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Abstract

Several studies in linguistics and natural language processing
(NLP) pointed out systematic correspondences between word
form and meaning in language. A prominent example of such
systematicity is iconicity, which occurs when the form of a
word is motivated by some perceptual (e.g. visual) aspect of
its referent. However, the existing data-driven approaches to
form-meaning systematicity modelled word meanings rely-
ing on information extracted from textual data alone. In this
paper, we investigate to what extent our visual experience ex-
plains some of the form-meaning systematicity found in lan-
guage. We construct word meaning representations from lin-
guistic as well as visual data and analyze the structure and
significance of form-meaning systematicity found in English
using these models. Our findings corroborate the existence of
form-meaning systematicity and show that this systematicity
is concentrated in localized clusters. Furthermore, applying
a multimodal approach allows us to identify new patterns of
systematicity that have not been previously identified with the
text-based models.

1 Introduction

Linguistic arbitrariness refers to the notion that there are no
structural ties between words and their meanings. The con-
cept of arbitrariness has been at the foundation of numerous
linguistic theories ever since its introduction in the field of
linguistics by Ferdinand de Saussure in 1916 (De Saussure
and Baskin 1916). In The Origin of Speech, for example,
Charles Hockett (1960) argued that arbitrariness in “the ties
between meaningful message-elements and their meaning”
is a universal feature of human language, and a necessary
condition for extensive and flexible communication (Hock-
ett and Hockett 1960). Gasser (2004) introduced a formal-
ized notion of arbitrariness as the absence of iconicity (i.e.
direct similarity relations between word form and meaning).
He argued that iconicity can facilitate early language ac-
quisition since it reduces the information required to learn
form-meaning mappings. However, when a language be-
comes more extensive, iconicity limits the available space
for new words, i.e. the number of forms that can be related
to a meaning. This limitation of space causes overlap be-
tween the forms used for different meanings, and therefore
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leads to ambiguity. This ambiguity hinders language acqui-
sition by obscuring form-meaning relations. Based on for-
mal simulations Gasser therefore reached the same conclu-
sion as Hockett: arbitrariness is a fundamental property of
extensive languages (Gasser 2004).

However, linguists have long noted exceptions to arbi-
trariness. For instance, vowels with high acoustic frequency
tend to be associated with smallness, while vowels with
low acoustic frequency tend to be associated with largeness
(Ohala 1984). Onomatopoeic words (e.g. ‘bark’, ‘cling’,
‘clang’, ‘slurp’) directly echo the sound of their referent.
Phonaesthemes are another counterexample to arbitrariness
in language. They represent phonetic clusters that occur in
words with related meanings. For instance, numerous En-
glish words that start with ‘sn-’ are related to the nose
and mouth (e.g. ‘snore’, ‘snorkel’, ‘sniff’, ‘snout’, ‘snot’).
Otis (2008) statistically confirmed the existence of 27 of
such phonaesthemes in English, while research into the psy-
chological reality of phonaesthemes found that native En-
glish speakers perceive as many as 46 (Hutchins 1999).
While these studies point towards localized clusters of non-
arbitrariness, they do not address the role of arbitrariness in
a language as a whole. Richard Shillcock (2001) first used
distributional semantics to analyze the significance of ar-
bitrariness in the English language, by correlating the dis-
tance between distributional semantic vectors with ortho-
graphic distance. This approach has been further developed
by Monaghan et al. (2014) and Gutierrez et al. (2016). All
three studies found a small but statistically significant cor-
relation between form and meaning. However, Monaghan
et al. (2014) found systematicity to be diffusely distributed
across language, while Gutierrez et al. (2016) found system-
aticity to be concentrated in localized phonological clusters.

The semantic vectors used to represent word meaning in
these three studies are based on word usage in textual cor-
pora. However, research into grounded cognition suggests
that simulations of visual, auditory and other sensorimotor
stimuli play a substantial role in language comprehension
(Barsalou 2008).

For instance, Gernsbacher et. Al (1990) found that in-
dividuals abilities for comprehending events visually ver-
sus verbally were highly correlated. More recently, research
into our cognitive capacities for text representation (Zwaan
and Madden 2005; Fincher-Kiefer and D’Agostino 2004)
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has supported the theory that readers construct visual sim-
ulations to represent text. Furthermore, Fincher-Kiefer and
D’Agostino found that language comprehension is influ-
enced by whether interfering or noninterfering visual in-
formation is maintained in working memory while read-
ing. These findings have motivated the development of mul-
timodal semantic models (Bruni, Tran, and Baroni 2014;
Kiela and Bottou 2014), in which vector representations of
words are not merely based on their usage in textual corpora,
but also on visual and auditory data. Previous research on ar-
bitrariness (Ohala 1984; Gutiérrez, Levy, and Bergen 2016;
Gasser 2004) has also identified systematic relations be-
tween word form and visible properties of the correspond-
ing referents in their qualitative analyses. Furthermore, neu-
rological and behavioral research has shown that visual in-
formation plays a role in semantically representating words
in human cognition (Barsalou 2008; Zwaan and Madden
2005). This suggests that by incorporating visual infor-
mation into semantic representations, more insight can be
gained into the systematic relations between form and mean-
ing that exist in language.

In this paper, we propose the first multimodal approach to
linguistic arbitrariness, extending the method of Gutierrez et
al (2016) by incorporating visual features into semantic rep-
resentations. We use a text-based model trained using Skip-
gram with negative sampling (Mikolov et al. 2013), and con-
struct an image-based model using a convolutional neural
network (CNN). We first analyze form-meaning systematic-
ity using the text-based and image-based models separately.
We then combine the two models into three seperate mul-
timodal models using scoring-level fusion, dimensionality
reduction and concatenation, and multimodal fusion using a
neural network. Experimenting on the English lexicon, we
find that the inclusion of visual features allows us to identify
more form-meaning systematicity than when using a text-
based model alone. Furthermore, the multimodal model dis-
covers different relations between form and meaning than
the two monomodal models, and identifies multiple novel
phonaesthemes.

2 Related work

2.1 Data-driven approaches to form-meaning
systematicity

Shillcock et al. (2001) were the first to quantify the sig-
nificance of form-meaning systematicity in a lexicon by
computing the correlation between phonological and seman-
tic distances of English monosyllabic words. They found a
small but statistically significant correlation. Additionally,
they calculated this same correlation after omitting each in-
dividual word from the dataset to determine the systematic-
ity of that word. The extent to which the correlation de-
creased after omitting the word was taken as a measure of
the word’s systematicity. They found that many of the words
deemed systematic by this method tend to be communica-
tively important.

In a subsequent study, Monaghan et al. (2014) made use
of the Mantel test for pairwise distances (Mantel 1967) to
compute the correlation between form and meaning. Similar

to Shillcock et al. (2001), they found a small (r = 0.016)
but statistically significant correlation. Furthermore, they
found comparable correlations using different distance met-
rics, emphasizing the robustness of the results. Using the
same methods for evaluating the systematicity of individ-
ual words as Shillcock et al., they found that systematicity
is not concentrated in localized clusters, but is a property of
language as a whole.

The aforementioned study of Gutierrez et al. (2016) ex-
panded on the methods of Shillcock et al (2001) and Mon-
aghan et al. (2014). Instead of using phonological edit dis-
tances, they analyzed edit distances between orthographic
strings in English monomorphemic words. They optimized
weights to represent the difference in semantic relevance
between string edits. Furthermore, they proposed a new
method for evaluating the systematicity of individual words:
assessing the extent to which their semantic vectors can be
predicted based on their strings. Edit weight optimization
increased the resulting correlation between word form and
meaning (from r = 0.0194 to r = 0.0464). Furthermore, using
their new evaluation method for the systematicity of individ-
ual words Gutierrez et al. found numerous localized clusters
in which systematicity is concentrated. This contradicted the
conclusion of Monaghan et al. (2014) that systematicity is
diffusely distributed across language.

A different approach was developed by Liu et. al (2018),
who implemented linear regression to directly predict se-
mantic vectors from binary feature vectors that encode the
submorphemes occuring in a word. They used sparse regu-
larization to select semantically relevant features, resulting
in a list of 30 phonaesthemes. In addition, they introduced
a two-step model in which the components of semantic vec-
tors that are predictable from morpheme-level information
are removed, enabling the use of polymorphemic words in
the lexicon. However, while this is an effective method for
identifying form-meaning relations, it does not provide a
measure for the significance of form-meaning systematicity
within the lexicon as a whole.

2.2 Multimodal semantic models

All of the above corpus-wide studies on form-meaning sys-
tematicity (Gutiérrez, Levy, and Bergen 2016; Monaghan et
al. 2014; Shillcock et al. 2001) were performed using dis-
tributional semantic models in which word meanings were
approximated by vectors that represent their usage in tex-
tual corpora. This approach is based on the distributional
hypothesis, which states that words that occur in similar
contexts are semantically similar (Harris 1970; Wittgen-
stein 1953). However, recent research has shown that mul-
timodal semantic models that learn from both linguistic and
visual data outperform the purely text-based models on tasks
such as word categorization (Bruni, Tran, and Baroni 2014;
Kiela and Bottou 2014), lexical entailment (Kiela et al.
2015), modelling compositionality (Roller and Schulte im
Walde 2013) and metaphor identification (Shutova, Kiela,
and Maillard 2016). The currently best-performing method
for constructing image-based word vectors extracts visual
features from images using convolutional neural networks
(Kiela 2016). In order to use a CNN for visual feature
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extraction, it is pre-trained on an image-classification or -
regression task on a large labeled dataset such as ImageNet
(Russakovsky et al. 2015). Subsequently, it is applied to im-
ages that represent the words for which visual vectors are to
be extracted. The layer preceding the final softmax classifi-
cation layer is then extracted and stored as a vector repre-
sentation of the image. A visual vector for a given word is
constructed by combining the vectors of all relevant images
(Kiela and Bottou 2014).

Several methods have been developed for combining lin-
guistic and visual information into a multimodal model.
Leong and Mihalcea (2011) have developed an approach
that has been later referred to as scoring-level fusion. They
used distinct text-based and image-based models to compute
word relatedness, and combined similarity scores from these
monomodal models by taking the sum or harmonic mean.
The resulting hybrid similarity measures outperformed both
text- and image-based models used in isolation. A more ex-
tensive approach for combining multimodal data into a sin-
gle model is feature-level fusion, in which semantic repre-
sentations from different modalities are combined in the fea-
ture space to create multimodal vectors (Bruni, Tran, and
Baroni 2014; Kiela and Bottou 2014). Features from dif-
ferent modalities can be concatenated into a single matrix
and projected onto a common space using a form of dimen-
sionality reduction. Even more flexible construction of mul-
timodal features can be achieved using deep learning meth-
ods. By concatenating the features from multiple modalities
and feeding them to a supervised classifier, semantic repre-
sentations can be learned that are fit to a specific task. This
type of fusion has been implemented using various learning
structures such as traditional neural networks (Poria, Cam-
bria, and Gelbukh 2015) and Deep Belief networks consist-
ing of stacked Restricted Boltzmann Machines (Kim, Lee,
and Provost 2013; Ngiam et al. 2011).

3 Methods

3.1 String metric learning for kernel regression

Following the methodology of Gutierrez et al (2016), we use
a kernel regression framework to analyze form-meaning sys-
tematicity. Kernel regression is a nonparametric supervised
learning technique that is widely used for pattern detection
problems. Data samples are defined by predictor variables
as well as target variables. Target variable values for indi-
vidual data samples are predicted based on their distance in
predictor variables to other data samples, for which the tar-
get variables are known. This enables the model to capture
local structures in the data, in contrast to parametric models
that generally provide a more global fit (Takeda, Farsiu, and
Milanfar 2007).

We implement the linear Nadaraya-Watson estimator
(Nadaraya 1964). Given a set of N data points {xi}Ni=1 with
target values {yi}Ni=1, the Nadaraya-Watson estimator for a
data sample xj defined as follows:

ŷ(xj) =

∑
i �=j kij ∗ yj∑

i �=j kij
, (1)

where kij is the kernel between data points i and j, computed
using a kernel function that penalizes distance in predictor
variables between two samples. We implement the following
exponential kernel function:

k(xi, xj) = exp(−d(xi, xj)/h). (2)
The variable h specifies a bandwidth that determines the ra-
dius of the neighborhood in which data samples effectively
contribute to each other’s prediction. The distance metric d
defines the distance in predictor variables between data sam-
ples.

We use this framework to predict semantic vectors of
words based on their strings, which function as predic-
tor variables. Following previous research (Nosofsky 1986;
Gutiérrez, Levy, and Bergen 2016), we use Levenshtein edit-
distance as a distance measure (Levenshtein 1966). The dis-
tance between two strings is measured as the minimum num-
ber of edits needed to transform one string into another. An
edit is a mutation, insertion or deletion of one letter. We
choose to use Levenshtein edit-distance over phonetic dis-
tance to avoid noise resulting from sound shifts between En-
glish dialects. In order to avoid this noise, a phonetic apprach
would need to involve a corpus curated to include texts from
a single dialect. Since previous research has indicated that
string-edits differ in their semantic relevance (Gil et al. 2005;
Gutiérrez, Levy, and Bergen 2016), we optimize a weight
matrix for string-edits by minimizing the mean squared er-
ror (MSE) of kernel regression using gradient descent. The
error is computed as:

L =
N∑

i=1

((yi − ŷi)
T (yi − ŷi)). (3)

Following Gutierrez et al. (2016), we refer to this method
as string metric learning for kernel regression (SMLKR).
Since all weights are set to minimize the MSE, SMLKR
computes weights that in the process optimize the bandwidth
variable h.

To implement SMLKR, the edit paths between strings are
stored as vectors V , in which each dimension represents
one type of string edit (e.g. substituting an ’a’ for a ’b’, or
deleting a ’t’), as shown in Figure 1. Substitutions are repre-
sented symmetrically so that opposite substitutions share the
same semantic significance. Furthermore, the weights are
bounded between 0 and infinity, since negative weights for
string-edits imply that an edit negatively contributes to the
distance between two strings (Gutiérrez, Levy, and Bergen
2016).

The edit-vectors V are multiplied with a weight-vector
W of the same size S, resulting in a single weighted edit-
distance for each pair of strings. This can be formally stated
as follows:

d(si, sj) =

S∑

s=1

(Ws ∗ Vijs) = WTVij . (4)

We can now compute the gradient of MSE as follows:

∂L
∂W

=
∂L
∂ŷi

∗ ∂ŷi
∂W

. (5)
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Figure 1: Mutation vector between ’boot’ and ’bee’
(Gutiérrez, Levy, and Bergen 2016)

Where the partial derivatives are:

∂L
∂yi

=
2

N
∗

N∑

i=1

(yi − ŷi) (6)

∂ŷi
∂W

=

∑
j �=i(yj − ŷi)

T kijvij∑
j �=i kij

. (7)

Analyzing form-meaning systematicity After we opti-
mize the weights for string-edits we correlate the weighted
Levenshtein distances with semantic distances to quantify
the significance of form-meaning systematicity in the lexi-
con. We compute correlations using the Mantel test (Mantel
1967). This test computes the Pearson correlation between
two distance-matrices in which entries on the same indexes
are paired. Subsequently, both matrices are subjected to ran-
dom permutations, after which the same correlation is com-
puted. The proportion of permuted matrix-pairs that display
a higher correlation than the initial two matrices is computed
as p-value. This represents the probability that the measured
correlation is found in a language corpus under the null hy-
pothesis that form-meaning relationship is arbitrary.

The optimized distance-metric is also used to predict se-
mantic representations of words based on their strings. Fol-
lowing Gutierrez et al. (2016), we take the extent to which
the semantic vector of a word can be predicted as a mea-
sure of its systematicity. Under this assumption, we ana-
lyze the kernel regression error for words containing pos-
sible phonaesthemes. We compare the average error of all
words belonging to a single phonaestheme, with the aver-
age error of 1000 random samples of equal size. The portion
of random sets with a lower mean error is assigned to the
investigated phonaestheme as a p-value. This represents the
probability of a set of words displaying the identified sys-
tematicity, under the null hypothesis that phonaesthemes do
not exist in the lexicon (Gutiérrez, Levy, and Bergen 2016).

3.2 Semantic representations

Lexicon We construct semantic representations for all
words in a lexicon of English monomorphemes. We use
the same lexicon as Gutierrez et al. (2016), which has been

constructed by cross-referencing monomorphemic English
words in the CELEX lexical database (Baayen, Piepenbrock,
and Gulikers 1996) with monomorphemic words in the Ox-
ford English Dictionary Online (Simpson, Weiner, and oth-
ers 1989). Remaining polymorphemic words, place names,
demonyms, spelling variants and proper nouns have been re-
moved. Words that were not among the 40,000 most frequent
non-filler word types were excluded. We removed words
for which no text- or image-based semantic representation
was available, as they were absent in the datasets the mod-
els were trained on. This resulted in a final list of 4479
monomorphemic words (out of the 4958 used by Gutierrez
et. al).

Text-based semantic vectors We used skip-gram with
negative sampling (Mikolov et al. 2013) trained on the
Google News dataset as our text-based model. The model
is freely available as part of the Word2Vec system release1,
along with 300-dimensional vector representations for 3 mil-
lion words and phrases.

Visual semantic vectors We constructed our image-based
semantic vectors using the MMFeat toolkit (Kiela 2016),
which relies on the Caffe deep learning framework (Jia et
al. 2014). We first retrieved 10 images for each word in our
lexicon using Bing Image Search. We then extracted an em-
bedding for each of the images from a deep convolutional
neural network that was trained on the ImageNet classifi-
cation task (Russakovsky et al. 2015). The network archi-
tecture consisted of five convolutional layers, followed by
two fully connected rectified linear unit (ReLU) layers and a
softmax layer for classification. It was trained with a multi-
nomial logistic regression objective:

J(θ) = −
D∑

i=1

K∑

k=1

1{y(i) = k} log exp(θ(k)�x(i))
∑K

j=1 exp(θ
(j)�x(i))

(8)
where 1{·} is the indicator function, D – the number of ex-
amples and K – the number of classes. To obtain an embed-
ding for a given image we performed a forward pass through
the network and extracted the 4096-dimensional fully con-
nected layer that precedes the softmax layer as the repre-
sentation of that image. We aggregated the visual represen-
tations of the 10 images retrieved for each word by taking
their average. Such a transfer learning approach has the ad-
vantage of using a large dataset of manually annotated im-
ages to train the model, while ensuring that sufficient visual
data is available for the words in the lexicon.

Multimodal models We investigated three methods for
combining text- and image-based semantic vectors into a
multimodal model.
Scoring-level fusion: Our first approach is based on scoring-
level fusion (Leong and Mihalcea 2011). We perform ker-
nel regression separately on the linguistic and visual mod-
els, and compute the semantic distance between two words

1http://code.google.com/archive/p/word2vec/
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as a weighted average of the cosine distances between the
two respective vectors in the linguistic and the visual mod-
els. We correlate this multimodal semantic distance with
unweighted Levenshtein distance as well as weighted Lev-
enshtein distance. The weighted average of semantic dis-
tances and the weighted average of optimized Levenshtein
distances are computed using the same parameter α:

α ∗ linguistic distance + (1− α) ∗ visual distance (9)

The resulting correlation is computed using different val-
ues for α, after which the weighting factor that results in
the highest correlation is identified as optimal. This opti-
mal weighting factor for our two monomodal models was
0.75. This shows that the two models are complementary.
Furthermore, α stays the same under weight-optimization,
confirming that it is predominantly dependent on the extent
to which the information conveyed in both monomodal mod-
els is complementary.
Feature-level fusion: Secondly, we implement feature-level
fusion by first concatenating the linguistic and visual seman-
tic representations and then running kernel regression on this
multimodal model. This approach has the benefit over the
scoring-level fusion of explicitly training weights to opti-
mize the prediction of multimodal semantic representations.
However, a problem arises with simple concatenation since
the dimensionality of the image-based vectors (4096) is of a
different order of magnitude than the dimensionality of the
text-based vectors (300). We therefore normalize the linguis-
tic and visual models separately before concatenation.
Neural network fusion: Thirdly, we trained a neural network
with a Siamese architecture to extract multimodal features,
similar to the approach of Poria et al. (2015). We use the
concatenation of the linguistic and visual feature vectors as
input, and randomly pair words in the lexicon. We then use
the Levenshtein edit distances between the two words in the
pair as values to be predicted. The concatenated representa-
tion for each word in the pair is fed to a separate branch of
the Siamese network. The first three layers of both branches
are fully connected ReLU layers. Each layer shares the same
weights over both branches. After the third layer, we con-
catenate the vectors in both branches and predict the edit
distance between the two words.

We train the network on the entire lexicon using MSE as
the loss function. Subsequently, we perform a forward pass
through the trained network for all words in the lexicon and
extract the 300 dimensional final layer — i.e. the last layer in
the word’s branch before concatenation — as a multimodal
representation of that word. The neural network architecture
is shown in Figure 2.

4 Experiments and Results

We use SMLKR to optimize edit weights for all monomodal
and multimodal models. We initialize edit weights to 1 and
optimize them by minimizing the MSE until convergence.
We perform two experiments on all models. Firstly, we cor-
relate edit-distance with semantic distance to measure form-
meaning systematicity over the lexicon as a whole. Sec-
ondly, we analyze the predictability of the semantic vectors

Linguistic
Features Visual Features

Network 1

Concatenation

Edit-
Distance

Network 2 

Extraction

Visual FeaturesLinguistic
Features

Figure 2: The neural network fusion process

Model Correl. p-value

Text-based 0.0383 0.001
Image-based 0.0243 0.007
Scoring-level fusion 0.0420 0.001
Multimodal concat 0.0376 0.001
Neural Network fusion 0.0266 0.001

Table 1: Correlations between weighted edit distances and
cosine distances for all models

Model Correl. p-value

Text-based 0.0362 0.001
Image-based 0.0198 0.025
Scoring-level fusion 0.0401 0.001
Multimodal concat 0.0351 0.001
Neural Network fusion 0.0175 0.001

Table 2: Correlations between unweighted edit distances and
cosine distances for all models

of individual words from their strings, to identify phonaes-
themes.

4.1 Lexicon-wide form-meaning systematicity

Table 1 shows correlations between weighted edit distances
and semantic cosine distances for all monomodal and mul-
timodal models. All correlations have been computed us-
ing the Mantel permutation test. All models exhibit a sta-
tistically significant correlation between form and meaning,
which shows that form-meaning systematicity exists in the
lexicon. All correlations are relatively small (<0.05). This is
to be expected under the assumption that concentrated sys-
tematic clusters exist as exceptions to the overall arbitrari-
ness in language (Gutiérrez, Levy, and Bergen 2016). Op-
timizing the edit weights has improved the correlation for
all models, as compared to using unweighted distances, as
shown in Table 2. This shows that string edits indeed differ
in their semantic relevance. Interestingly, we observe some
systematicity when using the visual model alone, which
lends support to the existence of iconicity as a relationship
between word form and the visual properties of the referent.

The multimodal model constructed using scoring-level fu-
sion significantly outperforms the text-based model used in
isolation. This further shows that incorporating visual fea-
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Ph P-value Systematic Words

sn- <0.0001 sneeze, sniff, snore, snort, snout
mu- <0.0001 muck, mushroom, mush, musk
tw- <0.0001 twitch, twang, twinkle, twit
sq- 0.0032 squabble, squeak, squeal, squirt
pe- 0.0079 pea, peach, pear, pearl, pebble
bu- 0.0087 buff, buffalo, bull, bully
sw- 0.0173 swirl, swish, swipe, swerve
cr- 0.0137 crab, crawl, creep, crouch

Table 3: Phonaesthemes (text-based model)

tures increases the level of form-meaning systematicity that
can be found in language.

In order to test the significance of the pairwise differences
between correlations produced by different models, we used
a bootstrap test (Pernet, Wilcox, and Rousselet 2013). For
each pair of models, we begin by sampling words from the
lexicon with replacement, and recompute the cosine dis-
tances and edit distances for this resampled lexicon. We
then compute the correlations between these resampled dis-
tances, and test how often we observe the same relationship
between the correlations for the different models in Tables 1
and 2. This procedure is repeated for 2000 iterations, yield-
ing bootstrapped p-values for the significance of the differ-
ences between each pair of models. The differences between
all model pairs were significant with p < 0.01, except
for that between the weighted multimodal concatenation and
text-based models (p = 0.14), and between the weighted
and unweighted visual models (p = 0.06).

The multimodal concatenation and neural network fusion
models do not display more systematicity than the text-
based model, suggesting that scoring-level fusion is a su-
perior multimodal approach in this task. However, since
scoring-level fusion does not involve constructing multi-
modal vectors it is unsuitable for qualitative analyses, which
we conduct below.

4.2 Phonaesthemes

We analyze to what extent form-meaning systematicity is lo-
calized in phonaesthemes by comparing the average kernel
regression error for each phonosemantic cluster with 1000
random samples in the lexicon as described above. For this
analysis, we use weighted edit distances which have been
optimized for each individual model. Tables 3, 4, 5 and 6
show the two letter onsets (i.e. phonaesthemes) that display
the most form-meaning systematicity for each investigated
semantic model with the exception of scoring-level fusion.
The p-value represents the probability that the identified sys-
tematicity for the relevant cluster occurs under the null-
hypothesis that systematicity is not localized in phonose-
mantic clusters. The third column lists the most systematic
words whithin these clusters.

The analysis of the most systematic words for each
phonaestheme shows that words in many phonaesthemes re-
semble each other in their meaning. For instance, in Table 3
’sn-’ refers to the nose, ’mu-’ refers to the ground and dirt,
’tw-’ refers to small motion and ’sw-’ refers to larger mo-

Ph P-value Systematic Words

jo- 0.0113 join, joint, joke, jolly, jolt, joy
hu- 0.0125 hubbub, huddle, hustle, hubris
si- 0.0202 sick, sigh, sin, silly, simple
id- 0.0209 idea, idiom, idiot, idle, idol, idyll
pr- 0.0230 pray, preach, pride, priest
fa- 0.0270 fail, faint, fallacy, farce, falter

Table 4: Phonaesthemes (image-based model)

Ph P-value Systematic Words

sn- 0.0020 sneeze, sniff, snore, snort, snout
hu- 0.0037 hubbub, hustle, hubris
id- 0.0089 idea, ideion, idiot, idol, idyll
cr- 0.0116 crab, crawl, creep, crouch
fl- 0.0165 flash, fleck, flee, flick, flinch
si- 0.0286 sight, sign, silhouette, simulate
fa- 0.0489 fail, faint, fallacy, fake, famine
jo- 0.0492 job, joke, jolly, joy, jolt, jot

Table 5: Phonaesthemes (multimodal concatenation)

tion. We found a total of 22 phonaesthemes with p < 0.05
using the text-based model.

Systematicity is far less clustered in the image-based and
multimodal models. The image-based model identified 15
phonaesthemes with p < 0.05. The multimodal concatena-
tion and neural network fusion models respectively show
10 and 7 phonaesthemes with p < 0.05. Furthermore,
the image-based and multimodal models identify different
phonaesthemes than the text-based model. The text-based
models tend to capture more concrete meaning similarities
between words. The image-based and multimodal models,
on the other hand, capture similarities of a more abstract na-
ture. The image-based model for instance, finds ’jo-’, which
refers to joy, ’hu-’, which refers to disorganization, ’pr-’,
which refers to high esteem and religion and ’fa-’, which
has a negative connotation. The multimodal concatenation
and neural network fusion models discover phonaesthemes
found by the text-based model as well as phonaesthemes
found by the image-based model. However, the results from
both multimodal models predominantly resemble the results
found using the image-based model. In addition, both mul-
timodal models identify phonaesthemes that are not found
using either of the two monomodal models. The multimodal
concatenation model identifies ’fl-’ which refers to quick
and small motion and ’si-’ which refers to vision. The neural
network fusion model identifies ’bl-’ which refers to white-
ness and cleanliness, and ’le-’ which refers to education.

We apply an etymological analysis to the novel phonose-
mantic clusters identified by our image-based and multi-
modal models to determine the relative origins of words
within these clusters. Interestingly, many phonaesthemes
originate from phonosemantic clusters in a parent language.
For instance, ’pray’ ’preach’, and ’priest’ originate from
Latin roots with a meaning similar to their English descen-
dents: ’precari, praediceare’ and ’presbyter’ respectively.
Similarly, ’crab’, ’crawl’ and ’creep’ stem from the old
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Ph P-value Systematic Words

hu- 0.0173 huge, hulk, humiliate, humble ...
bl- 0.0289 blanch, blank, bless, blight, bliss
le- 0.0300 learn, lethargy, lesson, letter
id- 0.0352 idea, ideion, idiot, idle, idol, idyll

Table 6: Phonaesthemes (neural network fusion)

Norse ’krabbi’, ’krafla’ and ’kjurpa’, which again have a
similar meaning. However, some phonosemantic clusters
contain words with varying origins of which the meanings
converged more recently. For instance, ’sign’ and ’simulate’
stem from the Latin ’signum’ and ’simulare’ which mean
’sign/mark’ and ’imitate’ respectively, while ’sight’ stems
from the Proto-Germanic ’sekh’ directly referring to vision.
Furthermore, ’bless’ originates from the Proto-Germanic
’blodison’ meaning ’to hallow with blood’, while ’bliss’
stems from the Proto-Germanic ’blithsjo’ meaning ’kind’
(Harper 2001).

These different cases are to be expected under the as-
sumption that form-meaning systematicity is a univer-
sal phenomenon across languages which are itself subject
to constant change. Some correlations between form and
meaning are the direct result of systematicity in earlier lin-
guistic systems, while other semantic clusters are formed
from independent origins such as ’blodison’ and ’blithsjo’
that converge both in form and meaning during the process
of linguistic development.

5 Discussion

Our findings support the existence of form-meaning sys-
tematicity in the English language. All monomodal and
multimodal models exhibit statistically significant correla-
tions between form and meaning. However, all correlations
are relatively small (<0.05). This shows that while form-
meaning systematicity does exist, the larger part of form-
meaning mapping is arbitrary. We have demonstrated that
the multimodal model displays a higher correlation (0.0420)
between form and meaning than both text-based and image-
based models in isolation (0.0383 and 0.0243 respectively).
This difference is statistically significant with p < 0.01.
This shows that the text- and image-based models convey
complementary semantic information, and that it is benefi-
cial to combine these modalities when investigating form-
meaning systematicity in language. These results further
support one of the hypotheses behind iconicity, i.e. that word
forms may be motivated by the visual aspects of the referent.

The concatenation and neural network fusion models do
not reach the same performance as the scoring-level fusion
model in this task, indicating that these models do not fully
utilize the potential of the two modalities. One possible ex-
planation for this is the large difference in dimensionality
between the text- and image-based semantic vectors. Whilst
these dimensionalities have been shown to be optimal in the
respective NLP and computer vision tasks, it may be the
case that the higher dimensionality of the image-based vec-
tors biases the multimodal model towards visual informa-
tion, disregarding important aspects of the meaning derived

from textual data. Furthermore, we have trained the neural
network fusion model by predicting the edit distances be-
tween words based on their semantic representations. The
motivation for this was to train multimodal semantic rep-
resentations that are specialised for the task of identifying
form-meaning systematicity. It is possible, however, that the
task of predicting edit distances is insufficient or unsuitable
for optimizing semantic representations. After all, relations
between form and meaning are not evident throughout the
entire lexicon. A semantic classification task, such as word
categorization or lexical entailment, might prove to be more
effective in training multimodal representations, which we
intend to investigate in our future work.

Nonetheless, the qualitative analysis of phonaesthemes
has shown the value of all multimodal models. All models
have identified phonaesthemes, further supporting the hy-
pothesis that systematicity is in fact concentrated in local-
ized clusters. As noted earlier, the multimodal models are
predominantly influenced by the image-based model. Yet,
each multimodal model has identified systematic clusters
that were not found by any of the monomodal models or an-
other multimodal model. This suggests that each method for
combining information from different modalities captures a
slightly different semantic representation, and that each is
able to identify different systematic structures.

6 Conclusion

We have presented the first multimodal approach to lin-
guistic arbitrariness. Using data-driven linguistic and visual
models, we have provided further evidence for the claim that
systematic relations between form and meaning exist in the
English language. Our results demonstrate that incorporat-
ing visual features can substantially increase the level of
form-meaning systematicity found in language. Addition-
ally, our qualitative analysis of phonaesthemes has shown
that multimodal models can be used to identify systematic
relations that are not found using any monomodal models.

Using multimodal distributional semantics to analyze
form-meaning systematicity opens up new research avenues,
which can lead to a better understanding of how the vocab-
ularies of human languages have evolved as a way to con-
vey meaning. Much progress can still be made in the tech-
niques used to integrate information from multiple modali-
ties to study form-meaning systematicity. Another interest-
ing future research direction would be to experiment with
audio as well as visual data, capturing both iconicity and
onomatopoeic relations between form and meaning. Finally,
it is essential to apply the methods to languages other than
English, investigating to what extent form-meaning system-
aticity is a universal phenomenon across languages.
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