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Abstract

We investigate the task of constraining NMT with pre-
specified translations, which has practical significance for
a number of research and industrial applications. Existing
works impose pre-specified translations as lexical constraints
during decoding, which are based on word alignments de-
rived from target-to-source attention weights. However, mul-
tiple recent studies have found that word alignment derived
from generic attention heads in the Transformer is unreliable.
We address this problem by introducing a dedicated head
in the multi-head Transformer architecture to capture exter-
nal supervision signals. Results on five language pairs show
that our method is highly effective in constraining NMT with
pre-specified translations, consistently outperforming previ-
ous methods in translation quality.

1 Introduction

Neural machine translation (NMT) (Bahdanau, Cho, and
Bengio 2014; Vaswani et al. 2017) takes an end-to-end ap-
proach to generate translation from a source sentence, where
no explicit word alignment is required during model training
or decoding. NMT is less configurable and interpretable than
traditional phrase-based methods (Koehn, Och, and Marcu
2003; Chiang 2007), making it difficult to incorporate ex-
ternal resources such as user-provided glossaries (Alkhouli,
Bretschner, and Ney 2018), terminology dictionaries for spe-
cific domains (Dinu et al. 2019), and other resources. In
typical industrial applications, users need to produce pre-
specified translations in NMT’s output (Song et al. 2019).

To this end, prior studies focus on two main approaches.
The first is to use placeholder tags (Crego et al. 2016;
Wang et al. 2017) to incorporate named-entity translations
into the NMT process. Specific placeholder tags are used
to substitute named entities on both the source and target
sides during training. During decoding, named-entities in the
source sentence are replaced with placeholder tags, which
are translated into the corresponding target placeholder tags
and then replaced with the translation of named-entities.
The second method employs pre-specified translations to
guide NMT decoding directly, taking target dictionaries as
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lexical constraints in the decoding process by imposing
them on the translation output (Hokamp and Liu 2017;
Post and Vilar 2018).

The first method works well for named-entities, but place-
holder tags are too generic for general words and the trans-
lation quality can be negatively affected due to the loss
of word meaning. Recent research finds that the second
method outperforms the placeholder approach (Song et al.
2019). It retains the identity of a matched dictionary transla-
tion and models its interaction with the decoding context.
However, the decoding constraints do not explicitly esti-
mate the correlation between the source and target sides
of the pre-specified translations, as the lexical constraints
are only imposed on the target side. It may hurt trans-
lation fidelity because there is little or no consideration
for which source word would produce the target constraint
word. One way to improve the constraint method is to con-
sider the aligned source words when generating target con-
straint words, as in (Alkhouli, Bretschner, and Ney 2018;
Crego et al. 2016; Hasler et al. 2018) that rely on explicit
word alignment based on the attention mechanism in NMT.
However, it is well known that the multi-head attention
mechanism employed in the Transformer architecture is ill-
suited for deriving accurate word alignment (Li et al. 2019;
Ding, Xu, and Koehn 2019).

In this paper, we consider the method of employing pre-
specified translations to guide NMT decoding directly. In-
spired by LISA (Strubell et al. 2018), which shows that ex-
ternal supervision improves a Transformer-based model by
bringing in syntactic information, we use a dedicated atten-
tion head to learn the word alignment based on supervision
from external alignment signals. Compared to existing meth-
ods (Crego et al. 2016; Hasler et al. 2018), which extract
alignment information based on weights from generic at-
tention heads, we use the dedicated attention head to learn
explicit word alignment and use it to guide the constrained
decoding process.

On 13 development and test sets across five different lan-
guage pairs, our method achieves an average improvement
of 4.48 BLEU score when using simulated pre-specified
translations, in comparison to 3.51 BLEU score of the lexi-
cal constraint approach (Post and Vilar 2018).
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2 Related Work

Hokamp and Liu (2017) propose modified beam search
algorithm, the grid beam search, which takes target-side
pre-specified translations as lexical constraints during beam
search. One problem with this method is that translation fi-
delity is not explicitly considered, as there is no indication
between the matched source words and each pre-specific
translation. Another drawback is that the decoding speed is
significantly reduced. Post and Vilar (2018) give a faster ver-
sion of Hokamp and Liu (2017)’s work by using dynamic
beam allocation in beam search to reduce decoding com-
plexity.

Hasler et al. (2018) employ alignment between target-side
constraints and their corresponding source words, simulta-
neously using finite-state machines and multi-stack (Ander-
son et al. 2017) decoding to guide beam search. Arthur,
Neubig, and Nakamura (2016) use alignment to inject an
external lexicon into the inference process to improve the
translations of low-frequency content words. Chatterjee et
al. (2017) enhance the NMT decoder with the ability to pri-
oritize and adequately handle translation options of source
words, which are located by making use of alignment infor-
mation.

Alkhouli, Bretschner, and Ney (2018) study the quality of
the alignments extracted from target-to-source attention in
Transformer, and propose to improve alignment accuracy by
injecting external alignment signals. Instead of using the at-
tention weights over all source words to compute the source
context, they add a special attention head whose source con-
text is computed only over the aligned source words accord-
ing to the external word alignment. In order to provide the
alignment signal during decoding, a separate “self-attentive
alignment model” is trained to learn source-side alignment
jumps, also from the same external word alignment. Their
use of a separate alignment model, however, to a large ex-
tent increases decoding complexity, requiring special treat-
ment to optimize speed. In addition, a discrepancy between
the quality of alignment used in training and decoding af-
fects model performance negatively.

Zenkel, Wuebker, and DeNero (2019) propose to add a
separate alignment layer to the Transformer architecture and
learn to focus its attention weights on relevant source words
for a given target word, in an unsupervised way from bilin-
gual data without using external word alignment informa-
tion. The learned word alignment from their attention layer
is more accurate than that from a vanilla Transformer model.

Our work is related to both Alkhouli, Bretschner, and
Ney (2018) and Zenkel, Wuebker, and DeNero (2019) in the
sense that we all aim to improve alignment in the Trans-
former model. Our work differs from Alkhouli, Bretschner,
and Ney (2018) in that we use a dedicated attention head to
directly emulate target-to-source alignment behavior of an
external alignment model, instead of using a separate align-
ment model to learn source-side alignment jumps. Zenkel,
Wuebker, and DeNero (2019) aim to learn word alignment
using a dedicated attention head without supervision from
external word alignment. To our knowledge, we are the first
to use a dedicated attention head to learn word alignment for
guiding constrained decoding in NMT.

Strubell et al. (2018) present a linguistically-informed
self-attention architecture, a neural network model that
combines multi-head self-attention with multi-task learning
across different NLP tasks. Our work is directly inspired by
this method, but we introduce external word alignment in-
formation rather than syntactic information using dedicated
attention heads.

3 Background

3.1 Transformer

Vaswani et al. (2017) use a self-attention network for
both encoder and decoder in NMT. The encoder is com-
posed of N stacked neural layers. For time step i in layer
j, the hidden state hj

i is calculated as follows: First, a
self-attention sub-layer is employed to encode the con-
text. Then attention weights are computed as scaled dot
products between the current query hj−1

i and all the keys
{hj−1

1 , hj−1
2 , · · · , hj−1

m }, normalized with a softmax func-
tion. The context vector is then represented as weighted sum
of the values projected from the hidden states in the previous
layer, which are {hj−1

1 , hj−1
2 , · · · , hj−1

m }. The hidden states
in the previous layer and the context vector are then con-
nected by residual connection, followed by a layer normal-
ization function (Ba, Kiros, and Hinton 2016) to produce a

candidate hidden state hj
′

i . Finally, another sub-layer, a feed-

forward network (FFN), is connected with hj
′

i through a
residual connection, followed by a layer normalization func-
tion to obtain the hidden state hj

i .
The decoder is also composed of N stacked layers.

For time step t in layer j, a self-attention sub-layer is
calculated by employing self-attention mechanism over
the hidden states in the previous target layer, which are
{sj−1

1 , sj−1
2 , · · · , sj−1

t−1}, resulting in candidate hidden state

sj
′

t . Then, a target-to-source sub-layer is inserted after the

first self-attention sub-layer. In particular, sj
′

t is taken as
query (Q), and the keys (K) and values (V ) are projected
from the source hidden states in the last layer of the en-
coder. The attention weights {αj

t,1, α
j
t,2, · · · , αj

t,m} are used
to gain source context cjt , which is a weighted sum of source-

side hidden states. Another candidate state sj
′′

t is calculated
by employing the source context cjt and the candidate hidden

state sj
′

t , which is produced by the first sub-layer. Finally, a

last feed-forward sub-layer is connected with sj
′′

t through a
residual connection, followed by a layer normalization func-
tion to obtain the hidden state sjt .

A softmax layer based on the decoder’s last layer sNt is
used to produce a probability distribution over the target-
side vocabulary:

p(yt|y1, · · · , yt−1, x) = softmax(sNt ∗ W), (1)

where W is the learned weight matrix, x is the source sen-
tence, and {y1, y2, · · · , yt} is the target words.
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Figure 1: Word alignment derived from a vanilla Trans-
former model.

3.2 Alignment Extraction of Vanilla Transformer

A common and naive way to extract word alignment from
Transformer is to choose the source word with the maximum
attention weight towards the current target word (Crego et
al. 2016; Hasler et al. 2018; Arthur, Neubig, and Nakamura
2016). In particular, an aligned source word is determined
by choosing the source position which has the maximum ac-
cumulated attention weights:

γ(t) = argmax
i∈{1,··· ,m}

1

N

N∑

j=1

αj
t,i, (2)

where i is the candidate aligned source-side position. For
decoding step t in layer j, αj

t,i is the attention weight of the
i-th position in the source, which is calculated as described
in Section 3.1.

As shown in Figure 1, the word alignment derived from
this method are quite erroneous. This problem is also noted
in (Koehn and Knowles 2017; Li et al. 2019; Ding, Xu, and
Koehn 2019).

4 Method

4.1 Supervised Alignment Using a Dedicated
Attention Head

Inspired by Strubell et al. (2018), we extend Transformer’s
multi-head self-attention architecture by adding an addi-
tional attention head, that is supervised by external align-
ment information. As shown in Figure 2, an additional atten-
tion head is added to the target-to-source sub-layer of each
decoder layer.

In particular, at time step t in layer j, after calculating the

first self-attention sub-layer’s hidden state sj
′

t , two sets of
attention weights are calculated in the target-to-source sub-
layer: the original multi-head attention and the additional at-
tention. Both sets of attention weights are calculated using
the identical query (Q), keys (K) and values (V ), but for
different purposes:
1. The original multi-head attention weights

{αj
t,1, α

j
t,2, · · · , αj

t,m} over source positions {1, · · · ,m}
are used to produce candidate hidden state sj

′′

t as in the
vanilla Transformer.

2. The additional attention weights {βj
t,1, β

j
t,2, · · · , βj

t,m}
capture the target-to-source word alignment, as super-
vised by the external word alignment information.

Inputs
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Encoding

Masked Multi-Head Attention

Multi-Head
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···
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Figure 2: Additional supervised attention head.

To supervise the additional attention using the external
alignment information, we introduce an alignment loss:

Lalign
t = −log

m∑

i=1

(β̄t,i × α̂t,i) (3)

where β̄t,i is the attention weight of the i-th source position
averaged across all decoder layers:

β̄t,i =
1

N

N∑

j=1

βj
t,i (4)

and α̂t,i is set to 1 only if the target word yt is aligned to the
source word xi according to the external alignment supervi-
sion, otherwise it is 0.

The final objective function L consists of both the trans-
lation loss and the alignment loss:

L =
n∑

t=1

(Llexical
t + λ ∗ Lalign

t ) (5)

where λ is set to 0.3 empirically, and Llexical
t is the original

word prediction loss:

Llexical
t = −log(p(yt|y1, · · · , yt−1, x)) (6)

4.2 Alignment Extraction of
Alignment-Enhanced Transformer

Different from the baseline alignment extraction method de-
scribed in Section 3.2, we use only the dedicated attention
head to determine the aligned source position at decoding
step t:

γ(t) = argmax
i∈{1,··· ,m}

β̄t,i (7)
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Figure 3: Dictionary-guided decoding.

where β̄t,i is the average of the attention weights from all
decoder layers to the i-th source position.

Different from Alkhouli, Bretschner, and Ney (2018) and
Zenkel, Wuebker, and DeNero (2019), the alignment in our
method is extracted by choosing the source position that has
the maximum averaged attention weight produced by the
additional supervised attention head, instead of the default
multi-heads.

4.3 Dictionary-Guided Decoding

Alkhouli, Bretschner, and Ney (2018) describe a
“dictionary-guided decoding task” as a down-stream
task of leveraging Transformer’s alignment, which provides
an efficient way of using pre-specified translations to guide
the decoding procedure. In particular, at decoding step t, if
the source aligned word xj matches a dictionary translation
which should be used as a translation constraint, the de-
coder’s output probabilities over the target-side vocabulary
are reset. Infinite cost is set for all except the constrained
word which is the target-side of the pre-specified translation.

Inspired by the constrained decoding algorithm used
in (Hokamp and Liu 2017; Post and Vilar 2018)’s work, we
extend Alkhouli, Bretschner, and Ney (2018)’s method to
enable the utilization of the pre-specified translation which
contains multi-words or single word that can be split into
multiple sub-words. The decoding process is shown in Fig-
ure 3. Considering a pre-specified translation that matches
several contiguous tokens in the source sentence:

xu:v → {yc1 , · · · , yck}, (8)
where xu:v denotes source-side tokens from position u to
position v, {yc1 , · · · , yck} is the provided translation con-
sisting of k tokens of target vocabulary. In decoding step t,

if the aligned source position j is inside (u, v), each of the
following k decoding steps will be constrained. In particular,
for each decoding step r (t ≤ r < t+k), the probability dis-
tribution over target vocabulary will be reset to make target
token ycr−t+1

the maximum one. In addition, for decoding
steps s (s ≥ t + k), if any of the source positions inside
(u : v) is aligned, the above operation will not be repeat-
edly applied and the decoding procedure is the same as the
standard NMT decoding.

Since the only difference between dictionary-guided de-
coding and standard NMT decoding is the adjustment oper-
ation on the loss of each word in target vocabulary, no addi-
tional calculation is required, so time and memory consump-
tion are not affected.

5 Experiments

We use an in-house re-implementation of Trans-
former (Vaswani et al. 2017), similar to Google’s Ten-
sor2Tensor. We test our method on five language pairs:
English to Romanian (En-Ro), English to German (En-De),
English to Russian (En-Ru), English to French (En-Fr) and
Chinese to English (Ch-En). BLEU1 (Papineni et al. 2002)
and alignment error rate (AER)2 (Och and Ney 2000) are
used for the evaluation of translation quality and alignment
quality, respectively.

5.1 Data

Our training corpora are taken from the WMT news trans-
lation task. In particular, the training corpora of En-De and
En-Ro are taken from WMT2014 and WMT2016, respec-
tively. Training corpora for En-Ru, En-Fr and Ch-En are
taken from WMT2018. To validate our method on large
scale data, corpora from both real bilingual texts and syn-
thetic back-translation (Sennrich, Haddow, and Birch 2015a)
are used for these three language pairs. The synthetic corpus
is translated from “NewsCommonCrawl”, which can be ob-
tained from the WMT task. The number of training sentence
pairs is 0.6M, 4.5M, 14M, 38M and 25M for En-Ro, En-De,
En-Ru, En-Fr and Ch-En, respectively.

To directly evaluate alignment extraction accuracy, we use
two hand aligned, publicly available alignment test sets for
En-Ro3 and En-De4. The two test sets contain 480 sentences
and 250 sentences for En-Ro and En-De, respectively.

5.2 Experimental Settings

BPE (Sennrich, Haddow, and Birch 2015b) is used in all
experiments, where the number of merge operations is set
to 30K for En-Ru and Ch-En, and 50K for En-Ro, En-De
and En-Fr. We use six self-attention layers for both the en-
coder and the decoder. The embedding size and the hid-
den size are set to 512. Eight heads are used for the multi-
head self-attention architecture. The feed-forward layer has
2,048 cells and ReLU (Krizhevsky, Sutskever, and Hinton

1ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13a.pl
2https://github.com/lilt/alignment-scripts/blob/master/scripts
3https://www-i6.informatik.rwth-aachen.de/goldAlignment/
4http://web.eecs.umich.edu//∼mihalcea/wpt/index.html
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2012) is used as the activation function. Adam (Kingma
and Ba 2014) is used for training; warmup steps are set to
16,000; the learning rate is 0.0003. We use label smooth-
ing (Junczys-Dowmunt, Dwojak, and Sennrich 2016) with
a confidence score of 0.9, and all the drop-out (Gal and
Ghahramani 2016) probabilities are set to 0.1. The vocabu-
lary size is set to 30K for Ch-En and En-Ru, 50K for En-Ro,
En-Fr and Ch-En.

Alignment Supervision. We align the bilingual train-
ing corpora with FastAlign5 (Dyer, Chahuneau, and Smith
2013) for all language pairs. For En-Ro and En-De, we addi-
tionally use word alignments produced by GIZA6 (Och and
Ney 2003) to compare the effect of the quality in alignment
supervision. Both FastAlign and GIZA are used with default
settings. The final alignment is performed by symmetriz-
ing the alignments of both forward and backward directions
with the grow-diag-final heuristic. All the training corpora
are in sub-word format. We add a special token “eos” to the
end of both source and target sentences and assume that they
are aligned to each other.

Gold Pre-Specified Translations. In practice, pre-
specified translations can be provided by customers or
through user feedback, which contain one identified transla-
tion for specified source segment. To simulate pre-specified
translations for different test sets, previous works (Hasler et
al. 2018; Alkhouli, Bretschner, and Ney 2018; Post and Vi-
lar 2018; Song et al. 2019) obtain dictionary entries by ex-
tracting translation pairs from a test set and its reference.
While these dictionary entries are always correct as mea-
sured by the reference, some of them can already be gen-
erated by the baseline systems, and thus are not useful for
measuring the effectiveness of dictionary-guided decoding.
Moreover, some dictionary entries can be generated by one
of the baseline systems but not the other, making it unfair to
compare different approaches to dictionary-based decoding.
In order to address these two issues, we propose to extract
pre-specified translations that can correct translation errors
for all baseline systems, using the method described below.

Given a source sentence {x1, x2, ..., xm} and its transla-
tion output {oA1 , oA2 , ..., oAr } produced from system A, the
word alignment between them is obtained by FastAlign.
The alignment between the source sentence and the refer-
ence {y1, y2, ..., yn} is also obtained by FastAlign. Given
a source word xi, if its aligned target word oAt is differ-
ent from the aligned reference word yj , a candidate pre-
specified translation (xi, yj) belongs to system A is con-
structed for source word xi in the sentence. Additionally,
for a source phrase xu:v(u ≤ i < v) and a target phrase
yp:q(p < q), p and q denote to the beginning and the end po-
sition in the target sentence, and u and v denote to the begin-
ning and the end position in the source sentence. According
to the phrase extraction conditions described in (Koehn et al.
2007), if yp:q is satisfied to be the phrase translation of xu:v ,
a pre-specified translation (xu:v, yp:q) is obtained, which is
phrase-level and contains a mistranslated source word. The
maximum number of tokens on each side of pre-specified

5https://github.com/clab/fast align
6https://github.com/moses-smt/mgiza

translations is set to 3.
For a given source sentence, the final gold dictionary en-

tries which are used by all the systems in our experiments are
obtained by taking the intersection of different systems’ pre-
specified translations. We randomly select up to four pre-
specified translations per source sentence. The pre-specified
translations relevant to a source sentence are used for all sys-
tems, covering 6.7%, 6.64%, 6.59%, 7.36% and 7.34% of
the words in the reference for En-Ro, En-De, En-Fr, En-Ru
and Ch-En, respectively. The statistic is calculated on devel-
opment set.

5.3 System Configurations

We compare the following systems, in which the pre-
specified translations described in Section 5.2 are used.

Baseline 1: Transformer with Lexical Constraints.
The algorithm in Post and Vilar (2018), which is a way
of constraining NMT with pre-specified translations, is
re-implemented in our Transformer. Target-sides of pre-
specified translations are used as lexical constraints, which
are imposed on the translation during decoding.

Baseline 2: Vanilla Transformer with Dictionary-
Guided Decoding. We use vanilla Transformer with
dictionary-guided decoding described in Section 4.3 as an-
other baseline. During decoding, aligned source words are
found by using the alignment extraction method described
in Section 3.2.

Our System: Alignment-Enhanced Transformer with
Dictionary-Guided Decoding. For all the language pairs,
we use FastAlign to obtain the alignment, that is used
for supervision during training. We initialize parameters of
the alignment-enhanced Transformer with the pre-trained
vanilla Transformer model. The hidden size of the additional
attention is set to 512. During decoding, instead of using the
regular attention, the alignment is extracted from the dedi-
cated attention head by using the method described in Sec-
tion 4.2.

5.4 Results

When using pre-specified translations described in 5.2, the
vanilla Transformer with dictionary-guided decoding does
not outperform the lexical constraint method in the five lan-
guage pairs in 12 out of all the 13 test sets. In contrast,
alignment-enhanced Transformer is better than the lexical
constraint method in 12 test sets out of all the 13 test sets for
all five language pairs. On En-Fr, the alignment-enhanced
Transformer with dictionary-guided decoding achieves an
average gain of 4.09 BLEU when using pre-specified trans-
lations, the average gain is 1.47 BLEU higher than the lexi-
cal constraint method and 1.96 BLEU higher than the vanilla
Transformer with dictionary-guided decoding.

Without using any pre-specified translations, the
alignment-enhanced Transformer achieves approximately
the same BLEU scores as the vanilla Transformer. As
shown in Tables 1 and 2, there is no significant difference
in translation quality between the alignment-enhanced
Transformer and the vanilla model. This result shows that
our method retains the original translation quality when no
constraint is used.
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Systems
En-Ro En-De En-Fr

dev2016† test2016 � test2013† test2014 � dev2015† test2015 �
Transformer 25.16 22.96 - 26.04 26.18 - 31.91 37.47 -
+ dict. guid. 28.68 26.37 +3.47 28.69 28.09 +2.11 33.99 39.64 +2.13
+ lexi. cons. 29.30 27.66 +4.42 27.88 28.56 +2.28 34.48 40.14 +2.62
Align. Enhan. 25.12 22.98 -0.01 26.15 26.11 +0.02 31.96 37.47 +0.03
+ dict. guid. 29.39 28.17 +4.72 30.94 31.19 +4.96 35.89 41.67 +4.09

Table 1: BLEU scores of En-Ro, En-De and En-Fr. “Transformer” is our in-house vanilla Transformer baseline. “Align.
Enhan.” denotes alignment-enhanced Transformer, which is our proposed method. “dict. guid.” denotes dictionary-guided
decoding. “lexi. cons.” denotes lexical constraint decoding (Post and Vilar 2018). Pre-specified translations described in Section
5.2 are used. † denotes the development set.

Systems
Ch-En En-Ru

dev2017† test2017 test2018 � test15† test16 test17 test18 �
Transformer 19.08 20.68 20.07 - 33.53 32.12 36.73 32.12 -
+ dict. guid. 20.32 21.60 21.35 +1.15 35.93 34.36 38.94 34.17 +2.22
+ lexi. cons. 22.69 23.35 23.45 +3.22 37.85 36.65 41.31 36.39 +4.42
Align. Enhan. 19.13 20.82 19.73 -0.05 33.60 32.16 36.55 32.13 -0.02
+ dict. guid. 22.73 23.94 23.43 +3.42 39.14 37.11 41.68 36.99 +5.10

Table 2: BLEU scores of Ch-En and En-Ru. System descriptions are same with Table 1. Our vanilla Transformer implementation
is heavily optimized, which can be inferred from the BLEU scores of “Transformer” across various public test sets.

Systems En-Ro En-De
FastAlign 40.1 27.2
GIZA 28.8 18.2
Vanilla Transformer 60.7 75.7
Super. FastAlign 48.7 27.4
Super. GIZA 36.2 25.3

Table 3: Alignment error rate (%) of different systems.
“Transformer” denotes vanilla Transformer. “Super. FastAl-
ign” and “Super. GIZA” denote alignment-enhanced model
supervised with alignment produced by FastAlign and
GIZA, respectively.

Alignment Error Rate. To compare alignment accu-
racy of the alignment-enhanced Transformer with the vanilla
baseline, we evaluate alignment error rate on the two align-
ment test sets described in Section 5.1. Since the training
corpus and the test sets are all represented in sub-word units,
if any source sub-word unit is matched to one target-side
sub-word unit, the corresponding source word and target-
side word are supposed to be aligned.

As shown in Table 3, the alignment derived from the
vanilla Transformer is far from being accurate, with 60.7%
and 75.7% AER on En-Ro and En-De, respectively. The
alignment-enhanced Transformer significantly reduces the
alignment error rate to 36.2% and 25.3% respectively.

Effect of Better Supervision. We compare the AER of
the alignment-enhanced Transformer trained with different
supervision signals on two language pairs, En-Ro and En-
De. As shown in Table 3, GIZA can generate better align-
ment than FastAlign. As a result, the alignment-enhanced
Transformer trained with GIZA alignment supervision de-
rives more accurate alignment than the model trained with

En-Ro dev2016 test2016
Vanilla Transformer 29.63 27.36
Super. FastAlign 30.75 29.46
Super. GIZA 31.77 30.37

Table 4: BLEU scores of different systems on En-Ro when
using user-provided dictionary entries. System descriptions
can be found in caption of Table 3.

FastAlign alignment. The alignment derived from Trans-
former has each target word aligned to only one source word.
This is different from GIZA or FastAlign, which allows dif-
ferent heuristics to produce more complex alignments. In ad-
dition, the alignment extracted from the alignment-enhanced
Transformer supervised with GIZA outperform the align-
ment generated by FastAlign. Table 4 shows the impact
made by alignment of different qualities. Better alignment
supervision leads to better alignment extraction, which re-
sults in better constrained translation7. We observe that bet-
ter alignment leads to better translation quality in dictionary-
guided outputs, demonstrating the usefulness of improved
alignment supervision.

Sample Outputs. Figure 4 compares translations of dif-
ferent systems when using dictionary entries. Given the
source sentence “xiongdi(brothers) lia(both) fouren(denied)
mousha(murder)”, the vanilla Transformer fails to trans-
late “lia” and “fouren” adequately. When constraining NMT
with pre-specified translations “(lia, both)” and “(fouren, de-

7Pre-specified translations used in this experiment are extracted
according to the three systems using the method described in Sec-
tion 5.2, and is not same as the pre-specified translations used in
the experiments shown in Table 1.
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both brothers denied the killing .
the brothers deny the murder .
the brothers denied the murder .
both brothers denied killing .
( , both), ( , denied)

Source sentence:

Reference:

Vanilla Transformer:

Transformer + dic. sugg. :

Align. Enhan.  + dic. sugg. :

dictionary entries: 

(xiongdi) (lia)
            �

(fouren) (mousha)

Figure 4: Translation sample of different systems. System
descriptions are given in the caption of Table 1. The char-
acters in the brackets under each source word are Hanyu
Pinyin, which is an official romanization system for Chinese.

System EnRo EnDe EnFr ChEn EnRu
Transformer 77.00 56.41 49.54 38.57 48.01
Align. Enhan. 85.17 81.59 82.49 69.75 80.64

Table 5: Constrain success rate (%) of vanilla Transformer
and alignment-enhanced Transformer trained with supervi-
sion obtained from FastAlign.

nied)”, different methods lead to different outcomes.
The vanilla Transformer with dictionary-guided decoding

can correct the translation of “fouren” with the dictionary
word “denied”. During decoding, the source word “fouren”
is successfully aligned by using the alignment extraction de-
scribed in Section 3.2, which matches the dictionary entries.
The original word prediction probability over the target vo-
cabulary is changed to make the provided translation “de-
nied” surface in the final translation. However, this system
fails to correct the translation of “lia” with the provided
translation “both”, because of an error in the vanilla Trans-
former’s alignment extraction procedure.

Averaged attention weights calculated using Equation 2
are shown in Figure 5a. By using the method described
in Section 3.2, the extracted alignment is shown in Fig-
ure 5b. The source word “lia” is not aligned to any target
word, which is a frequent phenomenon in the vanilla Trans-
former (Li et al. 2019; Ding, Xu, and Koehn 2019). As a
result, the dictionary entry “(lia, both)” is not used during
the vanilla Transformer’s decoding.

The alignment-enhanced Transformer with dictionary-
guided decoding can correct both the translation of “lia” and
the translation of “fouren”. During decoding, the attention
weights of the alignment-enhanced Transformer calculated
using Equation 7 are shown in Figure 5c, leading to the ex-
tracted word alignment in Figure 5d. The source words “lia”
and “fouren” are both successfully aligned during decod-
ing, the pre-specified translations “both” and “denied” are
adopted in the final translation.

Constrain Success Rate. Better alignments result in bet-
ter constrain success rate. Constrain success refers to the per-
centage of the pre-specified translations being correctly pro-
duced in the output (Song et al. 2019), which relies heavily
on the successful alignment between source word and cer-
tain target word during dictionary-guided decoding. Table
5 gives a comparison between the vanilla Transformer and

(a) Attention weights. (b) Word alignment.

(c) Attention weights. (d) Word alignment.

Figure 5: (a) and (c) are the attention weights of vanilla
Transformer and alignment-enhanced Transformer, respec-
tively. (b) and (d) are the word alignment derived from (a)
and (c), respectively.

the alignment-enhanced Transformer. The latter improves
the constrain success rate on all the five language pairs.
By contrast, few pre-specified translations can successfully
take effect in the vanilla Transformer’s output because of its
alignment errors. As a result, the vanilla Transformer with
dictionary-guided decoding does not outperform the lexical
constraint methods, as shown in Table 1 and 2.

6 Conclusion

We investigated a conceptually simple but empirically ef-
fective approach for leveraging pre-specified translations in
NMT, which is a common practice in many industrial ap-
plications. Given a Transformer baseline model, an addi-
tional attention head is supervised during training, and is
used to derive better word alignment, leading to improve-
ment in dictionary-guided decoding. Results on extensive
experiments show consistent improvements over two state-
of-the-art techniques.
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