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Abstract

Multimodal language analysis often considers relationships
between features based on text and those based on acousti-
cal and visual properties. Text features typically outperform
non-text features in sentiment analysis or emotion recognition
tasks in part because the text features are derived from ad-
vanced language models or word embeddings trained on mas-
sive data sources while audio and video features are human-
engineered and comparatively underdeveloped. Given that the
text, audio, and video are describing the same utterance in dif-
ferent ways, we hypothesize that the multimodal sentiment
analysis and emotion recognition can be improved by learn-
ing (hidden) correlations between features extracted from the
outer product of text and audio (we call this text-based au-
dio) and analogous text-based video. This paper proposes a
novel model, the Interaction Canonical Correlation Network
(ICCN), to learn such multimodal embeddings. ICCN learns
correlations between all three modes via deep canonical cor-
relation analysis (DCCA) and the proposed embeddings are
then tested on several benchmark datasets and against other
state-of-the-art multimodal embedding algorithms. Empirical
results and ablation studies confirm the effectiveness of ICCN
in capturing useful information from all three views.

1 Introduction

Human language communication occurs in several modal-
ities: via words that are spoken, by tone of voice, and
by facial and bodily expressions. Understanding the con-
tent of a message thus requires understanding all three
modes. With the explosive growth in availability of data,
several machine learning algorithms have been successfully
applied towards multimodal tasks such as sentiment anal-
ysis (Morency, Mihalcea, and Doshi 2011; Soleymani et
al. 2017), emotion recognition (Haq and Jackson 2011),
image-text retrieval (Wang, Li, and Lazebnik 2016), and
aiding medical diagnose (Liu et al. 2019; Lee et al. 2014)
etc. Among multimodal language sentiment or emotion ex-
periments involving unimodal features (Zadeh et al. 2016;
2018c; Tsai et al. 2018; 2019), it is commonly observed that
text based features perform better than visual or auditory
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modes. This is plausible for at least three reasons: 1) Text it-
self contains considerable sentiment-related information. 2)
Visual or acoustic information may sometimes confuse the
sentiment or emotion analysis task. For instance: “angry”
and “excited” may have similar acoustic performances (high
volume and high pitch) even though they belong to oppo-
site sentiments. Similarly, “sad” and “disgusted” may have
different visual features though they both belong to the neg-
ative sentiment. 3) Algorithms for text analysis have a richer
history and are well studied.

Based on this observation, learning the hidden relation-
ship between verbal information and non-verbal information
is a key point in multi-modal language analysis. This can be
approached by looking at different ways of combining multi-
modal features.

The simplest way to combine text (T), audio (A) and
video (V) for feature extraction and classification is to
concatenate the A, V, and T vectors. An alternative is to
use the outer product (Liu et al. 2018; Zadeh et al. 2017)
which can represent the interaction between pairs of fea-
tures, resulting in 2D or 3D arrays that can be processed
using advanced methods such as convolutional neural net-
works (CNNs) (Lawrence et al. 1997). Other approaches
(Zadeh et al. 2018a; Liang et al. 2018; Zadeh et al. 2018c;
Wang et al. 2018) study multi-modal interactions and intra-
actions by using either graph or temporal memory networks
with a sequential neural network LSTM (Gers, Schmidhu-
ber, and Cummins 1999). While all these have contributed
towards learning multi-modal features, they typically ig-
nore the hidden correlation between text-based audio and
text-based video. Individual modalities are either combined
via neural networks or passed directly to the final classifier
stage. However, it is obvious that attaching both audio and
video features to the same textual information may enable
non-text information to be better understood, and in turn the
non-text information may impart greater meaning to the text.
Thus, it is reasonable to study the deeper correlations be-
tween text-based audio and text-based video features.

This paper proposes a novel model which uses the outer-
product of feature pairs along with Deep Canonical Correla-
tion Analysis (DCCA) (Andrew et al. 2013) to study useful
multi-modal embedding features. The effectiveness of us-
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ing an outer-product to extract cross-modal information has
been explored in (Zadeh et al. 2017; Liu et al. 2018). Thus,
features from each mode are first extracted independently at
the sentence (or utterance) level and two outer-product ma-
trices (T ⊗ V and T ⊗ A) are built for representing the in-
teractions between text-video and between text-audio. Each
outer-product matrix is connected to a convolutional neural
network (CNN) for feature extraction. Outputs of these two
CNNs can be considered as feature vectors for text-based
audio and text-based video and should be correlated.

In order to better correlate the above text-based audio
and text-based video, we use Canonical Correlation Analy-
sis (CCA) (Hotelling 1936), which is a well-known method
for finding a linear subspace where two inputs are maxi-
mally correlated. Unlike cosine similarity or Euclidean dis-
tance, CCA is able to learn the direction of maximum cor-
relation over all possible linear transformations and is not
limited by the original coordinate systems. However, one
limitation of CCA is that it can only learn linear transfor-
mations. An extension to CCA named Deep CCA (DCCA)
(Andrew et al. 2013) uses a deep neural network to al-
low non-linear relationships in the CCA transformation. Re-
cently several authors (Rotman, Vulić, and Reichart 2018;
Hazarika et al. 2018) have shown the advantage of using
CCA-based methods for studying correlations between dif-
ferent inputs. Inspired by these, we use DCCA to correlate
text-based audio and text-based video. Text-based audio and
text-based video features derived from the two CNNs are in-
put into a CCA layer which consists of two projections and
a CCA Loss calculator. The two CNNs and the CCA layer
then form a DCCA, the weights of the two CNNs and the
projections are updated by minimizing the CCA Loss. In this
way, the two CNNs are able to extract useful features from
the outer-product matrices constrained by the CCA loss. Af-
ter optimizing the whole network, outputs of the two CNNs
are concatenated with the original text sentence embedding
as the final multi-modal embedding, which can be used for
the classification.

We evaluate our approach on three benchmark multi-
modal sentiment analysis and emotion recognition datasets:
CMU-MOSI (Zadeh et al. 2016), CMU-MOSEI (Zadeh et
al. 2018c), and IEMOCAP(Busso et al. 2008). Additional
experiments are presented to illustrate the performance of
the ICCN algorithm. The rest of the paper is organized as
follows: Section 2 presents related work, Section 3 intro-
duces our proposed model and Section 4 describes our ex-
perimental setup. Section 5 presents a discussion on the em-
pirical observations, Section 6 concludes this work.

2 Related Work
The central themes of this paper are related to learning (i)
multi-modal fusion embeddings and (ii) cross-modal rela-
tionships via canonical correlation analysis (CCA).

Multi-modal fusion embedding: Early work (Poria et al.
2016) concatenates the audio, video and text embeddings
to learn a larger multi-modal embedding. But this may lead
to a potential loss of information between different modali-
ties. Recent studies on learning multi-modal fusion embed-
dings train specific neural network architectures to combine

all three modalities. In their work (Chen et al. 2017) pro-
pose improvements to multi-modal embeddings using rein-
forcement learning to align the multi-modal embedding at
the word level by removing noises. A multi-modal tensor
fusion network is built in (Zadeh et al. 2017) by calculating
the outer-product of text, audio and video features to repre-
sent comprehensive features. However this method is limited
by the need of a large computational resources to perform
calculations of the outer dot product. In their work (Liu et
al. 2018) developed an efficient low rank method for build-
ing tensor networks which reduce computational complex-
ity and are able to achieve competitive results. A Mem-
ory Fusion Network (MFN) is proposed by (Zadeh et al.
2018a) which memorizes temporal and long-term interac-
tions and intra-actions between cross-modals, this memory
can be stored and updated in a LSTM. (Liang et al. 2018)
learned multistage fusion at each LSTM step so that the
multi-modal fusion can be decomposed into several sub-
problems and then solved in a specialized and effective way.
A multimodal transformer is proposed by (Tsai et al. 2019)
that uses attention based cross-modal transformers to learn
interactions between modalities.

Cross-modal relationship learning via CCA: Canoni-
cal Correlation Analysis(CCA) (Hotelling 1936) learns the
maximum correlation between two variables by mapping
them into a new subspace. Deep CCA (DCCA) (Andrew et
al. 2013) improves the performance of CCA by using feed-
forward neural networks in place of the linear transformation
in CCA.

A survey of recent literature sees applications of CCA-
based methods in analyzing the potential relationship be-
tween different variables. For example, a CCA based model
to combine domain knowledge and universal word embed-
dings is proposed by (Sarma, Liang, and Sethares 2018).
Models proposed by (Rotman, Vulić, and Reichart 2018)
use Deep Partial Canonical Correlation Analysis (DPCCA),
a variant of DCCA, for studying the relationship between
two languages based on the same image they are describ-
ing. Work by (Sun et al. 2019) investigates the application
of DCCA to simple concatenations of multimodal-features,
while (Hazarika et al. 2018) applied CCA methods to learn
joint-representation for detecting sarcasm. Both approaches
show the effectiveness of CCA methods towards learning
potential correlation between two input variables.

3 Methodology

This section first introduces CCA and DCCA. Next, the in-
teraction canonical correlation network (ICCN), which ex-
tracts the interaction features of a CNN in a DCCA-based
network, is introduced. Finally, the whole pipe-line of us-
ing this method in a multimodal language analysis task is
described.

CCA and DCCA

Given two sets of vectors X ∈ R
n1×m and Y ∈ R

n2×m,
where m denotes the number of vectors, CCA learns two
linear transformations A ∈ R

n1×r and B ∈ R
n2×r such that

the correlation between ATX and BTY is maximized. De-
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note the covariances of X and Y as S11, S22, and the cross-
covariance of X,Y as S12. The CCA objective is

A∗, B∗ = argmax
A,B

corr(ATX,BTY )

= argmax
A,B

ATS12B√
ATS11A

√
BTS22B

.
(1)

The solution of the above equation is fixed and can be
solved in multiple ways (Hotelling 1936; Martin and Maes
1979). One method suggested by (Martin and Maes 1979)
lets U, S, V T be the Singular Value Decomposition (SV D)
of the matrix Z = S

− 1
2

11 S12S
− 1

2
22 . Then A∗, B∗ and the total

maximum canonical correlation are

A∗ = S
− 1

2
11 U

B∗ = S
− 1

2
22 V

corr(A∗TX,B∗TY ) = trace(ZTZ)
1
2 .

(2)

One limitation of CCA is that it only considers linear trans-
formations. DCCA (Andrew et al. 2013) learns non-linear
transformations using a pair of neural networks. Let f, g
denote two independent neural networks, the objective of
DCCA is to optimize parameters θf , θg of f, g so that the
canonical correlation between the output of f and g, denoted
as FX = f(X; θ1) and FY = g(Y ; θ2), can be maximized
by finding two linear transformations C∗, D∗. The objective
of DCCA is

θ∗f , θ
∗
g = argmax

θf ,θg

CCA(FX , FY )

= argmax
θf ,θg

corr(C∗TFX , D∗TFY ).
(3)

In order to update the parameters of f, g, a loss for measur-
ing the canonical correlation must be calculated and back-
propagated. Let R11, R22 be covariances of FX , FY , the
cross-covariance of FX , FY as R12. Let E = R

− 1
2

11 R12R
− 1

2
22 .

According to (2), the canonical correlation loss for updating
Fx, FY can be defined by

CCA Loss = −trace(ETE)
1
2 . (4)

Networks f(X; θf ), g(Y ; θg)’s parameters can be updated
by minimizing the CCA Loss (4) (i.e. maximize the total
canonical correlation).

Text Based Audio Video Interaction Canonical
Correlation

Previous work of (Zadeh et al. 2017; Liu et al. 2018) on
multi-modal feature fusion has shown that the outer-product
is able to learn interactions between different features ef-
fectively. Thus, we use the outer-product to represent text-
video and text-audio features. Given that outer-product and
DCCA are applied at the utterance (sentence)-level, we ex-
tract utterance level features for each uni-modal indepen-
dently in order to test the effectiveness of ICCN more di-
rectly. Let Ht ∈ R

dt be the utterance-level text feature em-
bedding, and Hv ∈ R

dv×lv , Ha ∈ R
da×la be the video

and audio input sequences. A 1D temporary convolutional
layer is used to extract local structure of the audio and video
sequences, and the outputs of the 1D-CNN are denoted as
Ha1 ∈ R

da1×la , Hv1 ∈ R
dv1×lv . Next, two LSTMs pro-

cess the audio and video sequences. The final hidden state
of each LSTM is used as the utterance-level audio or video
feature, denoted as Ha2 ∈ R

da2 , Hv2 ∈ R
dv2 . Once each

utterance-level feature has been obtained, the text-based au-
dio feature matrix and text-based video feature matrix can
then be learned using the outer-product on Ht, Hv2, Ha2:

Hta = Ht ⊗Ha2, Hta ∈ R
dt×da2

Htv = Ht ⊗Hv2, Htv ∈ R
dt×dv2 .

(5)

In order to extract useful features from the outer-product ma-
trices Hta, Htv , a Convolutional Neural Network is used as
the basic feature extractor. Hta and Htv are connected by
multiple 2D-CNN layers with max pooling. Outputs of the
two 2D-CNNs are reshaped to 1D vector and then be used
as inputs to the CCA Loss calculation. 1D-CNN, LSTM,
and 2D-CNN’s weights are again updated using the back-
propagation of the CCA Loss (4). Thus the two 2D-CNNs
learn to extract features from Htv and Hta so that their
canonical correlation is maximized. Algorithm 1 provides
the pseudo-code for the whole Interaction Canonical Corre-
lation Network (ICCN).

Algorithm 1 Interaction Canonical Correlation Network
Input: Data Ht ∈ R

dt×N , Ha ∈ R
da×la×N , Hv ∈

R
dv×lv×N , epoch, η

Initialize Wa of (CNN1Da,LSTMa, and CNN2Dta)
Initialize Wv of (CNN1Dv,LSTMv , and CNN2Dtv)
while epoch > 0 do
Ha1 = CNN1Da(Ha)
Hv1 = CNN1Dv(Hv)
Ha2 = LSTMa(Ha1)
Hv2 = LSTMv(Hv1)
Htv = Ht ⊗Hv2, Hta = Ht ⊗Ha2

Ktv = CNN2Dtv(Htv)
Kta = CNN2Dta(Hta)
Compute gradients ∇Wv , ∇Wa of:
min

Wv,Wa

CCALoss(Ktv,Kta)

Update:
Wv ←Wv − η∇Wv

Wa ←Wa − η∇Wa

epoch← epoch− 1
end while

Output: Ktv,Kta

Pipe-line for Downstream Tasks

The ICCN method acts as a feature extractor. In order to
test its performance, an additional downstream classifier is
also required. Uni-modal features can be extracted using a
variety of simple extraction schemes as well as by learn-
ing features using more complex neural network based mod-
els such as a sequential LSTM. Once uni-modal features for
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Figure 1: ICCN method for aligning text-based audio features and text-based video features. Sentence level uni-modal features
are extracted independently. Outer-product matrices of text-audio and text-video are used as input to the Deep CCA network.
After learning the CNN’s weights using the CCA Loss, outputs of the two CNNs are concatenated with the original text to form
the multi-modal embedding. This can be used as input to independent downstream tasks.

text, video, and audio have been obtained, the ICCN can be
used to learn text-based audio feature Kta and text-based
video feature Ktv . The final multi-modal embedding can
be formed as the concatenation of the text-based audio, the
original text, and the text-based video features, which are
denoted as [Kta;Ht;Ktv]. This [Kta;Ht;Ktv] can then be
used as an input to downstream classifiers such as logistic re-
gression or multilayer perceptron. Figure 1 shows the pipe-
line using the ICCN for downstream tasks in our work.

4 Experiment Settings

This section describes the experimental datasets and base-
line algorithms against which ICCN is compared.

Datasets

The proposed algorithm is tested using three public bench-
mark multi-modal sentiment analysis and emotion recog-
nition datasets: CMU-MOSI (Zadeh et al. 2016), CMU-
MOSEI (Zadeh et al. 2018c), and IEMOCAP(Busso et
al. 2008). Both CMU-MOSI and CMU-MOSEI’s raw fea-
tures, and most of the corresponding extracted features can
be acquired from the CMU-MultimodalSDK (Zadeh et al.
2018b).
• CMU-MOSI: This dataset is a multi-modal dataset built

on 93 Youtube movie reviews. Videos are segmented to
2198 utterance clips, and each utterance example is an-
notated on a scale of [-3, 3] to reflect sentiment intensity.
-3 means an extremely negative and 3 means an extremely
positive sentiment. This data set is divided into three parts,
training (1283 samples), validation (229 samples) and test
(686 samples).

• CMU-MOSEI: This dataset is similar to the CMU-
MOSI, but is larger in size. It consists of 22856 anno-
tated utterances extracted from Youtube videos. Each ut-
terance can be treated as an individual multi-modal exam-
ple. Train, validation, and test sets contain 16326, 1871,
and 4659 samples respectively.
• IEMOCAP: This dataset contains 302 videos in which

speakers performed 9 different emotions (angry, excited,
fear, sad, surprised, frustrated, happy, disappointed and
neutral). Those videos are divided into short segments
with emotion annotations. Due to the imbalance of some
emotion labels, we follow experiments in previous papers
(Wang et al. 2018; Liu et al. 2018) where only four emo-
tions (angry, sad, happy, and neutral) are used to test the
performance of the algorithm. Train, validation, and test
partitions contain 2717, 789, and 938 data samples re-
spectively.

Multi-modal Features

The following uni-modal features are used prior to combi-
nations,
• Text Features: For MOSI and MOSEI, we use a pre-

trained transformer model BERT (Devlin et al. 2018)
to extract utterance level text features, (many other ap-
proaches use Glove word-level embeddings followed by
a LSTM). The motivation behinds using BERT is 1)
BERT is the state-of-the-art in sentence encoding algo-
rithms and has demonstrated tremendous success in sev-
eral downstream text applications such as sentiment anal-
ysis, question-answering, semantic similarity tasks etc, 2)
using BERT simplifies the training pipe-line, with a large
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focus now towards improving the performance of ICCN
on a particular downstream task. We input the raw text to
the pre-trained uncased BERT-Base model (without fine-
tuning). Sentence encodings output from BERT are used
as the text features. Each individual text feature is of size
768. For IEMOCAP, we used InferSent(Conneau et al.
2017) to encode utterance level text. Since data is pro-
vided in the form of word indices for GLOVE embed-
dings rather than raw text, we use InferSent; a BiLSTM
layer followed by a max-pooling layer to learn sentence
embeddings.
• Audio Features: The audio feature is extracted by using

COVAREP (Degottex et al. 2014), which is a public soft-
ware used for extracting acoustic features such as pitch,
volume, and frequency. The CMU-MultimodalSDK pro-
vides COVAREP feature sequence for every multi-modal
example, the dimension of each frame’s audio feature is
74.
• Video Features: Facet(iMotions 2017) has been used for

extracting facial expression features such as action units
and face pose. Similarly, every multimodal example’s
video feature sequence is also obtained from the CMU-
MultimodalSDK. The size of each frame’s video feature
is 35.

Baseline Methods

We consider a variety of baseline methods for multi-modal
embedding comparison. In order to focus on the multi-modal
embedding itself, we input each multi-modal embedding to
the same downstream task classifier (or regressor). Exper-
imental comparisons are reported in two parts 1) we re-
port the effectiveness of DCCA over the simpler CCA based
methods when used as inputs to the ICCN and 2) we com-
pare ICCN against newer utterance level embeddings algo-
rithms that learn features for a down stream task in an end-
to-end fashion. The following baselines are used in our com-
parisons,
• Uni-modal and Concatenation: This is the simplest

baseline in which uni-modal features are concatenated to
obtain a multi-modal embedding.
• Linear CCA: CCA (Hotelling 1936) considers linear

transformations for different inputs. We use the CCA to
learn a new common space for audio and video modes,
and combine the learned audio and video features with
the original text embedding. This is because, (Sun et al.
2019) showed that using a CCA-based method to correlate
audio and video is more effective that correlating audio-
text or video-text.
• Kernel-CCA: Kernel-CCA (Akaho 2006) introduces a

nonlinearity via kernel maps. Kernel-CCA can be used
exactly like CCA.
• GCCA: Generalized CCA (Tenenhaus and Tenenhaus

2011) learns a common subspace across multiple views.
We use GCCA in two ways: 1) use the GCCA output em-
bedding directly and 2) combine the GCCA output em-
bedding with the original text embedding.

• DCCA: A Deep CCA based algorithm proposed by (Sun
et al. 2019). Audio and video features are simply con-
catenated and then be correlated with text features using
DCCA. Outputs of the DCCA are again concatenated with
raw text, audio, and video features to formulate the mul-
timodal embedding.

In the proposed ICCN algorithm, text features are encoded
by a pre-trained BERT transformer or by InferSent. This is
unlike most of the state-of-the-art algorithms that obtain sen-
tence level encodings by passing word embeddings through
variants of RNNs. However, since the idea is to compare
modal features, we also choose the following three state-
of-the-art utterance-level (i.e. sentence-level) fusion models
(whose core algorithm is agnostic to the text encoding ar-
chitecture) as additional baselines. To make the comparison
fair, these methods use the same features as ours.
• TFN: Tensor Fusion Network (TFN) (Zadeh et al. 2017)

combines individual modal’s embeddings via calculating
three different outer-product sub-tensors: unimodal, bi-
modal, and trimodal. All tensors will then be flattened and
used as a multi-modal embedding vector.
• LMF: Low-Rank Multimodal Fusion (LMF) (Liu et al.

2018) learns the multimodal embedding based the similar
tensor processing of TFN, but with an additional low-rank
factor for reducing computation memory.
• MFM: Multimodal Factorization Model (MFM) (Tsai et

al. 2018) is consists of a discriminative model for predic-
tion and a generative model for reconstructing input data.
A comprehensive multimodal embedding is learned via
optimizing the generative-discriminative objective simul-
taneously.

Ablation studies of ICCN

In order to analyze the usefulness of different components
of the ICCN, we consider the following two questions:

Question 1: Is using canonical correlation better than us-
ing other methods like Cosine-Similarity?

Question 2: Is learning the interactions between text and
video (or audio) useful?

We design several experiments to address these two ques-
tions, First, we replace the CCA Loss with Cosine-Similarity
Loss while leaving other parts of the ICCN unchanged. Sec-
ond, instead of using the outer-product of audio (or video)
and text as input to the CCA Loss, we use audio and video
directly as the input to DCCA network. We compare differ-
ent ICCN variants’ performance to prove the usefulness of
each component of the network.

Evaluation Methods

To evaluate ICCN against previous baselines, the following
performance metrics as described in (Liu et al. 2018; Zadeh
et al. 2017; Tsai et al. 2018) are reported,
• On the CMU-MOSI and CMU-MOSEI we report four

performance metrics, i) binary accuracy, ii) F1-score iii)
mean absolute error and iv) 7-class sentiment level / Cor-
relation with human labeling.
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Data View CMU-MOSI CMU-MOSEI
Acc-2 F-score MAE Acc-7 Corr Acc-2 F-score MAE Acc-7 Corr

Audio 45.15 45.83 1.430 16.21 0.248 58.75 59.23 0.785 38.59 0.298
Video 48.10 49.06 1.456 15.51 0.339 59.25 59.90 0.770 36.09 0.288
Text 80.80 80.17 0.897 35.92 0.688 82.83 83.02 0.582 48.76 0.681
Text+Video 81.00 80.91 0.920 35.11 0.676 82.86 83.01 0.581 47.92 0.674
Text+Audio 80.59 80.56 0.909 35.08 0.672 82.80 82.96 0.582 49.02 0.689
Audio+Video+Text 80.94 81.00 0.895 36.41 0.689 82.72 82.87 0.583 50.11 0.692
CCA 79.45 79.35 0.893 34.15 0.690 82.94 83.06 0.573 50.23 0.690
KCCA 79.82 79.91 0.889 34.76 0.689 83.05 83.14 0.574 50.09 0.692
GCCA 62.50 62.15 1.403 17.29 0.533 75.12 75.46 0.653 45.33 0.602
GCCA+Text 77.80 77.87 1.107 25.94 0.658 82.75 82.90 0.613 46.06 0.644
DCCA 80.60∗ 80.57∗ 0.874 35.51 0.703 83.62∗ 83.75∗ 0.579 50.12 0.707
TFN 80.82 80.77 0.901 34.94 0.698 82.57 82.09 0.593 50.21 0.700
LMF 82.53 82.47 0.917 33.23 0.695 82.03 82.18 0.623 48.02 0.677
MFM 81.72 81.64 0.877 35.42 0.706 84.40 84.36 0.568 51.37 0.717

ICCN 83.07 83.02 0.862 39.01 0.714 84.18 84.15 0.565 51.58 0.713

Table 1: Results for experiments on CMU-MOSI and CMU-MOSEI. Best numbers are in bold. For accuracy, F-score, and
Correlation, higher is better. For mean absolute error, lower is better. Results marked with ∗ are reported in original papers. For
TFN, LMF, and MFM, we re-did experiments with using our features for a fair comparison.

• On the IEMOCAP we used i) binary accuracy and ii) F1-
score for evaluation.
Evaluations Details on CMU-MOSI, CMU-MOSEI:

The original MOSI and MOSEI datasets are labeled in the
range [-3,3]. The author of the datasets suggests a criterion
for building binary labels: examples with label in [-3, 0) are
considered to have negative sentiment while examples with
label in (0, 3] are considered to have positive sentiment. 7-
class sentiment level is also calculated based on the label dis-
tribution in [-3,3]. The correlation of predicted results with
human labeling is also used as a criteria.

Hyperparameter Tuning

A basic Grid-Search is used to tune hyperparameters, and
the best hyperparameter settings for the ICCN are chosen
according to its performance on the validation dataset. For
ICCN, hyperparameters and tuning ranges are: learning rate
(1e − 5–1e − 3), mini-batch size (128–512), the number of
epoch (10–100), hidden dimensions of MLP (64–512), and
output dimension of the CCA projection (30–100). ReLU
is used as the activation function, RMSProp is used as the
optimizer.

Whenever the training of the ICCN with a specific hypy-
erparameter setting has finished, features learned from the
ICCN are used as input to the same downstream task models
(a simple MLP is used in this work). Test results are reported
by using the best hyperparameter setting learned above.

5 Discussion of Empirical Results

This section presents and discusses results on the CMU-
MOSI, CMU-MOSEI, and IEMOCAP datasets.

Performance on Benchmark Datasets

Tables 1 and 2 present results of experiments on the CMU-
MOSI, CMU-MOSEI, and IEMOCAP datasets.
• First, when compared with results of using uni-modal and

simple concatenations, ICCN outperforms all of them in
all of the criteria. Note that the performance of the text
feature is always better than the performance of the audio

and video, and that a simple concatenation of text, video,
and audio does not work well. This shows the advance of
highly-developed pre-trained text features capable of im-
proving the overall multimodal task performance. How-
ever, it also shows the challenge of how to effectively
combine such a highly developed text feature with audio
and video features.
• Second, ICCN also outperforms other CCA-based meth-

ods. The results of using other CCA-based methods show
that they cannot improve the multimodal embedding’s
performance. We argue this occurs because 1) CCA /
KCCA / GCCA do not exploit the power of neural net-
work architectures so that their learning capacities are
limited. 2) Using DCCA without learning the interactions
between text-based audio and text-based video may sacri-
fice useful information.
• Third, the ICCN still achieves better or similar results

when compared with other neural network based state-
of-the-art methods (TFN, LMF, and MFM). These results
demonstrate the ICCN’s competitive performance.

Results of Ablation Studies

Table 3 shows results of using variants of ICCN on CMU-
MOSI and CMU-MOSEI datasets.

First, using the CCA Loss performs better than using
Cosine-Similarity Loss with or without the outer-product.
This is reasonable as the DCCA is able to learn the hid-
den relationships (with the help of non-linear transforma-
tions) but cosine-similarity is restrained by the original co-
ordinates. To further verify this, we also record changes
of canonical correlation and cosine similarity between text-
based audio and text-based video (i.e., between the two out-
puts of the CNNs in the ICCN) by using CCA Loss or Co-
sine Similarity Loss for the ICCN with using the CMU-
MOSI dataset. Curves in Figures 2 and 3 summarize the re-
sults of the experiments. Results show that maximizing the
canonical correlation by using the CCA Loss does not nec-
essarily increase the cosine similarity, and vice versa. This
demonstrates that the canonical correlation is a genuinely
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Data View IEMOCAP
Emotions Happy Angry Sad Neutral

Acc-2 F-score Acc-2 F-score Acc-2 F-score Acc-2 F-score
Audio 84.03 81.09 85.49 84.03 82.75 80.26 63.08 59.24
Video 83.14 80.36 85.91 83.27 81.19 80.35 62.30 58.19
Text 84.80 81.17 85.12 85.21 84.18 83.63 66.02 63.52
Text+Video 85.32 82.01 85.22 85.10 83.33 82.96 65.82 65.81
Text+Audio 85.10 83.47 86.09 84.99 83.90 83.91 66.96 65.02
Audio+Video+Text 86.00 83.37 86.37 85.88 84.02 83.71 66.87 65.93
CCA 85.91 83.32 86.17 84.39 84.19 83.71 67.22 64.84
KCCA 86.54 84.08 86.72 86.32 85.03 84.91 68.29 65.93
GCCA 81.15 80.33 82.47 78.06 83.22 81.75 65.34 59.99
GCCA+Text 87.02 83.44 88.01 88.00 84.79 83.26 68.26 67.61
DCCA 86.99 84.32 87.94 87.85 86.03 84.36 68.87 65.93
TFN 86.66 84.03 87.11 87.03 85.64 85.75 68.90 68.03
LMF 86.14 83.92 86.24 86.41 84.33 84.40 69.62 68.75
MFM 86.67 84.66 86.99 86.72 85.67 85.66 70.26 69.98

ICCN 87.41 84.72 88.62 88.02 86.26 85.93 69.73 68.47

Table 2: Results for experiments on IEMOCAP. Best numbers are in bold. For accuracy and F-score, higher is better. For TFN,
LMF, and MFM, we re-did experiments with using our features for a fair comparison.

Data View CMU-MOSI CMU-MOSEI
Acc-2 F-score MAE Acc-7 Corr Acc-2 F-score MAE Acc-7 Corr

ICCN 83.07 83.02 0.862 39.01 0.714 84.18 84.15 0.565 51.58 0.713
ICCN1(no text) 82.13 82.05 0.874 35.51 0.703 83.01 83.10 0.575 50.12 0.707
ICCN2(cos) 82.32 82.27 0.876 36.01 0.702 82.98 82.90 0.575 50.63 0.700
ICCN3(no text + cos) 81.49 81.58 0.889 35.77 0.692 82.59 82.73 0.578 50.21 0.696

Table 3: Ablation studies of ICCN on CMU-MOSI and CMU-MOSEI. ICCN1−3 denote different variants, “no text” means
applying DCCA to audio and video directly instead of applying to the outer-product with text; “cos” means replacing CCA
Loss with Cosine-Similarity Loss;“no text + cca” means removing outer-product with text and use Cosine-Similarity Loss.

Figure 2: Changes of mean canonical correlation and mean
cosine similarity between text-based audio and text-based
video when training with CCA Loss: The network learns to
maximize the canonical correlation but the cosine similarity
isn’t affected.

different objective function than cosine similarity, and ex-
plains the different behaviors in the downstream applica-
tions. CCA is capable of learning hidden relationships be-
tween inputs that the cosine similarity does not see.

Second, learning the interactions between non-text and
text performs better than using audio and video directly. This
also makes sense because audio and video are more corre-
lated when they are based on the same text, thus learning
text-based audio and text-based video performs better. In

Figure 3: Changes of mean canonical correlation and cosine
similarity between text-based audio and text-based video
when training with Cosine Similarity Loss: convergence of
cosine similarity doesn’t affect canonical correlation.

summary, Table 3 shows the usefulness of using a text-based
outer-product together with DCCA.

6 Conclusion and Future Work

This paper has proposed the ICCN method, which uses
canonical correlation to analyze hidden relationships be-
tween text, audio, and video. Testing on a multi-modal sen-
timent analysis and emotion recognition task shows that
the multi-modal features learned from the ICCN model can
achieve state-of-the-art performance, and shows the effec-

8998



tiveness of the model. Ablation studies confirm the useful-
ness of different part of the network.

There is, of course, considerable room for improvement.
Possible directions include learning dynamic intra-actions
in each model together with inter-actions between different
modes; learning the trade-off between maximum canonical
correlation and best downstream task performance; and de-
veloping an interpretable end-to-end multi-modal canonical
correlation model. In the future, we hope to move forward
in the development of multi-modal machine learning.
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