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Abstract

Question answering (QA) has achieved promising progress
recently. However, answering a question in real-world sce-
narios like the medical domain is still challenging, due to the
requirement of external knowledge and the insufficient quan-
tity of high-quality training data. In the light of these chal-
lenges, we study the task of generating medical QA pairs
in this paper. With the insight that each medical question
can be considered as a sample from the latent distribution
of questions given answers, we propose an automated med-
ical QA pair generation framework, consisting of an unsu-
pervised key phrase detector that explores unstructured mate-
rial for validity, and a generator that involves a multi-pass de-
coder to integrate structural knowledge for diversity. A series
of experiments have been conducted on a real-world dataset
collected from the National Medical Licensing Examination
of China. Both automatic evaluation and human annotation
demonstrate the effectiveness of the proposed method. Fur-
ther investigation shows that, by incorporating the generated
QA pairs for training, significant improvement in terms of ac-
curacy can be achieved for the examination QA system. 1

Introduction

Due to the remarkable breakthrough of deep learning and
natural language processing, question answering (QA) has
gained increasing popularity in the past few years. Among
QA’s broad application domains, medical QA is one of
the most appealing real-world application scenarios: People
tend to consult others about health-related issues on online
communities, which might be more affordable than visiting
doctors in resource-limited areas.

Although QA systems with deep learning methods have
achieved good performance, medical QA confronts particu-
lar difficulties against other domains. First, medical QA sys-
tem requires highly accurate answers, and thus external and
professional knowledge gathered from various sources are
needed. Second, the size of available high-quality medical
QA pairs is limited, as the labeling process by medical ex-
perts is time-consuming and expensive. Therefore, the per-
formance of medical QA system is further constrained by the

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Our full version paper with supplemented material is publicly
available at https://arxiv.org/abs/1811.00681.

paucity of high-quality QA pairs since it can hardly learn a
good model from limited training data. Though (Roberts et
al. 2017; Pampari et al. 2018) aim to enrich the dataset itself,
but the efforts are still far from enough.

To tackle these difficulties, the generation of medical QA
pairs plays an indispensable role. By automatic generation
of high-quality medical QA pairs, external and professional
knowledge can be incorporated, and the size of training data
can be augmented. Therefore, we study this important task
of medical QA pair generation in this paper. To be more spe-
cific, we assume that each medical answer corresponds to a
distribution of valid questions, which should be constrained
on external medical knowledge. Following this assumption,
with more high-quality QA pairs generated based on the
same knowledge as original QA pairs, the latent distribution
of available medical QA pairs can be supplemented and thus
medical QA system could learn unbiased model easily.

However, the generation of new medical QA pairs based
on original ones is challenging: It is hard to simultane-
ously maintain the diversity and the validity of generated
question-answer pairs. Existing question-answer pair gener-
ation methods (Yang et al. 2017; Song et al. 2018) either
has external context to build upon or (Duan et al. 2017;
Du and Cardie 2018; Yang et al. 2017) focused more on the
word-level similarity, and it may generate lexically similar
question-answer pairs to the original ones. These generated
similar QA pairs are valid but of limited use for allowing the
system to answer questions involving new knowledge. On
the other hand, if more diversity in the discourse/sentence
level is promoted, validity might not be guaranteed.

To ensure the validity of the generated medical QA pairs,
we propose a retrieval and matching method to detect the key
information of QA pairs in an unsupervised way using un-
structured text materials such as patients’ medical records,
textbooks, and research articles.

To promote the diversity of the generated medical QA
pairs while retaining validity, we propose two mechanisms
to incorporate structured, unstructured knowledge for QA
generation. We first explore global phrase level diversity and
validity with a hierarchical Conditional Variational Autoen-
coder (CVAE) framework, which models phrase level re-
lationship in original medical QA pairs, and generates the
new pairs without breaking these relationships. We then pro-
pose a multi-pass decoder, in which all the local components
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Figure 1: Overview of the proposed framework. Note that this question consists of N phrases and this figure shows the process
where we are generating the k-th phrase.

(phrase type, entities in each phrase) are coupled together
and are jointly optimized in an end-to-end fashion.

In order to demonstrate the effectiveness of the proposed
generation method, we evaluate generated medical QA pairs
through qualitative and quantitative measures, and the re-
sults confirm the high-quality of the generated medical QA
pairs. Further, in an application of the proposed method to
a medical certification exam, the experimental results show
that the generated medical QA pairs improve the original
QA system by six percent question-level accuracy.

Methodology

In this section, we introduce our framework for generat-
ing medical question-answer pairs based on existing pairs.
For medical QA, we assume the same answer can be pro-
duced by multiple questions, for example, patients of stiff
neck(+) with pap test(+) or respiratory failure can be diag-
nosed as the disease Japanese encephalitis due to the di-
versity of medical characteristics, while for a specific med-
ical question, there is only one correct answer. Hence, we
view the generating process of medical QA pairs as gener-
ating questions given a certain answer. Technically speak-
ing, our framework for generating medical QA pairs can be
considered as an approximation of the latent distribution of
questions given answers and sampling new questions from
the distribution. As shown in Fig 1, the whole framework
involves a key phrase detector and an entity-guided CVAE
based generator (eg-CVAE), which we describe in detail in
the following subsections. Both the original QA pairs and
the generated ones from our framework will be fed into the
QA system as inputs for training.

Key Phrase Detector

In order to approximate the unknown conditional distribu-
tion of medical questions given answer, we leverage exter-
nal knowledge to exploit the intrinsic characteristics of med-
ical questions that associate with the same answer. Specifi-
cally, every medical question Q consists of several phrases

Pk, k ∈ [1, N ], such as patient’s symptoms, examination
results. Each phrase is composed of several words. Among
medical questions, there exist key phrases highly correlated
with the answers (denoted as P ′k like stiff neck(+) in Fig 1).
To detect the prior key phrases, we employ an unsupervised
matching approach on unstructured medical text. Further-
more, to ensure the consistency of these key phrases in the
generated new questions, we assign each phrase with a nor-
malized significance score sk ∈ [0, 1], which is further used
as the probability of replacing this phrase by the generated
one or not in the generation process.

Rather than considering each phrase separately, we as-
sume that the co-occurrence probability of a key phrase and
answer indicates the significance of that phrase. To explore
this co-occurrence information, we first use each medical
QA pair as query to perform an Elasticsearch2 (Gormley and
Tong 2015) based retrieval over the medical materials. We
also apply rules to ensure the presence of the answer in re-
trieved texts, denoted as Ri, i ∈ [1,M ] (M stands for the
number of retrieved texts). An unsupervised matching strat-
egy is proposed to model the relevance of a certain phrase Pk

with the answer by matching Pk with all the Ri. Specifically,
we divide each Ri into phrases PRi (each phrase contains
multiple words), and represent each PRi and Pk into the
same vector space. To produce that vector, we perform a hi-
erarchical pooling over the word embedding vj , j ∈ [1, L] in
that phrase following (Shen et al. 2018): first, average pool-
ing over vj,j+k−1, j ∈ [1, L−k+1] within each sliding win-
dow (size is k); then, max pooling over the induced average-
pooling vectors. We match every phrase Pk, k ∈ [1, N ] with
the phrase splits PRi,i∈[1,M ] using cosine distance and store
the highest score sRi

k . The unnormalized matching score for
Pk with R is the mean value of sRi

k , i ∈ [1, N ]. These scores
for each phrase Pk in the QA pair will be normalized as the
sk, sk ∈ [0, 1] for final sampling decision with the Min-Max
method. Specifically, in inference , we randomly samples

2https://github.com/elastic/kibana
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Figure 2: Entity-guided CVAE based Generator. In this figure, we illustrate the detailed process to generate current phrasek
based on previous altered phrases1,...,k−1, k+1,N .

p′k ∈ [0, 1]. Then if p′k > sk we will replace Pk with the
generated phrase or retains Pk.

Entity-guided CVAE based Generator

A medical question has two levels of structures: one struc-
ture exists within a single phrase, which is dominated by lo-
cal information of involved medical entities, and the other is
a distinct across-phrase structure, which is characterized by
aspects such as phrase types and the corresponding answer
etc.. We thus explore the answer conditioned medical ques-
tion generation in a two-level hierarchy: sequences of sub-
sequences (iterative phrase generation process), and sub-
sequences of words. Towards modeling the constraint over
the whole question, we first use Conditional Variational Au-
toencoder. Moreover, towards modeling the internal struc-
ture within each phrase, we draw the idea from human’s pro-
cess to generate a complete question (start from a sketch and
then details), and introduce a three-pass decoding process:
first implicit type modeling, then explicit entities modeling,
and finally phrase decoding.

Conditional Variational Autoencoder Motivated by
(Serban et al. 2017), we adapt the original CVAE for dia-
log generation to our setting by considering question gener-
ation as an iterative phrase generation process in Figure 2.
To this end, we represent each phrase generation procedure
with three random variables: the phrase context c, the target
phrase x, and a latent variable z that is used to capture the la-
tent distribution over all valid phrases. For each phrase, c is
composed of both the sequence of other phrases in the ques-
tion and the corresponding answer. We then define the con-
ditional distribution P (x, z|c) = P (x|c, z) · P (z|c) and set
the learning target is to approximate P (z|c) and P (x|c, z)
via deep neural networks (parametrized by θ). We refer to
Pθ(z|c) as the prior network and Pθ(x|c, z) as the target
phrase decoder. Then the generative process of x is sum-
marized as first sampling a latent variable z from Pθ(z|c) (a
parametrized Gaussian distribution.) and then generating x
by Pθ(x|c, z).

The CVAE is trained to maximize the conditional log

likelihood of x given c, meanwhile minimizing the KL di-
vergence between the posterior distribution P (z|x, c) and
a prior distribution P (z|c). We assume that both z fol-
low multivariate Gaussian distribution with a diagonal co-
variance matrix. Further, we introduce a recognition net-
work Qφ(z|x, c) to approximate the true posterior distribu-
tion P (z|x, c). As proposed in (Sohn, Lee, and Yan 2015),
CVAE can be efficiently trained with the Stochastic Gra-
dient Variational Bayes (SGVB) framework (Kingma and
Welling 2013) by maximizing the variational lower bound
of the conditional log likelihood, which can be written as:

L(θ, φ;x, c) = −KL(Qφ(z|x, c)||Pθ(z|c))
+ EQφ(z|x,c)[logPθ(x|c, z)]. (1)

At timestamp k of the whole generation process to pro-
duce a question phrase, the phrase encoder is a bidirectional
recurrent neural network (Schuster and Paliwal 1997) with a
gated recurrent unit (GRU (Chung et al. 2014)) to encode
each phrase Pk into a fixed-size vector by concatenating
the last hidden states of the forward and backward RNN as
[
→
hvk,

←
hvk]. This basic phrase context encoder is a one-layer

GRU network that encodes the N − 1 context phrases (in
training, the context phrases are from the original question;
in testing, the preceding k − 1 phrases are from the gen-
erated question) as hv1:k−1 with hvk+1:N . The last hidden
state hvc of the phrase context encoder is concatenated with
the corresponding answer embedding a and c = [hvc, a].
As we assume z follows an isotropic Gaussian distribution,
the recognition network Qφ(z|x, c) ∼ N(μ, σ2I), the prior
network Pθ(z|c) ∼ N(μ′, σ′2I), and then we get:[

μ
log(σ2)

]
= Wr

[
x
c

]
+ br,

[
μ′

log(σ′2)

]
= MLPp(c). (2)

The reparameterization trick (Kingma and Welling 2013)
that uses formed parameter to treat z as deterministic node is
adopted to get samples from N(z;μ, σ2I) in training (recog-
nition network) and from N(z;μ′, σ′2I) in testing (prior net-
work). The final phrase decoder at timestamp k is a one-
layer GRU network with initial state set as Wk[z, c] + bk.
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The words will be predicted sequentially by the phrase de-
coder.

Phrase-type Augmented Encoder Inspired by (Parvez et
al. 2018)’s insights to facilitate text generation with entity
type, we similarly introduce phrase type in the medical do-
main as a similar source of structural information (the in-
tuition behind specific phrases such as lab examination and
physical characteristics employed by doctors). Rather than
focusing on word level, we assume each phrase information
involves two levels of characteristics: 1) global character-
istic as the surrounding or context phrases’ type informa-
tion; 2) local characteristic as entity type knowledge within
each phrase. Moreover, to address the difficulty of acquiring
labeled data from experts, we propose to directly utilize a
structured entity dictionary and model the phrase type in a
contextualized way following (Peters et al. 2018).

To this end, we design a sequence labeling task for pre-
training, whose learning goal is to predict each word’s type
(for those words not in the entity dictionary, the type is con-
sidered as “other”) over the whole question.

A Bi-LSTM-CRF model, which takes each word’s em-
bedding in the question as input and their types as output, is
applied in the pre-training task. We use Bi-LSTM layer to
encode word-level local features, and CRF layer to capture
sentence-level type information. As the pre-training task’s
accuracy can achieve 97.08%, we assume that the hidden

states of Bi-LSTM for each word k as hk[
→
hk,

←
hk] can en-

code the contextualized type information. Considering that
each phrase can be split into multiple words, the phrase
type information is introduced by performing max-pooling
over each word’s hk. We then concatenate contextualized
type vector tk at timestamp k to generate phrase type vector
hv′k = [hvk, tk] for Pk (clustering as 6 T∗ in Figure 2). tk
is pre-trained through the sequence labeling task, and differ-
ent for each timestamp of the whole generation procedure.
The new x′ = hv′k will be then applied for the recognition
network.

Entity-guided Decoder Other than only conditioning on
the corresponding answer, we introduce extra constraints
on latent z to keep it meaningful during decoding process.
Drawn the insights from the process of human generating
a complete question (start from a sketch and then details)
in (Xia et al. 2017), we propose a multiple pass decoding
procedure to incorporate inter-phrase level and intra-phrase
level information as constraints. We thus model the contex-
tualized type t, which is imposed by the entity dictionary, at
the first pass to ensure the consistency of type information
across phrases. We then conjecture entities to be the skele-
ton within each phrase, and explicitly model entities e at the
second pass. We promote diversity in our generation process
by adding entity-level variation during inference, allowing
the production of phrases with similar semantics towards the
same answer but containing diverse entities.

We assume that the generation of phrase Pk as x de-
pends on c, z, t and e; e relies on c, z, t; and t relies on
c, z. During training, the initial state of the final decoder
is dk = Wk[z, c, t, e] + bk and the input is [w1:nk , t, ek]

where w1:nk is the word embedding of words in x and
ek is average pooling embedding of the entire entity em-
bedding in x. In the first type-prediction pass, there is an
MLP to predict t′ = MLPt(z, c) based on z and c. In the
second entity-prediction pass, another MLP is used to pre-
dict esoftmax′ = MLPe(z, c, t) based on z, c and t. Then
esoftmax′ is multiplied with the whole entity embedding ma-
trix for the aggregation of the e′k. In the testing stage, the
predicted t′ and e′k are used in the final phrase decoder.

Training Objective

To induce meaningful latent variable z, we explicitly model
the generation of x as a multi-pass process, which might re-
lieve the posterior collapse problem (He et al. 2019) moti-
vated by (Zhao, Zhao, and Eskenazi 2017) in enriching the
information in posterior distribution of z with dialog actions.

Specifically, by introducing phrase-type information in
the first pass, we suppose that the generation of x is based
on c, z and t, where t is based on c. Then the modified vari-
ational lower bound for eg-CVAE without entity modeling:

L(θ, φ;x, c, t) = −KL(Qφ(z|x, c, t)||Pθ(z|c))
+ EQφ(z|x,c,t)[logPθ(t|c, z)]
+ EQφ(z|x,c,t)[logPθ(x|c, z, t)].

(3)

To refine phrase-type information into detailed entities in
the second pass, we model e explicitly based on the assump-
tion that the produce of x is divided into two phases: ex-
ploiting phrase-type to generate e; and using e, t, c and z to
generate x. Thus the final eg-CVAE model is to maximize:

L(θ, φ;x, c, t, e) = −KL(Qφ(z|x, c, t, e)||Pθ(z|c))
+ EQφ(z|x,c,t,e)[logPθ(t|c, z)]
+ EQφ(z|x,c,t,e)[logPθ(e|c, z, t)]
+ EQφ(z|x,c,t,e)[logPθ(x|c, z, t, e)].

(4)

Furthermore, the KL annealing (Serban et al. 2016b) tech-
nique as gradually increasing the weight of the KL term
from 0 to 1 during training and auxiliary bag-of-words loss
of x as in (Zhao, Zhao, and Eskenazi 2017) are also adopted.

Experiments

Dataset

To validate the effectiveness of the proposed method, we
collect real-world medical QA pairs from the National Med-
ical Licensing Examination of China (denoted as NM-
LEC QA). The collected NMLEC QA dataset contains
18, 798 QA pairs, and we generate new QA pairs based on
these original ones. We adopt NMLEC 2017 as the test set to
evaluate the QA system, which will not be used in QA pair
generation. The medical entity dictionary is extracted from
medical Wikipedia-style pages3, and the constructed dictio-
nary covers 19 types of medical entities. The unstructured
medical materials consists of 2, 130, 128 published paper in
medical domain and 518 professional medical textbooks.

3http://www.xywy.com/
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Table 1: Performance comparison under automatic evaluation metrics.

Method
BLEU BOW Embedding intra-dist inter-dist

Precision Recall F1 Average Extreme Greedy dist-1 dist-2 dist-1 dist-2

HRED 0.435 0.737 0.547 0.753 0.705 0.809 0.837 0.912 0.205 0.255
VHRED 0.454 0.705 0.533 0.863 0.872 0.887 0.803 0.991 0.562 0.538

type-CVAE 0.507 0.748 0.572 0.872 0.852 0.892 0.831 0.997 0.555 0.581
entity-CVAE 0.541 0.781 0.613 0.891 0.903 0.874 0.840 0.996 0.533 0.554

eg-CVAE 0.450 0.611 0.494 0.802 0.793 0.819 0.867 0.994 0.637 0.589

Baselines

We compare the performance of the proposed method eg-
CVAE with two recently-proposed text generation methods:
HRED (Serban et al. 2016a), a sequence-to-sequence model
with a hierarchical RNN encoder, and VHRED (Serban et
al. 2017), a hierarchical conditional VAE model. We also
test the contribution of the multiple steps of our decoder of
type modeling or entity modeling process: type-CVAE with
type decoding as the only-pass, and entity-CVAE with entity
decoding as the only-pass.

Evaluation based on Automatic Metric

Automatically evaluating the quality of generated text re-
mains challenging (Liu et al. 2016), and thus we design au-
tomatic evaluation metrics for our specific scenario. As men-
tioned above, we assume that each QA pair can be consid-
ered as a question sampled from a latent answer-conditioned
distribution. Based on each original question-answer pair,
we generate N new questions by iteratively sampling can-
didate phrases determined by each si and choosing phrases
using beam search (Sutskever, Vinyals, and Le 2014). As
the generation procedure is at the phrase-level, we evaluate
each generated question by comparing the generated phrases
with the original and averaging evaluation results over all the
phrases in the questions.

We adopt the following three standard metrics to measure
the quality of the generated questions from lexical, semantic
and diversity perspectives.

• Smoothed Sentence-level BLEU (Papineni et al. 2002;
Chen and Cherry 2014): BLEU is a popular metric to
measure the geometric mean of modified n-gram preci-
sion with a length penalty. As N new questions are gener-
ated, we define the n-gram precision and n-gram recall as
the average and the maximum value of N n-gram BLEU
scores respectively. We use 3-gram with smoothing tech-
nique, and BLEU scores are normalized to [0, 1].

• Cosine similarity of Bag-of-words (BOW) embeddings:
a metric matches phrase embeddings through the aver-
age, extreme or greedy strategy over all the word embed-
dings in the phrases (Forgues et al. 2014; Rus and Lin-
tean 2012). The score is the cosine distance between the
two produced vectors. We used pretrained embeddings 4

4Implementation details are in supplementary material. Aver-
age: cosine similarity between the averaged word embeddings; Ex-
trema (Forgues et al. 2014): cosine similarity between the biggest
extreme values among the word embeddings of the two phrases;

and denote the three metrics as “Average”, “Extreme” and
“Greedy”.

• Distinct (Gu et al. 2018): a metric computes the diver-
sity of the generated phrases. The ratio of unique n-grams
over all n-grams in the generated phrases is denoted as
distinct-n. We further define intra-dist as the average of
distinct values within each sampled phrase and inter-dist
as the distinct value among all sampled phrases.

We compare the proposed method eg-CVAE with the
aforementioned baselines on the collected real-word NM-
LEC QA dataset, and report the experiment results in Table
1. The highest score in each column is in bold for clarity. In
the following, we discuss the results in details.

First, we examine the results in terms of similarity using
BLEU and BOW metrics. Our proposed method eg-CVAE is
designed to promote diversity, and thus the semantic similar-
ity score is not that high. The vanilla CVAE-based VHRED
does not involve any constraint on the latent distribution of
z, and the HRED (Serban et al. 2016a) models the decod-
ing process in a definite way without further manipulation
on the hidden context, so their semantic similarity scores
are medium. A variant of the proposed method type-CVAE
models prior type information, and another variant entity-
CVAE models entity explicitly. These constraints facilitate
models to generate more similar QA pairs to the original.

On the other hand, from the view of diversity, the pro-
posed method eg-CVAE has the highest score over distinct
metrics. This is because that we hierarchically generate new
questions based on the latent answer-conditioned distribu-
tion, rather than a definite decoding process. As pointed out
in (Serban et al. 2017), this hierarchical strategy can prevent
diversity being injected at the low level.

Human Evaluations 5

Following (Li et al. 2018), we further conduct human eval-
uation on 10% samples from NMLEC QA training dataset
and the corresponding generated QA pairs by our methods
and baselines. Three experts (real doctors) were asked to as-
sess each QA pair from three perspectives: 1) Consistent:
How consistent the generated QA is compared with the orig-
inal one? 2) Informative: How informative the generated QA

Greedy (Rus and Lintean 2012): matching words in two phrases
greedily based on their embeddings’ cosine similarity and averag-
ing the obtained scores.

5We also propose a reusable method for evaluation using human
annotation of key phrases in supplementary material.
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Table 2: Human evaluation results.∗ indicates the difference
between eg-CVAE and other baselines are statistically sig-
nificant (p < 0.01) by two-tailed t-test.

Method Consist. Informat. Fluency

HRED 3.68∗ 3.38∗ 3.93∗
VHRED 2.79∗ 3.52 3.79∗

type-CVAE 3.53∗ 3.42 4.03∗
entity-CVAE 3.68∗ 3.38∗ 4.08∗

eg-CVAE 4.09 3.62 4.43

is against the original one? 3) Fluent: How fluent the phrases
of a generated question are? Each perspective is assessed
with a score from 1 (worst) to 5 (best). The average results
are presented in Table 2.

The results show that our model consistently outperforms
the seq2seq-baseline model (HRED) and the vanilla CVAE-
based method (VHRED). The type-level and entity-level
modelings of medical questions make the key information
consistent. The prior information from these two levels of
modeling also ensures the good ability of our model to gen-
erate informative and fluent questions.

Moreover, the implicit type-level modeling via aggregated
embedding introduces more variance but less consistence
against explicit entity-level modeling via concrete entities,
which inspires us to combine them together in the eg-CVAE.

Qualitative Analysis

To further qualitatively analyze the proposed method
through real cases, we compare the generated QA pairs from
different models in Figure 3. Each example consists of an
original valid QA pair and three generated questions, which
are sampled based on the raw one through beam-search. We
can clearly see our eg-CVAE retains both one-to-many di-
versity property and validity of each phrase’s generation.

We compared three models here including HRED, CVAE
and eg-CVAE.6 For HRED, we can observe that the gen-
erated questions’ diversity is limited since the model tends
to repeat the seed phrases (e.g., the meaningless repetition
of “RBC” and “anxiety”) and the important information de-
scribing topographic shape (e.g., “lower than” in “HB is
lower than normal”) is lost. On the contrary, CVAE ex-
plores the discourse-level diversity but ambiguous phrases
like “wbc 3.45 × 1012/l” in Q1, which indicates potential
inflammation rather than anemia, are often generated in a
key place. Similarly, in Q3 from CVAE “sudden fever after
menstruation, discomfort” in most cases indicates endocrine
disorders rather than anemia.

For eg-CVAE, we can see it explores discourse-level di-
versity by generating symptoms like “whitish complexion”
in Q1 that are not existing in the Q. In terms of the validity,
the generated imperative semantics of the non-key phrases
are consistent with the implicit semantics of the original
questions of anemia. For example, although the semantics

6We include detailed case comparison between eg-CVAE, type-
CVAE and entity-CVAE in supplementary material.

Table 3: Usefulness of the generated QA pairs. ∗ indicates
difference between the original setting and the new setting
is statistically significant (p < 0.01). 7

Dataset Accuracy

Original 61.97
+ HRED QA 58.78

+ VHRED QA 62.28
+ type-CVAE QA 65.27∗

+ entity-CVAE QA 64.67∗
+ eg-CVAE QA 67.96∗

of “the poor face”, “anxious” and “whitish complexion” in
Q and Q3, Q1 are different, they does not influence on the
overall diagnosis of “anemia”. The generated “the normal
systolic blood pressure” and “normal liver” do not affect the
judgment of “anemia” as they are normal body signal, too.

Evaluation on a QA System

To further study the usefulness of the generated medical QA
pairs, we integrate such generated pairs into a QA system,
which is an attention-based model (Cui et al. 2017) for NM-
LEC QA dataset. The results are summarized in Table 3.

For baseline methods, integrating the generated QA pairs
from HRED hurts the accuracy without augmented data. As
pointed out in (Serban et al. 2017), HRED is very likely
to favor short-term predictions instead of long-term predic-
tions. As shown in Figure 3, rather than globally considering
context phrases to generate a meaningful phrase for the cur-
rent slot, HRED tends to repeat the predicted correct word.
The lack of diversity and repeat of common words lead to
the discrepancy in the generated questions’ distribution and
the original one, which may cause the degradation and intro-
duce noise to the original dataset. From the results of vanilla
CVAE-based VHRED, we can see that the improvement ex-
its but is marginal. we presumes that is because the lack of
constraint on the latent distribution leads to weak guidance
from the corresponding answer and the unlabeled textbook
for generated questions from VHRED.

Two variants of the proposed method, entity-CVAE and
type-CVAE, generated QA pairs that boost the original QA
system with 3-4% accuracy. Each of them introduces exter-
nal constraints on the latent variable in the decoding phase,
which may help to diversify the generated questions while
keeping linguistic and structural relationships within origi-
nal questions. Furthermore, type-CVAE generates QA pairs
that seem to be more helpful to the QA system. This bene-
fit may come from the modeling of type information, which
allows the generated questions to be relatively more diverse
and thus introduces more useful knowledge. The proposed
method eg-CVAE combines the advantages of entity-CVAE
and type-CVAE, building a three-pass decoding process, and
thus improves the QA system to achieve the highest accu-
racy. These observations further demonstrate the usefulness
of the generated medical QA pairs by eg-CVAE.

7We calculate statistical significance based on the bootstrap test
in (Noreen 1989) with 10k samples.
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Figure 3: Case study for generated QA pairs of different methods (the key phrases in original QA pair are in bold)

Related Work

Question Generation (Heilman and Smith 2010) has at-
tracted increasing attention in recent years. However, most
existing work only focuses on the similarity of generated
questions with the original ones, but ignores the usefulness
in training a QA system of generated questions given an-
swers. Earlier work in question generation employed rule-
based approaches to transform input texts into correspond-
ing questions, usually requiring some well-designed general
rules (Mitkov and others 2003), templates (Labutov, Basu,
and Vanderwende 2015) or syntactic transformation heuris-
tics (Ali, Chali, and Hasan 2010). Recent studies leveraged
neural networks to generate questions in an end-to-end fash-
ion. (Du, Shao, and Cardie 2017) applied the attention-based
sequence-to-sequence model to generate questions in the
context of reading comprehension. In medical QA, (Roberts
et al. 2017; Pampari et al. 2018) targets the same problem as
us from the dataset angle. (Walonoski et al. 2017) is similar
to us, but they focus on the state transition of patient records.

Other existing work, which tackles the usefulness and
models the question-answer pair generation directly, still
sets the diversity of questions for the corresponding answer
aside and requires related context in prior. (Serban et al.
2016b) applied the encoder-decoder framework to generate
question-answering pairs from built knowledge base triples.
(Subramanian et al. 2018) formulated the question-answer
pair generation in reading comprehension, where each pair
will be given one high-quality context and the answer is a
text span of the context, separately with the answer detection
and question generation problem. (Wang et al. 2017) lever-
aged policy gradient techniques to further improve the gen-
eration quality. Coreference knowledge is also introduced
for question-answer pair generation from Wikipedia articles
with the context in (Du and Cardie 2018). (Duan et al. 2017)
investigated integrating generated questions from given con-

text to the question-answering system on sentence selection
tasks, which leveraged both rule-based features and neural
networks to approximate the semantics of generated ques-
tions with original ones. (Yang et al. 2017; Song et al. 2018)
also leveraged the generated QA for QA system. But they all
have the external context in SQuAD (Rajpurkar et al. 2016)
to build upon, which does not exist in our medical setting.

Compared to existing work, our work introduces struc-
ture information of QA pairs generation in medical domain,
which does not involve any prior context. To ensure the
validity of generated QA pairs, we proposed an unsuper-
vised detector to automatically explore external materials.
We also proposed to model the question-answer pair gener-
ation problem directly as approximating the latent distribu-
tion of medical questions with the corresponding answer.

Conclusions

In this paper, we introduced a novel framework, consisting
of an unsupervised key phrase detector and an Entity-guided
CVAE-based generator, for automated question-answer pair
generation in the medical domain. Different from existing
seq2seq models that involve a definite encoding-decoding
procedure to restrict the generation scope, or traditional
CVAE models that directly approximate the posterior dis-
tribution over the latent variables to a simple prior, the pro-
posed method models the generation process as a multi-pass
procedure (type, entity and phrase as constraints over the
latent distribution) to ensure both validity and diversity. Ex-
periments on a real-world dataset from the National Medical
Licensing Examination of China demonstrate that the pro-
posed method outperforms existing methods and can gen-
erate more diverse, informative and valid medical QA pairs
that further benefit the examination QA system. We will in-
vestigate more on the generalizability of proposed method
on standard dataset like SQuAD (Rajpurkar et al. 2016) and
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its integration with popular pretrained model (Devlin et al.
2019) in the future work.
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