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Abstract

Contextual representations of words derived by neural lan-
guage models have proven to effectively encode the subtle
distinctions that might occur between different meanings of
the same word. However, these representations are not tied to
a semantic network, hence they leave the word meanings im-
plicit and thereby neglect the information that can be derived
from the knowledge base itself. In this paper, we propose
SENSEMBERT, a knowledge-based approach that brings to-
gether the expressive power of language modelling and the
vast amount of knowledge contained in a semantic network to
produce high-quality latent semantic representations of word
meanings in multiple languages. Our vectors lie in a space
comparable with that of contextualized word embeddings,
thus allowing a word occurrence to be easily linked to its
meaning by applying a simple nearest neighbour approach.
We show that, whilst not relying on manual semantic anno-
tations, SENSEMBERT is able to either achieve or surpass
state-of-the-art results attained by most of the supervised neu-
ral approaches on the English Word Sense Disambiguation
task. When scaling to other languages, our representations
prove to be equally effective as their English counterpart and
outperform the existing state of the art on all the Word Sense
Disambiguation multilingual datasets. The embeddings are
released in five different languages at http://sensembert.org.

1 Introduction

Word Sense Disambiguation (WSD) is the task of associat-
ing the occurrence of a word in a text with its correct mean-
ing from a predefined inventory of senses (Navigli 2009).
Over the years, two distinct lines of research have been de-
veloped to tackle this problem: supervised and knowledge-
based WSD. On the one hand, supervised models rely on
semantically-annotated corpora for training (Raganato, Delli
Bovi, and Navigli 2017; Kumar et al. 2019; Bevilacqua
and Navigli 2019), while, on the other hand, knowledge-
based systems employ graph-based algorithms on seman-
tic networks to find the set of meanings that better disam-
biguate the input words (Moro, Raganato, and Navigli 2014;
Agirre, de Lacalle, and Soroa 2014). Even though super-
vised approaches have proved to achieve better performance,
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they have difficulty scaling to different languages due to the
paucity of multilingual sense-annotated data. Knowledge-
based approaches, instead, are more flexible and can be ap-
plied to different languages, however at the cost of achieving
lower performance than their supervised counterpart.

Recently, language models in different sauces, i.e., ELMo
(Peters et al. 2018), BERT (Devlin et al. 2019), XLNET
(Yang et al. 2019), etc., have attracted much interest as they
have proved to be beneficial to several downstream tasks in
NLP (Wang et al. 2018; 2019). In fact, the word representa-
tions provided by these models encode several pieces of lin-
guistic information and, differently from static word embed-
dings (Mikolov et al. 2013; Pennington, Socher, and Man-
ning 2014), they depend directly on the context a word is
surrounded by. This has made these vectors especially inter-
esting for the task of WSD, where effective contextual repre-
sentations can be highly beneficial for solving lexical ambi-
guity. In fact, thanks to contextual embeddings, simple near-
est neighbor algorithms have proved to be more effective and
precise than complex supervised and knowledge-based ap-
proaches (Loureiro and Jorge 2019). These representations
allowed sense-annotated corpora to be exploited in a more
efficient way, as demonstrated by Loureiro and Jorge (2019).
In fact, they closed the gap between the meanings in a se-
mantic network and their occurrences in a text by producing
concept embeddings that lie in a space that is comparable
with that of contextual word embeddings. Nevertheless, this
approach is still hampered by the need for manual semantic
annotations in order to construct the concept vectors, which
limits its range of action to texts in English only, as almost
no manually-annotated data are available in other languages.

In this paper we present SENSEMBERT, a knowledge-
based approach for producing sense embeddings in multiple
languages. We leverage the lexical-semantic information in
a knowledge base, i.e., BabelNet, and an encyclopedic re-
source like Wikipedia, to relieve the burden of producing
manually-tagged corpora. SENSEMBERT, whilst not rely-
ing on annotated data, achieves state-of-the-art results on the
multilingual WSD tasks and remains competitive with the
best supervised models on English. Moreover, when provid-
ing supervision to our approach, our embeddings set a new
state of the art on all the English WSD test sets for nouns.
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2 Related Work

At the core of Natural Language Processing lies the problem
of Word Sense Disambiguation (WSD), which addresses the
ambiguity of words in a given context. WSD is usually tack-
led by exploiting two sources of knowledge: semantic net-
works and sense-annotated corpora. Semantic networks en-
code a more general knowledge that is not tied to a spe-
cific task and the information enclosed therein is usually
employed for WSD by knowledge-based approaches. Sense-
annotated corpora, instead, are tailored to the WSD task and
are typically used as training sets for supervised systems.

Knowledge-based systems Knowledge-based approaches
(Moro, Raganato, and Navigli 2014; Agirre, de Lacalle, and
Soroa 2014) frame WSD as a graph-based problem, where
the structure of a semantic network, such as WordNet (Fell-
baum 1998) and BabelNet (Navigli and Ponzetto 2012), is
used to find, for each input word, its correct meaning accord-
ing to its context. WordNet is the most widespread lexical
knowledge base, but it is limited to the English lexicon only,
which restricts its applicability to other vocabularies. Babel-
Net copes with this problem by merging together lexical-
semantic information in multiple languages coming from
different resources, hence enabling knowledge-based ap-
proaches to scale over all the languages it supports. Despite
their ability to scale over different languages, knowledge-
based approaches fall behind supervised systems on English
in terms of accuracy.

Supervised systems Supervised systems have attained
state-of-the-art results across all English datasets by exploit-
ing either SVM models (Iacobacci, Pilehvar, and Navigli
2016), or neural architectures (Melamud, Goldberger, and
Dagan 2016; Raganato, Delli Bovi, and Navigli 2017;
Vial, Lecouteux, and Schwab 2019). Nevertheless, they
suffer from the knowledge acquisition bottleneck, which
hampers the creation of large manually-curated corpora
(Gale, Church, and Yarowsky 1992), and in turn hin-
ders the ability of these approaches to scale over unseen
words and new languages. To overcome the aforemen-
tioned shortcomings, coarser sense inventories (Lacerra
et al. 2020) and automatic data augmentation approaches
(Pasini and Navigli 2017; Pasini, Elia, and Navigli 2018;
Scarlini, Pasini, and Navigli 2019) have been developed to
cover more words, senses and languages. At the same time,
dedicated architectures have been built to exploit the defi-
nitional information of a knowledge base (Luo et al. 2018;
Kumar et al. 2019).

Recently, contextual representations of words (Peters et
al. 2018; Devlin et al. 2019) have brought a breeze of change
to WSD, where they have been employed for the creation of
sense embeddings (Peters et al. 2018; Loureiro and Jorge
2019). These proved to be of high-quality inasmuch as they
were able to surpass complex state-of-the-art models on the
English WSD tasks when coupled with simple distance-
based algorithms, i.e., k-NN. Nevertheless, these approaches

rely on sense-annotated corpora to gather contextual infor-
mation for each sense, and hence are limited to languages
for which gold annotations are available, i.e., English.

In this paper, we present SENSEMBERT which, in dis-
pensing with the need for human-annotated corpora, un-
leashes the power of sense embeddings to virtually all Ba-
belNet’s languages. By leveraging the mapping between
senses and Wikipedia pages, the relations among Babel-
Net synsets and the expressiveness of contextualized embed-
dings, we get rid of manual annotations while at the same
time providing valuable contexts for the creation of our em-
beddings for all the nominal senses in BabelNet.

3 Preliminaries

SENSEMBERT relies on different resources for building
sense vectors: Wikipedia, a multilingual knowledge base,
i.e., BabelNet (Navigli and Ponzetto 2012), the NASARI
lexical vectors (Camacho-Collados, Pilehvar, and Navigli
2016) and a pre-trained language model for producing con-
textual representations, i.e., BERT (Devlin et al. 2019).

Wikipedia is the largest electronic encyclopedia freely
available on the Web, including approximately 300 separate
editions, each written in a different language. The informa-
tion contained in Wikipedia is organized into articles, which
are also referred to as Wikipedia pages. Each page aims at
describing either abstract concepts, e.g., FREEDOM, or real
world entities, e.g., MARTIN LUTHER KING.

BabelNet1 (Navigli and Ponzetto 2012) is a multilin-
gual semantic network which comprises information coming
from heterogeneous resources, such as WordNet, Wikipedia,
etc. It is organized into synsets, i.e., sets of synonyms that
express a single concept, which, in their turn, are con-
nected to each other by different types of relation. We note
that a synset clusters together several senses, each identi-
fied by one of the synset’s lexicalizations. Moreover, thanks
to cross-lingual mappings, the synsets in BabelNet conflate
lexicalizations coming from distinct languages. For exam-
ple, the terms glass (English), verre (French), vaso (Span-
ish), bicchiere (Italian), etc., are grouped together under the
same synset expressing the container meaning of glass.

For our purposes we are especially interested in the fol-
lowing kinds of information contained in BabelNet:
• Hypernym and hyponym edges: each concept2 is con-

nected to other concepts by means of hypernym-hyponym
relations. For example, the concept computer1n (A ma-
chine for performing calculations automatically)3 is con-
nected, inter alia, to the concept machine1n (Any mechan-
ical or electrical device) via a hypernym relation (i.e.,
generalization), and to home computer1n (a computer in-
tended for use in the home) via a hyponym relation (spe-
cialization).
1https://babelnet.org
2We use synset and concept interchangeably for ease of reading.
3We use the notation of Navigli (2009), where lkp denotes the

k-th meaning of the lemma l with pos p according to WordNet.
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• Semantically-related edges: BabelNet also comprises
edges expressing a general notion of relatedness between
concepts. For example, computer1n is connected, among
others, to mouse4n (a hand-operated electronic device) and
to keyboard1n (device consisting of a set of keys).

• Mappings to Wikipedia: most of the concepts in the
knowledge base are linked to one or more Wikipedia
pages. For example, the concept for computer1n is linked
to the Wikipedia page COMPUTER4.

NASARI lexical vectors5 (Camacho-Collados, Pilehvar,
and Navigli 2016) provide explicit representations of Babel-
Net concepts by means of sparse lexical vectors. Each di-
mension is a word scored by its lexical specificity (Lafon
1980) with respect to the concept it is representing. The lex-
ical specificity value is computed from the Wikipedia pages
related to the target concept. We note that the words enclosed
within each sense vector are those that most characterize it.
For example, the vector for the animal sense of mouse in-
cludes, among others, the words rat, rodent, animal, cat, etc.

BERT6 (Devlin et al. 2019) is a Transformer-based lan-
guage model for learning contextual representations of
words in a text. Recently, BERT ushered a new era for
NLP. In fact, its contextual embeddings made it possible
to achieve high performance in different NLP tasks, such
as question answering and sentiment classification. In this
work we take advantage of the BERT large and multilingual7
models for English and the other languages, respectively.

4 SENSEMBERT

In this Section we present SENSEMBERT, a novel
knowledge-based approach for creating latent representa-
tions of senses in multiple languages. It computes context-
aware representations of BabelNet senses by combining the
semantic and textual information that can be derived from
multilingual resources, i.e., NASARI (Camacho-Collados,
Pilehvar, and Navigli 2016) and BabelNet (Navigli and
Ponzetto 2012), with the representational power of neural
language models, i.e., BERT (Devlin et al. 2019). Our ap-
proach can be divided into the following three steps:

• Context Retrieval, which collects all the relevant textual
information from Wikipedia for a given concept in the se-
mantic network (Section 4.1).

• Word Embedding, which, given the contexts retrieved in
the previous step, computes the vector representation of
each relevant word of the target synset (Section 4.2).

• Sense Embedding, which merges the contextual informa-
tion computed in the previous step and enriches it with
additional knowledge from the semantic network, so as to
build an embedding for the target sense (Section 4.3).
4https://en.wikipedia.org/wiki/Computer
5http://lcl.uniroma1.it/nasari/
6https://github.com/google-research/bert
7The training of multilingual BERT was performed on the texts

coming from Wikipedia in 104 different languages.

4.1 Context Retrieval

In this step we aim at retrieving all the contexts from
Wikipedia that are suitable for characterizing a given word
synset. To this end, similarly to Camacho-Collados, Pile-
hvar, and Navigli (2016), we exploit the mappings between
synsets and Wikipedia pages available in BabelNet, as well
as its taxonomic structure, to collect textual information that
is relevant to a target synset s.

First, starting from a synset s, we collect the set of its
most related concepts, i.e., all the synsets that are connected
to s through either a hypernym, hyponym or semantically-
related edge (see Section 3). More formally, being s the tar-
get synset, we define its set of related synsets Rs as follows:

Rs = {s′ | (s, s′) ∈ E}
where E is the set of hypernym, hyponym and semantically-
related edges in BabelNet.

In order to make this set as reliable as possible and reduce
the possible error due to the automatic nature of BabelNet,
we further refine the set Rs by retaining just those synsets
that are strongly related to the target one, i.e., s. To do so, we
employ the information coming from the Wikipedia pages
associated with s, i.e., ps, and each synset s′ in Rs, i.e., ps′ .
For each page pi we compute its lexical vector as described
in Camacho-Collados, Pilehvar, and Navigli (2016), where
words correspond to dimensions and are scored by their lex-
ical specificity value. These lexical representations are then
employed to score the similarity between ps and ps′ for each
s′ ∈ Rs by means of the Weighted Overlap (WO) measure
(Pilehvar, Jurgens, and Navigli 2013). WO determines the
similarity between two input pages p1 and p2 as follows:

WO(p1, p2) =

(∑
w∈O

1

rp1
w + rp2

w

)⎛⎝ |O|∑
i=1

1

2i

⎞
⎠

−1

where O is the set of overlapping dimensions of p1 and p2
and rpi

w is the rank of the word w in the lexical vector of pi.
We preferred the weighted overlap over the more common
cosine similarity as it has proven to perform better when
comparing sparse vector representations (Pilehvar, Jurgens,
and Navigli 2013).

Once we have scored all the (ps, ps′) pairs, we create
three partitions of Rs, each comprising all the senses s′ con-
nected to s with the same relation r, where r can be one
among: hypernymy, hyponymy and semantic relatedness.
We then retain from each partition only the top-k scored
senses8 s′1, . . . , s

′
k according to WO(ps, ps′i). We further re-

fine each filtered partition by solving the conflicts that might
arise when a synset s′ is related not only to s but also to
another concept s′′ that shares a lexicalization with s. This
is needed since s and s′′ represent two different meanings
of the same word and thus require distinct contexts to better
characterize and distinguish them. Therefore, we remove s′
from the set Rs if WO(ps, ps′) < WO(ps′′ , ps′), or other-
wise from the set Rs′′ . Finally, for each synset s, we com-
pute the Bag of Contexts BoCs comprising all the sentences
of the pages associated with a sense in Rs.

8We use k = 10 for all our experiments.
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Figure 1: Exemplification of the sense embedding’s creation
for the device sense of mouse.

4.2 Word Embedding

The aim of the second step is to compute, by means of
BERT, the representations of those words in the sentences
of BoCs that best define the target synset s.

First, we define as relevant words for a target synset those
that appear in its NASARI lexical vector. Formally, given a
synset s and its NASARI vector Ns, we define Ws as the set
containing all the non-zero words in Ns. Then, we use Ws to
filter out from BoCs all those sentences which do not con-
tain any of the words therein and compute the embedding
of each word w ∈ Ws by averaging the BERT representa-
tions of all its occurrences in BoCs. That is, given a word
w ∈ Ws, we compute its vector vw as follows:

vw =

∑
c∈BoCw

s

BERT (c, w)

|BoCw
s |

where BoCw
s is the set of contexts in BoCs where w appears

and BERT (c, w) is the vector computed by BERT for the
word w in the context c.

At the end of this step, all the words in Ws for a given
synset s are associated with their latent representations,
which depend on the contexts in BoCs where they occur.

4.3 Sense Embedding

In this final step, we build a unique representation of each
target synset in the knowledge base. Therefore, to prioritize
the information that best characterizes a target synset s, we
weight each word in Ws, and hence its corresponding em-
bedding, according to its rank in the NASARI vector of s.
We then build the final synset representation by combining
the word vectors we computed previously. Formally, given
a target synset s, the set of its relevant words w1, . . . , wn ∈
Ws and their corresponding vectors vw1 , . . . , vwn , we com-
pute the synset embedding of s as follows:

vs =

∑
wi∈Ws

rank(wi)
−1 vwi∑

wi∈Ws

rank(wi)−1

where rank(wi) is the ranking of the word wi according to
its score in the NASARI vector of s. After a vector for each
synset s has been computed, we still lack a representation at

the sense level, i.e., specific to each lemma of the synset9.
Therefore, to further enrich and specialize our embeddings
at the sense level, we follow Loureiro and Jorge (2019)
and leverage the gloss and each of the synset’s lemmas. In
more detail, i) for each synset s, we enhance its gloss by
prepending to it all the lemmas in s; ii) we differentiate the
synset gloss for each sense in s by repeating its lemma at
the beginning of the gloss; iii) we compute the sense gloss
embedding, i.e., the representation of the gloss at the sense
level, as the average of the BERT contextual embeddings
of the tokens of our enhanced gloss. Lastly, the final
representation of the target sense is given by concatenating
the embedding of the synset it belongs to, i.e., vs, with the
sense gloss embedding we just computed.

At the end of the three steps outlined in Sections 4.1-4.3,
each sense in the knowledge base is associated with a vector
which encodes both its contextual and definitional seman-
tics coming from the contexts extracted from Wikipedia and
its gloss, respectively. In Figure 1 we exemplify the proce-
dure for creating the embedding of the device sense of the
lemma mouse. As one can see, we compute the representa-
tion of the target sense by combining the information we ex-
tracted for its corresponding synset, i.e., {mouse, computer
mouse}, from Wikipedia (left side of the figure) and Babel-
Net (right side of the figure). As for the first component of
the vector, i.e., context, we retrieve all the sentences in the
Wikipedia pages collected for the {mouse, computer mouse}
synset (step 1, Section 4.1). Then we compute, by means of
BERT, the embeddings of the relevant words, i.e., device,
pointer, etc. (underlined in figure), and average them (step
2, Section 4.2). As for the second component of the vec-
tor, i.e., sense gloss, we consider the gloss of the {mouse,
computer mouse} synset and prepend to it all of its lem-
mas, i.e., mouse, computer mouse (upper right side of the
figure). Then we specialize it for the device sense of mouse
by adding the lemma mouse at the beginning of the text and
average the BERT representations of the tokens therein (step
3, Section 4.3). Thus, the final vector for the device sense of
mouse is the concatenation of the context and sense gloss
vectors.

5 Experimental Setup

In this Section we report the settings in which we conducted
the evaluation of SENSEMBERT when testing it on the En-
glish and multilingual WSD tasks. In what follows we intro-
duce the test sets, the system setup along with the reference
WSD model, a supervised version of our approach and the
comparison systems.

Evaluation Benchmarks As for English, we carried
out the evaluation on the test sets in the English WSD
framework in Raganato, Camacho-Collados, and Nav-
igli (2017)10. This includes five standardized evaluation
benchmarks from the past Senseval-SemEval competitions,

9We recall from Section 3 that a synset contains several senses,
each associated with a lemma.

10http://lcl.uniroma1.it/wsdeval/
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i.e., Senseval-2 (Edmonds and Cotton 2001), Senseval-3
(Snyder and Palmer 2004), SemEval-07 (Pradhan et al.
2007), SemEval-13 (Navigli, Jurgens, and Vannella 2013),
SemEval-15 (Moro and Navigli 2015), together with ALL,
the concatenation of the five test sets. As for the multilin-
gual setting, we conducted the experiments on the SemEval-
13 (Navigli, Jurgens, and Vannella 2013) and SemEval-15
(Moro and Navigli 2015) multilingual WSD tasks.

In all test sets we considered just nouns, as the NASARI
lexical vectors are currently available for nominal synsets
only. All performances are reported in terms of F1-measure,
i.e., the harmonic mean of precision and recall.

SENSEMBERT Setup We employed two BERT pre-
trained models: the English 1024-dimensional and the mul-
tilingual 768-dimensional pre-trained cased models for the
English and multilingual settings, respectively. Among all
the configurations reported by Devlin et al. (2019), we used
the sum of the last four hidden layers as contextual embed-
dings of the words. Moreover, BERT exploits WordPiece to-
kenization, that is, a token can be further split into several
subtokens, e.g., the term “embed” is broken down into two
subtokens, namely “em” and “##bed”. Thus, the contextual
embedding of an input word was computed as the average of
its subtoken embeddings.

WSD Model We used a 1-nearest neighbour approach to
test SENSEMBERT on the WSD task. For each target word
w in the test set we computed its contextual embedding by
means of BERT and compared it against the embeddings of
SENSEMBERT associated with the senses of w. Hence, we
took as prediction for the target word the sense correspond-
ing to its nearest neighbour. We note that the embeddings
produced by SENSEMBERT are created by concatenating
two BERT representations, i.e., context and sense gloss (see
Section 4.3), hence we repeated the BERT embedding of the
target instance to match the number of dimensions.

In contrast to most supervised systems, this approach does
not rely on the Most Frequent Sense (MFS) backoff strategy,
i.e., predicting the most frequent sense of a lemma in Word-
Net for instances unseen at training time, as SENSEMBERT
ensures full coverage for the English nominal senses.

Supervised SENSEMBERT In order to set a level playing
field with supervised systems on English, we built a super-
vised version of SENSEMBERT, i.e., SENSEMBERTsup.
This version combined the gloss and contextual informa-
tion (Section 4.3) with the sense-annotated contexts in Sem-
Cor (Miller et al. 1993), a corpus of 40K sentences where
words have been manually annotated with a WordNet mean-
ing. We leveraged SemCor for building a representation of
each sense therein. To this end, we followed Peters et al.
(2018) and, given a word-sense pair (w, s), we collected
all the sentences c1, . . . , cn where w appears tagged with s.
Then, we fed all the retrieved sentences into BERT and ex-
tracted the embeddings BERT (c1, w), . . . , BERT (cn, w).
The final embedding of s was built by concatenating the av-
erage of its context and sense gloss vectors (Figure 1) and

its representation coming from SemCor, i.e., the average of
BERT (c1, w), . . . , BERT (cn, w). We note that, when a
sense did not appear in SemCor, we built its embedding by
replacing the SemCor part of the vector with its sense gloss
representation.

Comparison Systems We compared SENSEMBERT
against the best performing supervised and knowledge-
based systems evaluated on the WSD framework for English
nouns. Among knowledge-based approaches, we took into
account the extension of Lesk comprising word embeddings
(Basile, Caputo, and Semeraro 2014, Leskext+emb),the ex-
tended version of UKB with gloss relations (Agirre, de
Lacalle, and Soroa 2014, UKBgloss) and Babelfy (Moro,
Raganato, and Navigli 2014). As for supervised systems
we considered an SVM-based classifier integrated with
word embeddings (Iacobacci, Pilehvar, and Navigli 2016,
IMS+emb), the Bi-LSTM with attention and multi-task ob-
jective presented in Raganato, Delli Bovi, and Navigli, Bi-
LSTM (2017), and the more recent supervised systems
leveraging sense definitions, i.e., HCAN (Luo et al. 2018)
and EWISE (Kumar et al. 2019). We also performed a com-
parison with the two LSTM-based architectures of Yuan
et al. (2016, LSTM-LP) and context2vec (Melamud, Gold-
berger, and Dagan 2016) for learning representations of the
annotated sentences in the training corpus. Finally, we ap-
plied the 1-NN strategy to two other supervised approaches
for creating sense embeddings, namely Peters et al.’s method
(2018) using BERT (BERT k-NN) and LMMS (Loureiro
and Jorge 2019). All supervised systems, apart from BERT
k-NN and LMMS11, were trained using SemCor and, with
the exception of HCAN, EWISE and LMMS, rely on the
MFS backoff strategy unless otherwise stated.

As regards the multilingual setting, we took into ac-
count OneSeC (Scarlini, Pasini, and Navigli 2019), the best
automatically-tagged corpus available for non-English lan-
guages. Therefore, we compared the embeddings produced
by SENSEMBERT with the state-of-the-art Bi-LSTM-based
supervised model trained on OneSeC presented by Scar-
lini, Pasini, and Navigli (2019, Bi-LSTMOneSeC). More-
over, we also created a multilingual version of LMMS by
replicating their approach on the data provided by OneSeC
(LMMSOneSeC) and tested it on all the target languages.

6 Results

In this Section we report the results of the evaluation on the
WSD task. We first show the ablation study we carried out
to assess the contribution brought by each part of SENSEM-
BERT’s embeddings. We then demonstrate the effectiveness
of SENSEMBERT by comparing its results on all standard
WSD benchmarks with the existing state of the art.

6.1 Ablation Study

First, we show an ablation study of SENSEMBERT and
SENSEMBERTsup on the English ALL test set in Raganato,

11We note that, as for SENSEMBERTsup, BERT k-NN and
LMMS exploit SemCor only to retrieve the sense-annotated con-
texts that are to be fed to a neural language model.
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Model Senseval-2 Senseval-3 SemEval-07 SemEval-13 SemEval-15 ALL

K
B

MFS 72.1 72.0 65.4 63.0 66.3 67.6
Leskext+emb (2014) 74.6 72.7 66.0 66.2 67.8 69.8
UKBgloss (2014) 70.6 58.4 56.6 59.0 62.3 62.1
Babelfy (2014) 74.0 66.7 61.0 66.4 69.9 68.6

Su
p

IMS+emb (2016) 79.0 74.6 71.1 65.9 72.1 71.9
Bi-LSTM (2017) 78.6 72.7 71.1 66.4 73.3 71.6
HCAN (2018) 78.3 73.2 70.9 68.5 73.8 72.6
EWISEConvE (2019) - - - 69.4 - 74.0

Su
p c

o
n
te
x
t context2vec (2016) 78.0 73.1 66.7 65.6 71.6 71.0

LSTM-LP (2016) 79.6 76.3 71.7 69.5 72.8 -
BERT k-NN (2019) 71.7 73.0 72.9 65.6 68.4 69.3
BERT k-NN + MFS (2019) 81.4 76.3 73.6 71.8 74.0 75.5
LMMS (2019) 81.7 78.7 78.0 75.1 78.2 78.0

O
ur

s SENSEMBERT 80.6 70.3 73.6 74.8 80.2 75.9
SENSEMBERTsup 83.7 79.7 79.9 78.7 80.2 80.4

Table 1: Comparison in terms of F1 on the nominal instances of the English WSD test sets in Raganato, Camacho-Collados,
and Navigli (2017). Approaches are grouped by type: i) knowledge-based systems (KB), ii) supervised models for classification
(Sup), iii) supervised models for learning contextual representations of senses (Supcontext), iv) ours (Ours).

Model F1

Gloss 63.9
SEBc 74.5
SEBc ⊕ Gloss 75.3
SEBc | Gloss 75.9

Table 2: Ablation study of SENSEMBERT’s components on
the nouns of the ALL test set in terms of F1.

Camacho-Collados, and Navigli (2017) to see how each of
their components influences the final results.

As one can see from Table 2, the sense gloss embeddings
part alone (Gloss) scores only 63.9 F1 points, meaning that
the information encoded therein is not sufficient for provid-
ing a clear distinction between senses. However, we show
that it is beneficial to SENSEMBERT when used to further
enrich and specialize its contextual representations. In fact,
the sense gloss embeddings and the context-enhanced part
of SENSEMBERT (SEBc) prove to be complementary by
achieving the best F1 score of 75.9 when concatenated to-
gether (SEBc | Gloss)12, increasing the results over the per-
formance of SEBc alone by 1.4 points.

Similarly, in Table 3 we show how the contexts extracted
with SENSEMBERT are also valuable when combined with
the vectors extracted from SemCor. In fact, simply concate-
nating the two representations (SEBc | SemCor) leads to an
increment of 9.9 points over the performance of SemCor
alone and 1.2 points over the concatenation of SemCor with
the glosses. Moreover, we gain an additional boost in perfor-
mance when averaging the sense gloss embedding with the
context part, by achieving 80.4 F1 in our best configuration,
i.e., (SEBc ⊕ Gloss) | SemCor. Therefore, in what follows
we report the results of SENSEMBERT, i.e., SEBc | Gloss
(see Table 2), and SENSEMBERTsup, i.e., (SEBc ⊕ Gloss)
| SemCor (see Table 3).

12We use ⊕ to represent the average of two vectors and | for their
concatenation.

Model F1

SemCor 69.3
SemCor | Gloss 78.0
SEBc | SemCor 79.2
(SEBc ⊕ SemCor) | Gloss 79.6
(SEBc ⊕ Gloss) | SemCor 80.4

Table 3: Ablation study of SENSEMBERTsup’s components
on the nouns of the ALL test set in terms of F1.

6.2 English WSD

We now proceed to testing SENSEMBERT on the fine-
grained English tasks. In Table 1 we report the results of
SENSEMBERT and SENSEMBERTsup and compare them
against the results attained by other knowledge-based and
supervised state-of-the-art approaches on all the nominal
instances of the test sets in the framework of Raganato,
Camacho-Collados, and Navigli (2017).

As one can see, SENSEMBERT achieves the best re-
sults on ALL when compared to other knowledge-based ap-
proaches. These results raise the bar for knowledge-based
WSD by improving the existing state of the art by 6.1
F1 points and indicating that SENSEMBERT is compet-
itive with supervised models as well. In fact, SENSEM-
BERT ranks second only to LMMS and outperforms all
other supervised systems, which, in contrast, rely on sense-
annotated data and dedicated WSD architectures. Moreover,
we show that we are able to surpass, and hence improve, the
existing state of the art by including supervision, i.e., Sem-
Cor, in our approach. In fact, SENSEMBERTsup proves to
be the best system across the board outperforming its com-
petitors on all datasets with an increment of 2.1 points over-
all compared to LMMS, which also uses SemCor.

6.3 WSD on Rare Words and Senses

To investigate further the benefits brought by SENSEM-
BERT, we carried out the evaluation on only those instances
of the test sets which are associated with a rare word or
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Model ALLLFS ALLLFW

LMMS 66.7 76.3
SENSEMBERT 76.9 78.1
SENSEMBERTsup 70.4 81.1

Table 4: Comparison in terms of F1 on nouns and nominal
senses in the ALL dataset not occurring in SemCor.

sense. Therefore, starting from the ALL dataset we created
two additional test sets: i) ALLLFS (Least Frequent Senses),
containing the 812 instances in ALL associated with a gold
sense not occurring in SemCor; ii) ALLLFW (Least Fre-
quent Words), containing the 528 instances in ALL for a
non-monosemous lemma not occurring in SemCor.

In Table 4 we report the performance of SENSEMBERT,
SENSEMBERTsup and LMMS on the two newly-created
test sets. SENSEMBERT outperforms its direct competitor
on both datasets, providing a significant gain of 10.2 F1
points on ALLLFS . This implies that our approach is better
able to generalize over both words and senses as it can pro-
vide diversified contexts, while not being tied to a specific
sense-annotated corpus. LMMS, instead, performs more
poorly when it comes to predicting rare instances. In fact,
even if it provides full coverage of the senses in WordNet, it
computes the representations of the senses not in SemCor by
averaging the embeddings of the senses therein. Hence, it is
biased towards those representations for which sense anno-
tations are provided. In contrast, SENSEMBERTsup demon-
strates that the contexts extracted from Wikipedia aid better
generalization over rare words and senses also when they are
coupled with the information from SemCor, thus allowing it
to outperform LMMS on the ALLLFS datasets by 3.7 F1
points and to achieve the best result on ALLLFW .

6.4 Multilingual WSD

We now test the ability of our approach to build vectors that
are also effective for languages other than English. We recall
from Section 4 that our method covers all the 104 languages
in both BabelNet, BERT and Wikipedia.

In Table 5 we report the results attained by SENSEM-
BERT in the multilingual WSD tasks of SemEval-13 and
SemEval-15. We compare our approach with the existing
state of the art (Bi-LSTMOneSeC) and the embeddings
obtained by replicating the LMMS approach on OneSeC’s
silver data (LMMSOneSeC). While our approach also
proves its consistency on languages other than English,
LMMS loses ground when no manually-curated corpora
are available for the target language. In fact, when boot-
strapped from a fully-automatic resource such as OneSeC,
the performance of LMMS drops heavily on most of the
tested languages, since it is not bulletproof when it comes
to the unavoidable noise that can be found in silver data.
In contrast, not only does SENSEMBERT beat its direct
competitor (LMMSOneSeC) on all test sets by on average
6.6 points, it also sets a new state of the art on all the
languages by performing 2.5 points above the best model
overall.

Model SemEval-13 SemEval-15

IT ES FR DE IT ES

Bi-LSTMOneSeC 68.2 72.0 74.8 75.1 62.5 62.8
LMMSOneSeC 64.6 67.8 69.0 77.1 62.8 49.4
SENSEMBERT 69.6 74.6 78.0 78.0 66.0 64.1

Table 5: Comparison in terms of F1 on the SemEval-2013
and SemEval-2015 multilingual WSD tasks.

The results across different experiments attest the high
quality of our embeddings, showing that our approach is
robust across languages, and hence enables state-of-the-
art multilingual WSD while at the same time relieving the
heavy requirement of sense-annotated corpora.

7 Conclusion

In this paper we presented SENSEMBERT, a novel ap-
proach for creating sense embeddings in multiple languages.
SENSEMBERT proved to be effective both in the English
and multilingual WSD tasks. Indeed, to the best of our
knowledge this is the first time, in the neural network era,
that a knowledge-based approach, employing a 1-NN strat-
egy has succeeded in surpassing most of its supervised com-
petitors and outperforming the state of the art on rare words
and senses. SENSEMBERT’s generalization ability is fur-
ther demonstrated by our multilingual experiments, where
our approach beats all its alternatives, setting a new state
of the art in all the tested languages. Moreover, we show
that our context-rich representations are also beneficial when
coupled with manually-annotated data, hence enabling the
supervised version of SENSEMBERT to surpass the bar of
80% accuracy and leaving all the other approaches behind
with a gap of more than 2.0 points. We release sense embed-
dings in five different languages for all the WordNet nominal
synsets at http://sensembert.org.

As future work, we plan to extend our approach to cover
the other main POS tags, i.e., verbs, adjectives and adverbs,
by exploiting other knowledge resources, such as VerbAtlas
(Di Fabio, Conia, and Navigli 2019) and SyntagNet (Maru
et al. 2019). Moreover, we plan to leverage the sense em-
beddings provided by SENSEMBERT to create high-quality
silver data for WSD in multiple languages.

Acknowledgments

The authors gratefully acknowledge the support of the ERC
Consolidator Grant MOUSSE No. 726487 under the Euro-
pean Union’s Horizon 2020 research and innovation pro-
gramme.

This work was supported in part by the MIUR under grant
“Dipartimenti di eccellenza 2018-2022” of the Department
of Computer Science of the Sapienza University of Rome.

References

Agirre, E.; de Lacalle, O. L.; and Soroa, A. 2014. Random walks
for knowledge-based word sense disambiguation. Computational
Linguistics 40(1):57–84.

8764



Basile, P.; Caputo, A.; and Semeraro, G. 2014. An Enhanced Lesk
Word Sense Disambiguation Algorithm through a Distributional
Semantic Model. In Proc. of COLING, 1591–1600.
Bevilacqua, M., and Navigli, R. 2019. Quasi Bidirectional Encoder
Representations from Transformers for Word Sense Disambigua-
tion. In Proc. of RANLP, 122–131.
Camacho-Collados, J.; Pilehvar, M. T.; and Navigli, R. 2016.
Nasari: Integrating explicit knowledge and corpus statistics for a
multilingual representation of concepts and entities. Artificial In-
telligence 240:36–64.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019. BERT:
Pre-training of deep bidirectional transformers for language under-
standing. In Proc. of NAACL, 4171–4186.
Di Fabio, A.; Conia, S.; and Navigli, R. 2019. VerbAtlas: a Novel
Large-Scale Verbal Semantic Resource and Its Application to Se-
mantic Role Labeling. In Proc. of EMNLP-IJCNLP, 627–637.
Edmonds, P., and Cotton, S. 2001. Senseval-2: overview. In Proc.
of SENSEVAL, 1–5.
Fellbaum, C., ed. 1998. WordNet: An Electronic Database. Cam-
bridge, MA: MIT Press.
Gale, W. A.; Church, K.; and Yarowsky, D. 1992. A method for
disambiguating word senses in a corpus. Computers and the Hu-
manities 26:415–439.
Iacobacci, I.; Pilehvar, M. T.; and Navigli, R. 2016. Embeddings
for word sense disambiguation: An evaluation study. In Proc. of
ACL, volume 1, 897–907.
Kumar, S.; Jat, S.; Saxena, K.; and Talukdar, P. 2019. Zero-shot
word sense disambiguation using sense definition embeddings. In
Proc. of ACL, 5670–5681.
Lacerra, C.; Bevilacqua, M.; Pasini, T.; and Navigli, R. 2020. CSI:
A coarse sense inventory for 85% word sense disambiguation. In
Proc. of AAAI.
Lafon, P. 1980. Sur la variabilité de la fréquence des formes dans
un corpus. Mots. Les langages du politique 1(1):127–165.
Loureiro, D., and Jorge, A. 2019. Language modelling makes
sense: Propagating representations through WordNet for full-
coverage word sense disambiguation. In Proc. of ACL, 5682–5691.
Luo, F.; Liu, T.; He, Z.; Xia, Q.; Sui, Z.; and Chang, B. 2018.
Leveraging gloss knowledge in neural word sense disambiguation
by hierarchical co-attention. In Proc. of EMNLP, 1402–1411.
Maru, M.; Scozzafava, F.; Martelli, F.; and Navigli, R. 2019. Syn-
tagNet: Challenging Supervised Word Sense Disambiguation with
Lexical-Semantic Combinations. In Proc. of EMNLP-IJCNLP,
3525–3531.
Melamud, O.; Goldberger, J.; and Dagan, I. 2016. context2vec:
Learning generic context embedding with bidirectional LSTM. In
Proc. of CoNLL, 51–61.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; and Dean, J.
2013. Distributed Representations of Words and Phrases and their
Compositionality. In Proc. of NIPS, 3111–3119.
Miller, G. A.; Leacock, C.; Tengi, R.; and Bunker, R. 1993. A
semantic concordance. In Proc. of the Workshop on Human Lan-
guage Technology, 303–308.
Moro, A., and Navigli, R. 2015. Semeval-2015 task 13: Multilin-
gual all-words sense disambiguation and entity linking. In Proc. of
SemEval-2015, 288–297.
Moro, A.; Raganato, A.; and Navigli, R. 2014. Entity Linking
meets Word Sense Disambiguation: a Unified Approach. TACL
2:231–244.

Navigli, R., and Ponzetto, S. P. 2012. BabelNet: The automatic
construction, evaluation and application of a wide-coverage multi-
lingual semantic network. Artificial Intelligence 193:217–250.
Navigli, R.; Jurgens, D.; and Vannella, D. 2013. Semeval-2013 task
12: Multilingual word sense disambiguation. In Proc. of Semeval
2013, volume 2, 222–231.
Navigli, R. 2009. Word Sense Disambiguation: A survey. ACM
Computing Surveys 41(2):1–69.
Pasini, T., and Navigli, R. 2017. Train-o-matic: Large-scale su-
pervised word sense disambiguation in multiple languages without
manual training data. In Proc. of EMNLP, 78–88.
Pasini, T.; Elia, F.; and Navigli, R. 2018. Huge automatically ex-
tracted training-sets for multilingual word sensedisambiguation. In
Proc. of LREC, 1694 – 1698.
Pennington, J.; Socher, R.; and Manning, C. 2014. Glove: Global
vectors for word representation. In Proc. of EMNLP, 1532–1543.
Association for Computational Linguistics.
Peters, M. E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.;
Lee, K.; and Zettlemoyer, L. 2018. Deep contextualized word
representations. In Proc. of NAACL, 2227–2237.
Pilehvar, M. T.; Jurgens, D.; and Navigli, R. 2013. Align, dis-
ambiguate and walk: A unified approach for measuring semantic
similarity. In Proc. of ACL, 1341–1351.
Pradhan, S. S.; Loper, E.; Dligach, D.; and Palmer, M. 2007.
Semeval-2007 task 17: English lexical sample, SRL and all words.
In Proc. of Semeval-2007, 87–92.
Raganato, A.; Camacho-Collados, J.; and Navigli, R. 2017. Word
Sense Disambiguation: A Unified Evaluation Framework and Em-
pirical Comparison. In Proc. of EACL, 99–110.
Raganato, A.; Delli Bovi, C.; and Navigli, R. 2017. Neural Se-
quence Learning Models for Word Sense Disambiguation. In Proc.
of EMNLP, 1156–1167.
Scarlini, B.; Pasini, T.; and Navigli, R. 2019. Just “OneSeC” for
Producing Multilingual Sense-Annotated Data. In Proc. of ACL,
volume 1, 699–709.
Snyder, B., and Palmer, M. 2004. The english all-words task. In
Proc. of Senseval 3, 41–43.
Vial, L.; Lecouteux, B.; and Schwab, D. 2019. Sense Vocabu-
lary Compression through the Semantic Knowledge of WordNet
for Neural Word Sense Disambiguation. In Proc. of Global Word-
net Conference.
Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; and Bowman,
S. 2018. GLUE: A multi-task benchmark and analysis platform for
natural language understanding. In Proc. of the EMNLP Workshop
BlackboxNLP, 353–355.
Wang, A.; Pruksachatkun, Y.; Nangia, N.; Singh, A.; Michael, J.;
Hill, F.; Levy, O.; and Bowman, S. R. 2019. SuperGLUE: A stick-
ier benchmark for general-purpose language understanding sys-
tems. CoRR.
Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.; and
Le, Q. V. 2019. Xlnet: Generalized autoregressive pretraining for
language understanding. CoRR.
Yuan, D.; Richardson, J.; Doherty, R.; Evans, C.; and Altendorf,
E. 2016. Semi-supervised word sense disambiguation with neural
models. In Proc. of COLING, 1374–1385.

8765


