na are sampled

from a continuous probability distribution, such as a multi-
variate normal distribution. In this case, the policy π can be
parameterized as a probability density function over actions,

πθ(a|s) =
1√

(2π)Na |Σ| exp
(
−1

2
(a− μ)TΣ−1(a− μ)

)
(8)

where the actions are sampled from a multivariate normal
N (

μ(s;θ),Σ(s;θ)
)
. Here the mean μ : RNs × R

Nθ →
R

Na and covariance matrix Σ : RNs ×R
Nθ → R

Na×Na are
defined in terms of the current state s and the policy param-
eters θ. The density of the probability of actions, rather than
the probability, is learned in the continuous case. We refer
the reader to Sutton and Barto (2018) for more details on
extending policy gradient methods to the continuous case.

4 Approach

We pose dialog generation as an RL problem where the state,
st, is all the previous dialog turns read by the model up to ut-
terance t, and the rewards are calculated based on the dialog
history and generated utterance.

Previous approaches which have applied RL to language
generation have done so at the word level, where the pol-
icy π models the distribution over outputting the next word
(Ranzato et al. 2015; Yu et al. 2017; Li et al. 2016; 2017;
Jaques et al. 2019). Instead, we cast our problem in the hi-
erarchical reinforcement learning framework by considering
the context RNN as the manager responsible for utterance-
level decisions, and the decoder RNN as the worker respon-
sible for word-level decisions.

We leverage the fact that VHRED learns a probability dis-
tribution over latent variable zt as a decision making com-
ponent at the utterance level. Starting with a pre-trained
VHRED model, we apply REINFORCE to tune the varia-
tional component, treating zt as a continuous action. Thus,
the manager policy is defined by the distribution of the prior
latent variable pθ(zt|st), while the worker policy is the dis-
tribution of the output words πθ(ŷ1, . . . , ŷt|zt, st), which is
parameterized by the manager decisions.

More specifically, the probability of a worker action at is
the joint probability of the generated utterance conditioned
on the manager’s decision zt,

πθ(at|zt, st) =
T∏

t=1

πθ(ŷt|zt, st, ŷ1, . . . , ŷt−1) (9)

while the probability of a manager action is given by the
multivariate normal probability density function in Eq. 8.

We propose a new approach which allows both the worker
and manager to jointly optimize total expected future return
by minimizing the following loss:

Lθ = −
(
αRm

t ln pθ(zt|st) + βRw
t lnπθ(at|zt, st)

)
(10)

where Rm
t =

∑T
k=t+1 γ

k−t−1rmk is the manager’s observed
future reward and Rw

t =
∑T

k=t+1 γ
k−t−1rwk is the worker’s

observed future reward. This formulation is analogous to
REINFORCE as it shifts the model’s decisions towards ac-
tions associated with positive rewards and discourages ac-
tions associated with negative rewards. The scalars α, β are
hyperparameters used to regulate the effect of the rewards at
each level of the hierarchy. We call our approach Variational
Hierarchical Reinforcement Learning (VHRL).

Unlike recently proposed HRL approaches which train
the worker and manager separately as decoupled compo-
nents (Kulkarni et al. 2016; Vezhnevets et al. 2017; Nachum
et al. 2018), we train our entire model jointly, end-to-end.
This implies that the worker (decoder RNN) gradients flow
through the manager (context RNN), and both flow through
the encoder RNN. We make this decision for two reasons.
First, zt lives in a continuous high dimensional action space,
making it difficult to learn a good policy pθ without a sig-
nal from the decoder. Second, this gives the decoder control
over the representations learned by the encoder, facilitating
optimization. As an ablation study, we experiment with de-
coupled decoder and encoder training, and find that the joint
approach performs better.

The proposed loss allows for optimizing different rewards
at different levels, which can be used to incorporate prior
knowledge about the problem. For example, rewards rele-
vant to the global dialog history could be considered only by
the manager through rmk , rather than the worker. Conversely,
rewards relevant to the word-by-word output could be con-
sidered by the worker through rwk and not the manager. For
simplicity, we optimize for all rewards at both levels (i.e.
rwk = rmk ) and achieve promising results.

Similar to previous work applying RL to dialog (Xu, Wu,
and Wu 2018; Li et al. 2016) we use self-play to simulate
the interactive environment in which the agent learns. We
initialize conversations with randomly sampled starting sen-
tences from the training set and let our model interact with
a user simulator which is a fixed copy of itself. We limit
each model to 3 turns for a total conversation length of 7
utterances. Limiting the length of simulated interactions is
important since we found that long conversations are more
likely to degenerate and go off-topic.

5 Conversation Metrics

Here we introduce several metrics for improving the quality
of a conversation, which can be optimized using RL by treat-
ing them as rewards. Several metrics are inspired by previ-
ous work, but we also propose novel metrics such as toxicity.

Sentiment: Emotion is important for creating a sense
of understanding in human conversation (Weger Jr, Castle,
and Emmett 2010). Building on previous work which used
sentiment as a reward (e.g. Shin et al.; Jaques et al. (2019;
2019), we leverage a state-of-the-art sentiment detector,
DeepMoji (Felbo et al. 2017), to reward generated utterances
associated with positive sentiment emojis. The sentiment
score is computed using the weights proposed by Ghande-
harioun et al. (2019).

Question: Asking questions is an important active listen-
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ing skill, and can improve the quality of interactions (Bodie
et al. 2012). Thus, we provide a positive reward when both a
question word and a question mark are present in a generated
response to encourage asking questions.

Repetition: Repetitiveness has been frequently identified
as a shortcoming of dialog models trained with MLE (Li et
al. 2016). We adopt a measure of repetitiveness recently pro-
posed by See et al. (2019), which was shown to be highly
related to human judgments of conversation quality and en-
gagement. Unlike previous work, we directly optimize for
this metric using RL, rather than relying on conditional gen-
eration. To discourage repetition, our model receives a neg-
ative reward for repeating words it has produced in previous
turns, excluding stop words and question words.

Semantic Similarity: Paraphrasing and style matching
are important in facilitating good conversation (Ireland et al.
2011; Weger Jr, Castle, and Emmett 2010), however most
dialog models are not good at conditioning effectively on
the conversation context (Sankar et al. 2019). Therefore, we
reward the cosine similarity between the simulated user and
bot utterances in embedding space, as in See et al.; Jaques et
al. (2019; 2019). However, instead of using word2vec em-
beddings we make use of the Universal Sentence Encoder
(Cer et al. 2018) as it better correlates with human judgment
when evaluating dialog quality (Dziri et al. 2019).

Toxicity: Open-domain dialog systems generate mali-
cious, offensive, and biased language when trained on stan-
dard datasets scraped from online forums and movie scripts
(Curry and Rieser 2018; He and Glass 2018; Henderson et
al. 2018). We address this issue by penalizing our model for
producing toxic responses as determined by a Naive Bayes-
Logistic Regression classifier (Saleh et al. 2019a) trained on
a dataset of 160K comments from the Toxic Comment Clas-
sification Challenge1. The comments are labeled for toxicity,
identity hate, obscenity, threats, and insults. We provide the
probability of toxicity as a negative reward to penalize our
dialog model for producing toxic responses.

6 Experiments

The goal of our experiments is to evaluate the effectiveness
of VHRL for optimizing utterance level metrics like repeti-
tion and semantic similarity. We use both interactive human
evaluation and automatic metrics.

All of our models are trained on a corpus of
109K conversations scraped from www.reddit.com/r/
CasualConversations, which was shown to result in higher
conversation quality than traditional datasets such as Cornell
movie dialogs (Ghandeharioun et al. 2019). We create two
baselines by training on this dataset. The first is VHRED
(Serban et al. 2017a), described in Section 3. The second is
a Transformer model (Vaswani et al. 2017) of comparable
capacity for reference. We base our implementation of the
Transformer on ParlAI (Miller et al. 2017).

We test these dialog models against three RL techniques.
We incorporate transfer learning by initializing all of our
RL models with the pre-trained weights of the VHRED

1https://www.kaggle.com/c/jigsaw-toxic-comment-
classification-challenge

model. Our REINFORCE model applies the REINFORCE
algorithm described in Section 3.2 at the word-level, to af-
fect the probability of generating each word in the output.
In contrast, VHRL incorporates additional rewards at the
utterance-level to improve the continuous utterance embed-
ding zt. We compare these methods with a recently proposed
approach for learning offline from a static batch of conversa-
tion data, Batch Ψ-learning (Jaques et al. 2019). Finally, we
include an ablated version of the VHRL model that uses de-
coupled training; i.e. training alternates between optimizing
the different levels of the hierarchy (manager and worker),
with the crucial difference that the worker gradients are
stopped so they do not update the manager. This Decoupled
VHRL ablation is more typical of standard HRL approaches
used in maze and Atari games (Kulkarni et al. 2016;
Vezhnevets et al. 2017; Nachum et al. 2018). All of our
code is open-source at https://github.com/natashamjaques/
neuralchat. Additional training details are given in the ex-
tended version of this paper (Saleh et al. 2019b).

6.1 Human Evaluation

In addition to computing automatic measures, we conduct
an interactive human evaluation, in which human users are
able to chat with each of our bots in an open-ended, free-
form setting. After chatting for at least three turns with each
bot, users can end the conversation and rate the overall con-
versation quality, fluency, diversity, and the degree to which
the bot’s responses were contingent on the user’s input. Be-
cause users can choose to chat as long as they like with any
particular bot, we also measure chat length as a sign of en-
gagement, following prior work (Zhou et al. 2018).

We conduct two human evaluations by recruiting 100 Me-
chanical Turk workers to evaluate models on an open-source
online platform at https://neural.chat/ (Ghandeharioun et al.
2019). We are releasing all of the models for both stud-
ies publicly. Rather than cherry picking samples from the
models, we encourage the reader to chat with each of the
bots. The first study compares the quality of the proposed
reward functions: https://neural.chat/vhrl rewards/. The sec-
ond study assesses the efficacy of the six proposed tech-
niques when optimizing for all of the rewards jointly: https:
//neural.chat/vhrl techniques/. We argue that this form of
evaluation represents a more ambitious test of generaliza-
tion than is typically attempted when deep RL algorithms are
tested in the same environment in which they were trained,
since human users are free to type any text they choose.

7 Results and Discussion
We first assess whether RL training can allow dialog agents
to learn to optimize arbitrary, non-differential metrics of
conversation quality. Table 1 in Section 1 shows samples of
conversations from VHRL trained with each of the rewards,
and Figure 2 shows the performance of the RL and baseline
models on those five metrics. The RL models are able to dra-
matically improve generated conversations above the base-
line VHRED model with which they are initialized, improv-
ing sentiment and semantic similarity, asking more ques-
tions, and reducing repetition and toxicity. The RL mod-
els also improve significantly over the performance of the
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Figure 2: Reward Learning curves for the proposed metrics. The x-axis represents number of RL training steps. The perfor-
mance of the non-RL baselines is displayed for reference. REINFORCE and VHRL learn to outperform the baselines. Shaded
area is standard deviation.

Transformer model on these metrics, with the exception of
the semantic similarity metric. We note that compared to the
VHRED architecture, the Transformer has higher similarity
but is also much more repetitive.

While both REINFORCE and VHRL are equally able
to learn to optimize toxicity and sentiment, VHRL out-
performs REINFORCE on repetition and semantic similar-
ity. We believe this is because sentiment and toxicity are
more closely linked to the choice of words used to form a
sentence, and thus are able to be learned at the word-level. In
contrast, modeling whether a sentence has occurred earlier
in the conversation and is thus being repeated is much harder
to learn at word-level granularity, and can be optimized more
easily at the utterance-level using VHRL. Similarly, making
a response more similar to the previous response is also bet-
ter modeled at the utterance-level.

Note that REINFORCE outperforms VHRL on the ques-
tion metric. This is because the model quickly learns to ask a
single, repeated question, allowing it to trivially optimize the
reward function. Using reward functions which are too eas-
ily exploitable can limit the effectiveness of RL for dialog, a
finding also noted in Jaques et al. (2019). Here we propose
new reward functions, such as toxicity, that are less easy to
exploit. By optimizing a combination of these rewards with
sometimes conflicting objectives (as we explore in Section
7.1), we can show that the reward function is difficult to triv-
ially exploit, as suggested by Deb (2014).

As an additional post-hoc test of whether reducing our
toxicity metric actually reduces undesirable behaviors in di-
alog models, we count the number of swear words used by
each model in response to the 10,000 utterances in the test
set. Figure 3 shows the results. The baseline VHRED model
uses a swear word in 1.5% of the responses, while using RL
to lower the toxicity reduces swearing to less than one third
of the original amount.

We conducted an interactive human evaluation, as de-
scribed in Section 6.1, in order to assess how well the
proposed reward functions relate to human judgments of
conversation quality when optimized with REINFORCE or
VHRL; the results are presented in Table 3. Each bot was
trained with respect to one of the 5 reward functions, and the
results are ordered from least to highest scoring rewards in
terms of summed human ratings. As is evident in the table,

Figure 3: Training with RL to reduce toxicity decreases the
percentage of generated utterances containing swear words.

the VHRL model trained to optimize for asking questions
achieved the highest ratings, followed by VHRL minimiz-
ing repetition, and VHRL minimizing toxicity. This provides
evidence that our proposed rewards lead to enhanced con-
versation quality as judged by human users, and that VHRL
provides the most effective method for learning them.

7.1 Comparison of RL techniques for learning
combined reward

As described in the previous section, optimizing for an
overly simplistic metric (such as asking questions) can lead
algorithms such as REINFORCE to trivially exploit the re-
ward function at the expense of conversation quality. The
five metrics proposed here do not fully encompass what it
means to have a good conversation with a human user when
optimized separately. Previous work found that optimizing
individual metrics can actually reduce human judgments of
conversation quality below the score of the MLE baseline
(Jaques et al. 2019).

Therefore, instead of optimizing for individual metrics,
we also train a variety of models to optimize for a com-
bination of all five proposed rewards2, making the reward
function more complex and less easily exploited. The results
are shown in Table 2, which is ordered from least to highest
summed human ratings. All models proposed here, includ-
ing the MLE baselines, outperform prior work by Jaques et

2The weights placed on each reward are given in the extended
version of this paper (Saleh et al. 2019b)
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Model Quality Fluency Diversity Contingency Total Chat Len.

Batch Ψ (Jaques et al. 2019) 2.17 3.89 3.13 1.98 11.17 11.44
Decoupled VHRL (ablation) 2.46 4.15 3.61 2.02 12.24 12.14
Transformer 2.62 4.17 3.23 2.34 12.36 11.28
REINFORCE 2.89 4.47 3.67 2.80 13.84 11.60
VHRED 2.84 4.53 4.43 2.47 14.27 10.94
VHRL (ours) 2.91 4.65 4.26 2.67 14.49 12.84

Table 2: Interactive human evaluation results comparing different RL training approaches optimizing for all five rewards,
ordered by overall total rating score. Ratings are on a Likert scale (1-7).

Model Quality Fluency Diversity Cont. Total Chat Len

Similarity
REINFORCE 2.71 4.20 3.86 2.73 12.10 12.36

VHRL 2.51 3.92 3.67 2.22 11.14 11.56
Sentiment
REINFORCE 2.80 4.55 3.90 2.43 12.43 11.02

VHRL 2.72 4.30 4.32 2.50 12.28 11.12
Toxicity
REINFORCE 2.71 4.12 4.06 2.55 11.98 10.74

VHRL 2.76 4.58 4.34 2.64 12.82 11.32
Repetition
REINFORCE 2.74 4.02 4.28 2.30 11.92 11.52

VHRL 3.00 4.39 4.41 2.84 13.12 10.66
Question
REINFORCE 2.39 4.08 2.45 2.31 9.80 12.98

VHRL 3.27 4.86 4.47 2.88 14.14 11.68

Table 3: Interactive human evaluation results comparing the
proposed reward functions, REINFORCE, and VHRL. Rat-
ings are on Likert scale (1-7). Higher is better.

al. (2019). The ablated version of our approach, Decoupled
VHRL, performs poorly, suggesting our proposed joint train-
ing scheme for VHRL is an important component of the al-
gorithm.

VHRED, REINFORCE, and VHRL all exceed the per-
formance of the Transformer in terms of human judgments
of conversation quality. While recent advances in language
modeling with Transformer architectures (e.g. Radford et
al. (2019)) are quite promising, translating these successes
into conversational AI is still an ongoing area of research.
Models such as VHRED have an architecture designed for
the dyadic nature of the conversation (with an explicit up-
date based on each conversation turn); in contrast, the Trans-
former has no special architectural features to denote conver-
sation turns beyond the <end of utterance> token. Recur-
rent models have been shown to be more adept at capturing
and exploiting hierarchical information in language (Tran,
Bisazza, and Monz 2018). Further, Transformers have been
shown to be less sensitive to the conversation history relative
to recurrent models (Sankar et al. 2019). We have observed
that the Transformer is highly repetitive, and vulnerable to
monologuing rather than generating answers contingent on
the user’s input. Although it has a high score on the semantic
similarity metric in Figure 2, Table 2 demonstrates that this
does not translate into improved contingency ratings.

Finally, in comparing the RL techniques to the VHRED
baseline on which they were based, we see that a naı̈ve appli-
cation of the REINFORCE algorithm does not lead to over-
all improvements in human ratings of conversation quality.

While the language generated by the REINFORCE model is
less toxic and more positive, this comes at the cost of a slight
reduction in overall conversation quality. In contrast, VHRL
is the only technique that allows the model to optimize for
reducing toxicity, improving sentiment, etc., while increas-
ing the overall human judgments of the quality of the conver-
sation. Note that the chat length is higher with VHRL, sug-
gesting users are more interested and engaged when chat-
ting with VHRL versus the other models. Thus, VHRL can
be used to optimize for metrics that make the dialog model
more safe and appropriate for a particular application do-
main, while maintaining the ability to have an enjoyable and
engaging conversation with human users.

8 Conclusion

We have demonstrated that RL can be used to improve the
outputs of an open-domain dialog model with respect to
human-centered metrics of conversation quality. For exam-
ple, RL can reduce the toxicity of the generated language,
a problem that has previously hindered deployment of these
systems to the real world. By developing metrics tailored
to a particular application domain (for example, increasing
politeness for a technical-support system), these techniques
could be used to help open-domain dialog models integrate
with real-world products. We have shown that our proposed
VHRL technique is most effective for optimizing long-term
conversation rewards, and for improving conversation qual-
ity while improving metrics like toxicity.
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