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Abstract

Named entity recognition (NER) is a well-studied task in
natural language processing. However, the widely-used se-
quence labeling framework is usually difficult to detect enti-
ties with nested structures. The span-based method that can
easily detect nested entities in different subsequences is natu-
rally suitable for the nested NER problem. However, previ-
ous span-based methods have two main issues. First, clas-
sifying all subsequences is computationally expensive and
very inefficient at inference. Second, the span-based meth-
ods mainly focus on learning span representations but lack
of explicit boundary supervision. To tackle the above two is-
sues, we propose a boundary enhanced neural span classifi-
cation model. In addition to classifying the span, we propose
incorporating an additional boundary detection task to predict
those words that are boundaries of entities. The two tasks are
jointly trained under a multitask learning framework, which
enhances the span representation with additional boundary
supervision. In addition, the boundary detection model has
the ability to generate high-quality candidate spans, which
greatly reduces the time complexity during inference. Exper-
iments show that our approach outperforms all existing meth-
ods and achieves 85.3, 83.9, and 78.3 scores in terms of F1 on
the ACE2004, ACE2005, and GENIA datasets, respectively.

Introduction

Named entity recognition (NER) is a fundamental task in
the field of natural language processing. It aims to iden-
tify text spans to specific entity types such as Person, Or-
ganization, and Location, which benefits many downstream
NLP applications. Previous works usually treat NER as a se-
quence labeling task. For example, Lample et al. (2016) pro-
pose the LSTM-CRF model, which achieves promising re-
sults by combining deep recurrent neural networks (RNNs)
with conditional random fields (CRFs) (Lafferty, McCallum,
and Pereira 2001). However, Finkel and Manning (2009)
point out that named entities are often nested. For example,
43.27% and 37.35% entities are nested in the ACE2004 and
ACE2005 datasets, respectively. Figure 1 and Figure 2 show
two examples in the ACE2005 and GENIA datasets, respec-
tively. In the first example, “Britain” is an entity with the
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Figure 1: An example in the ACE dataset.
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Figure 2: An example in the GENIA dataset.

type of “GPE”. It is nested in “Britain’s ITN” with the type
of “ORG”. They are further nested in “Reporter Carl Dinnon
of Britain ’s ITN” with the type of “PER”. The above nested
structure cannot be handled by the predominant sequence
labeling models.

Various approaches for nested NER have been proposed
in recent years. One representative direction is based on
hypergraph-based methods (Lu and Roth 2015; Wang and
Lu 2018) that recognize nested entities by designing ex-
pressive tagging schemas. However, the hypergraph-based
method needs a lot of human efforts to carefully design
the unambiguous hypergraph. Another direction is based
on span-based methods that recognize nested entities by
classifying subsequences of the sentence (Xu, Jiang, and
Watcharawittayakul 2017; Sohrab and Miwa 2018; Xia et
al. 2019). The span-based method has its own advantages
that we can easily find all candidate entities with different
subsequences, which is straightforward and does not need
human efforts. We therefore solve the nested NER task with
the span-based method in this work. However, the span-
based method still has two main issues. First, classifying all
subsequences in the sentence is computationally expensive.
Second, the span-based methods mainly focus on learning
span representations but lack of explicit boundary supervi-
sion. Compared with methods under the sequence labeling
framework and hypergraph methods, we observe that span-
based methods usually perform worse in detecting bound-
aries of entities. Span-based methods are usually confused
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by spans with minor difference. For example, as shown in
Figure 2, “B cells” and “EBV - transformed B cells” are en-
tities, while “transformed B cells” is not, which brings great
difficulty in learning span representations and usually leads
to false-positive errors at inference time.

To alleviate the above-mentioned issues in the span-based
method, we propose a Boundary Enhanced Neural Span
Classification (BENSC) model. In addition to classifying
spans into corresponding semantic tags, we propose incor-
porating an additional boundary detection task to enhance
the boundary supervision in learning span representations.
Specifically, given a sentence, we first encode the word
with the token-level representation, and then jointly train
the boundary detection model and the span classification
model under a multitask framework. The boundary detec-
tion model consists of two token-level classifiers predicting
whether each word is the first or last word of an entity re-
spectively. The span classification model is to aggregate the
inside information of the span to predict its semantic tag.
During inference, we can obtain the boundary confidence
scores Ps and Pe via the boundary detection model and the
tag C of the span with the confidence score Psp via the span
classification model. The three scores will jointly determine
whether a span is an entity with the tag C.

We conduct experiments on three standard benchmark
datasets. Experimental results show that our approach
achieves 75.3, 75.6, and 75.7 scores in terms of F1 on
the ACE2004, ACE2005, and GENIA datasets, respectively.
With the pre-trained language model BERT, our approach
further improves the result to 85.3, 83.9, and 78.3 on three
datasets, which outperforms all existing methods and our
span classification baselines. Ablation tests show that jointly
learning boundary detection and span classification tasks
benefits the model with better representation and it improves
both two tasks. In addition, the boundary detection model
has the ability to generate high-quality candidate spans,
which greatly reduces the number of spans feeding into
the span classification model and therefore reduces the time
complexity of the whole model. We also show that incorpo-
rating the boundary probability can help avoid mistakes by
the span classification model through case studies.

Related Work
It has been a long history of research involving named entity
recognition (McCallum and Li 2003). Zhou and Su (2002)
present a system for recognizing named entities using an
HMM-based approach. McDonald and Pereira (2005) ap-
ply conditional random fields to recognize the protein
and gene entities in biomedical texts. Alex, Haddow, and
Grover (2007) propose building models on top of linear-
chain conditional random fields for recognizing nested enti-
ties in biomedical texts. With the development of deep learn-
ing methods, LSTM-CRF achieves very promising results
in recognizing named entities (Huang, Xu, and Yu 2015;
Lample et al. 2016). However, traditional sequential label-
ing models cannot handle the nested structure because they
can only assign one label to each token.

Finkel and Manning (2009) point out that named entities
are often nested. The earliest research efforts on nested NER

are rule-based (Zhang et al. 2004). The authors first detect
the inner-most mentions and then identify overlapping men-
tions based on the rule-based post-processing methods. Lu
and Roth; Katiyar and Cardie; Wang and Lu (2015; 2018;
2018) propose the hypergraph-based method to solve this
problem. They design a hypergraph to represent all possi-
ble nested structures, which guarantees that nested entities
can be recovered from the hypergraph tags. However, the
hypergraph needs to be carefully designed to avoid spurious
structures and structural ambiguities, and inevitably leads to
higher time complexity during both training and inference.
In addition, Muis and Lu (2017) develop a gap-based tag-
ging schema to capture nested structures. Wang et al. (2018)
propose a transition-based method to construct nested men-
tions via a sequence of specially designed actions. Fisher
and Vlachos (2019) propose forming nested structures by
merging tokens and/or entities into entities for entity repre-
sentation. Lin et al. (2019) propose a sequence-to-nuggets
architecture that first identifies anchor words with corre-
sponding semantic types of all entities, and then recognizes
the boundaries of the entity for each anchor word.

Another strategy for the nested NER problem is the
span-based methods. In the span-based method, nested en-
tities can be easily detected because they belong to differ-
ent subsequences. Recently, Xu, Jiang, and Watcharawit-
tayakul (2017) try to directly classify all subsequences of
a sentence by encoding each subsequence into a fixed-size
representation. Sohrab and Miwa (2018) also enumerate all
possible regions or spans as potential entity mentions and
classify them with deep neural networks. Xia et al. (2019)
propose MGNER that consists of a Detector that examines
all possible spans and a Classifier that categorizes spans into
corresponding semantic tags. Luan et al. (2019) propose a
general framework that leverages the coreference and rela-
tion type confidences for better span representations. These
approaches are straightforward for nested mention detection,
but have two main drawbacks. First, classifying all subse-
quences in the sentence need high computational cost. Sec-
ond, compared with methods based on the sequence label-
ing, span-based methods usually show worse performance
in determining the boundary of an entity because of less
supervision in boundary detection. Our work is also under
the span classification framework. To alleviate the above-
mentioned issues, we propose incorporating boundary de-
tection into span classification, which can help model learn
better representation with boundary supervision and reduce
the time complexity by generating high-quality candidates1.

Approach

Following the overview in Figure 3, our approach consists
of two parts as boundary detection and span classification.
The boundary detection part aims to predict whether a word
is the first or last word of an entity. The span classification
part aims to classify spans to corresponding semantic tags.
The two parts are jointly trained under a multitask learn-
ing framework. Specifically, we first apply an encoder to the

1We observe a contemporaneous work that leverages entity
boundaries to predict entity categorical labels (Zheng et al. 2019).
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Figure 3: An overview of our proposed approach. The whole model consists of (a) boundary detection to predict the span’s
boundary (b) span classification to predict the semantic tag of the span. The two parts are jointly trained under the multitask
learning framework, and jointly determine the final result.

sequence for the contextual word representation. This rep-
resentation will be shared in the downstream boundary de-
tection and span classification tasks. The boundary detection
model consists of two token-level classifiers that predict the
probabilities of a word being the start or end words of an en-
tity respectively. The span classification model is to aggre-
gate the span information for the multi-class classification.
During inference, we will make the decision by jointly con-
sidering the boundary probability and the tag probability.

Encoder

Consider a sentence S with words {wi}Ni=1, we first con-
vert the words to their respective word-level embeddings
and contextual embeddings. In this work, we implement
two kinds of encoders as LSTM (Hochreiter and Schmid-
huber 1997) and BERT (Devlin et al. 2019) respectively.
For LSTM encoder, we first convert the words to their
respective word-level embeddings, character-level embed-
dings, and part-of-speech embeddings. The character-level
embeddings are generated by taking the final hidden states
of a bi-directional LSTM applied to embeddings of char-
acters in the token. We then use a bi-directional LSTM to
produce new representation h1, . . . , hN of all words.

xi = [wi; chari; posi] (1)
−→
hi = LSTM(xi,

−−→
hi−1) (2)

←−
hi = LSTM(xi,

←−−
hi+1) (3)

hi = [
−→
hi ;
←−
hi ] (4)

For BERT encoder, we first tokenize the sentence with the
wordpiece vocabulary, and then generate the input sequence

w̃i by concatenating a [CLS] token, the tokenized sentence,
and a [SEP] token. Next, we use a series of L stacked
Transformer blocks (Vaswani et al. 2017) to project the input
embeddings into a sequence of contextual vectors.

hi = Transformer BlockL(w̃i) (5)

We do not combine the character embedding and part-of-
speech embedding because we assume that they have al-
ready been encoded in the BERT representation.

Boundary Detection

Boundary detection aims to identify whether a word is the
first or last word of an entity. Instead of detecting the bound-
ary via sequence labeling methods, we predict the start and
end positions with two token-wise classifiers.

Specifically, we feed the contextual representation hi into
a multi-layer perceptron (MLP) classifier, and apply a soft-
max layer to obtain the probability P i

s of the word wi being
the first word of an entity.

P i
s = softmax(MLPstart(hi)) (6)

Similarity, we can apply a MLP classifier to obtain the prob-
ability P i

e of the word wi being the last word of an entity.

P i
e = softmax(MLPend(hi)) (7)

During training, since each sentence may contain multiple
entities, we label the span boundaries of all entities as the
ground-truth. Then, we define the training objective function
as the sum of two following cross-entropy losses in detecting
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the start and end boundaries, respectively,

Ls
bdr = −

N∑

i=1

[yis logP
i
s + (1− yis) log(1− P i

s)] (8)

Le
bdr = −

N∑

i=1

[yie logP
i
e + (1− yie) log(1− P i

e)] (9)

Lbdr = Ls
bdr + Le

bdr (10)

where yis and yie denote the label that whether the word i is
the first and last word of an entity, respectively.

Span Classification

Span classification is a span-wise classifier, which aims to
classify spans to corresponding semantic tags. If a span is
not an entity, it should be mapped to an additionalNone.

We propose to summarize the word representation from
contextual word vectors according to its span boundary. For
the LSTM encoder, we calculate a summarized vector vsp
using the attention mechanism (Bahdanau, Cho, and Bengio
2014) over tokens in its corresponding boundary (i, j),

α = softmax(Whi:j) (11)

vsp =

j∑

t=i

αtht (12)

where W is the parameter to be learned.
For BERT encoder, we obtain the span representation by

the mechanism of self attentions. For the span {wi, . . . , wj},
we use Transformer Blocks (Vaswani et al. 2017) to further
encode words inside the span based on their word represen-
tations (hi, . . . , hj),

h∗
i:j = Transformer Blocks(hi:j) (13)

We then use vsp = [h∗
i , h

∗
j ] to represent the span.

Next, we feed the span representation vsp into a multi-
layer perceptron (MLP) classifier, and apply a softmax layer
to obtain the probability Psp to predict its semantic tag.

Psp = softmax(MLPsp(vsp)) (14)

Finally, we minimize the following cross-entropy loss
function,

Lsp = −
k∑

t=1

(ytsp logP
t
sp + (1− ytsp) log(1− P t

sp)) (15)

where k is the number of semantic tags, and ytsp denotes a
label that whether the span (wi, . . . , wj) is in tag t.

Joint Training and Inference

For training, we jointly minimize the following loss,

L = wLbdr + (1− w)Lsp (16)

where w is the hyper-parameter to balance two sub-tasks.
During inference, given the instance (wi, . . . , wj), we

first obtain the boundary probabilities P i
s and P j

e predicted

by the boundary detection model. We then classify all le-
gal spans where j must be larger than i if P i

s ∗ P j
e is

larger than the threshold pre-selected on the development
set. We further feed the span into the span classification
model for its semantic tag C with probability Psp. If the
score P i

s ∗P j
e ∗Psp is still larger than the threshold, we rec-

ognize the span as an entity with tag C.

Implementation Details

For the LSTM encoder, we use 300-dimensional uncased
pre-trained GloVe embeddings (Pennington, Socher, and
Manning 2014) without update during training. We use zero
vectors to represent all out-of-vocabulary words. The size
of character embedding and part-of-speech embedding are
set to 50. The hidden vector length is set to 150. The model
is optimized using Adam (Kingma and Ba 2014) with the
learning rate of 0.002.

For BERT encoder, we use the BERTBASE model (De-
vlin et al. 2019) to obtain the word representation, and the
parameter in BERT is also trainable. The hidden vector
length is 768 and the number of heads is 12. Detailed model
size is referred to Devlin et al. (2019). We use Adam opti-
mizer with the learning rate of 3e-5.

In addition, we also apply 0.2 dropout (Srivastava et al.
2014) between layers. w is set to 0.5 for both the LSTM and
BERT encoder. To speed up the process of training, we only
sample part of the negative spans from all subsequence. The
rule is that the length of the span is less than 6 and nega-
tive spans should overlap with positive spans. We observe
that training with this negative subset has no performance
degradation compared with using full negative spans.

Experiments

We conduct experiments on three standard benchmark
datasets as ACE2004, ACE2005, and GENIA respectively.
Results show that our proposed approach achieves state-of-
the-art performance on all three datasets. The ablation tests
show that our multitask learning framework benefits both
boundary detection and span classification tasks. Then, the
analysis of the time complexity shows that the boundary de-
tection model can generate high-quality candidates, which
greatly reduces the time complexity to linear time. Finally,
we analyze how the boundary detection model benefits the
final result with two cases.

Datasets

We evaluate our model on the ACE2004, ACE2005 (Dod-
dington et al. 2004), and GENIA (Kim et al. 2003) datasets.
Specifically, there are seven different types of entities as
‘FAC’, ‘LOC’, ‘ORG’, ‘PER’, ‘WEA’, ‘GPE’, ‘VEH’ in
the ACE datasets and five types of entities as ‘G#DNA’,
‘G#RNA’, ‘G#protein’, ‘G#cell line’, ‘G#cell type’ in the
GENIA dataset. The statistics of these datasets are shown
in Table 1. We observe that the statistics are not strictly con-
sistent with previous works in the ACE datasets due to word
tokenization and sentence segmentation, but the difference
is less than 0.35%.
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ACE2004 ACE2005 GENIA
Train Dev Test Train Dev Test Train Dev Test

# sentences 7,078 859 922 7,194 969 1,047 14,836 1,855 1,855
with nested entities 2,691 290 377 2,691 338 330 3,199 362 448
# entities 22,172 2,510 3,024 24,441 3,200 2,993 46,473 5,014 5,600
# nested entities 10,080 1,086 1,410 9,389 1,112 1,118 8,337 903 1,217
avg length 20.38 20.69 20.96 19.21 18.93 17.19 30.13 29.17 30.48

Table 1: Statistics of ACE2004, ACE2005, and GENIA datasets.

ACE2004 ACE2005 GENIA
Model P R F1 P R F1 P R F1

LSTM-CRF (Lample et al. 2016) 71.3 50.5 58.3 70.3 55.7 62.2 75.2 64.6 69.5
Multi-CRF - - - 69.7 61.3 65.2 73.1 64.9 68.8
FOFE(c=6) (Xu et al. 2017) 68.2 54.3 60.5 76.5 66.3 71.0 75.4 67.8 71.4
FOFE(c=n) (Xu et al. 2017) 57.3 46.8 51.5 76.9 62.0 68.7 74.0 65.5 69.5
Transition (Wang et al. 2018) 74.9 71.8 73.3 74.5 71.5 73.0 78.0 70.2 73.9
Cascaded-CRF (Ju et al. 2018) - - - 74.2 70.3 72.2 78.5 71.3 74.7
MH (Lu and Roth 2015) 70.0 56.9 62.8 66.3 59.2 62.5 - - -
LH (Katiyar and Cardie 2018) 73.6 71.8 72.7 70.6 70.4 70.5 79.8 68.2 73.6
SH(c=6) (Wang and Lu 2018) 79.1 67.3 72.7 75.9 70.0 72.8 76.8 71.8 74.2
SH(c=n) (Wang and Lu 2018) 77.7 72.1 74.5 76.8 72.3 74.5 77.0 73.3 75.1
ARNs (c=6) (Lin et al. 2019) - - - 75.2 72.5 73.9 75.2 73.3 74.2
ARNs (c=n) (Lin et al. 2019) - - - 76.2 73.6 74.9 75.8 73.9 74.8
Merge and Label (Fisher and Vlachos 2019) - - - 75.1 74.1 74.6 - - -
BENSC (LSTM) 78.1 72.8 75.3 77.1 74.2 75.6 78.9 72.7 75.7

with Pretrained LM

MGNER (ELMo) (Xia et al. 2019) 81.7 77.4 79.5 79.0 77.3 78.2 - - -
Merge and Label (ELMo) - - - 79.7 78.0 78.9 - - -
Merge and Label (BERT) - - - 82.7 82.1 82.4 - - -
BENSC (BERT) 85.8 84.8 85.3 83.8 83.9 83.9 79.2 77.4 78.3

Table 2: Overall results on ACE2004, ACE2005, and GENIA datasets.

Baselines

We compare our model with the following baseline models:
LSTM-CRF is a classical baseline for NER, which cannot

solve the problem of nested entities (Lample et al. 2016).
Multi-CRF is similar to LSTM-CRF but learns one model

for each entity type.
FOFE is a span-based approach that classifies over all sub-

sequences of a sentence by encoding each span with a
fixed-size ordinarily forgetting encoding (Xu, Jiang, and
Watcharawittayakul 2017).

Transition is a shift-reduce based system that learns to con-
struct the nested structure in a bottom-up manner through
an action sequence (Wang et al. 2018).

Cascaded-CRF applies several stacked CRF layers to rec-
ognize nested entities at different levels in an inside-out
manner (Ju, Miwa, and Ananiadou 2018).

MH makes use of hypergraphs for recognizing overlapping
entities (Lu and Roth 2015).

LH uses an LSTM model to learn features and then decodes
them into a hypergraph (Katiyar and Cardie 2018).

SH improves LH by considering the transition between la-
bels to alleviate labeling ambiguity (Wang and Lu 2018).

ARNs first identifies anchor words and then recognizes the
mention boundaries for each anchor word. They propose
a bag-loss to jointly train the two parts (Lin et al. 2019).

MGNER first applies the Detector to generate possible
spans as candidates and then applies a Classifier for the
entity type (Xia et al. 2019).

Merge and Label first merges tokens and/or entities into
entities forming nested structures, and then labels entities
to corresponding types (Fisher and Vlachos 2019).

Main Results

Table 2 shows the overall results on ACE2004, ACE2005,
and GENIA datasets. Our BENSC model achieves state-of-
the-art results in both the LSTM and BERT settings. When
using the LSTM encoder, our BENSC model achieves 75.3,
75.6, and 75.7 scores in terms of F1 on the ACE2004,
ACE2005, and GENIA datasets, respectively. Compared
with the span-based method FOFE, our BENSC model
achieves 14.8, 4.6, and 4.3 absolute gains on the ACE2004,
ACE2005, and GENIA datasets, respectively. Our model
also outperforms the hypergraph-based methods LH and SH,
and the other state-of-the-art methods such as the ARNs
model and the Merge and Label model. With the pre-trained
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ACE2004 ACE2005 GENIA
P R F1 P R F1 P R F1

Boundary Detection (Start)

Only Boundary Detection 92.0 92.8 92.4 89.7 93.8 91.7 85.9 84.9 85.4
BENSC 92.8 92.5 92.6 90.0 94.1 92.0 86.5 85.9 86.2

Boundary Detection (End)

Only Boundary Detection 92.3 92.5 92.4 88.8 93.3 91.0 88.8 87.8 88.3
BENSC 92.1 93.8 92.9 89.2 94.1 91.6 89.0 89.4 89.2

Span Classification

Span Classification Only 75.1 87.4 80.8 73.2 85.7 79.0 72.1 81.4 76.5
BENSC 85.8 84.8 85.3 83.8 83.9 83.9 79.2 77.4 78.3

Table 3: Ablation tests on ACE2004, ACE2005, and GENIA datasets using the BERT encoder.

language model, our BENSC model with the BERT en-
coder achieves 85.3, 83.9, and 78.3 scores in terms of F1

on the ACE2004, ACE2005, and GENIA datasets, respec-
tively, which outperforms all existing baselines such as the
MGNER model and the Merge and Label model.

Ablation Test

To analyze the effectiveness of our joint model, we show
the result of ablation tests based on the BERT encoder in
Table 3. We observe that jointly training the boundary de-
tection model and the span classification model can improve
the result of both two tasks. Firstly, we observe that the result
of predicting the start and end boundaries achieves a little
improvement compared with the isolate boundary detection
model. Then, compared with the original span classification
method, incorporating the boundary detection model ob-
tains 4.5%, 4.9%, and 1.8% absolute gains on the ACE2004,
ACE2005, and GENIA datasets, respectively. In addition,
our BENSC model shows better precision than the origi-
nal span classification method. As we mentioned before,
the span-based model is usually confused when the posi-
tive and negative instances have many overlapping words,
which may lead to some false-positive errors. However, our
BENSC model takes the boundary information as additional
supervision, which benefits the model to distinguish the con-
fusing cases.

Time Complexity

Theoretically, given a sentence consisting of N words, there
are altogether n(n+1)

2 possible candidates. Previous span-
based methods need to classify almost all sentence subse-
quences into corresponding semantic tags, which leads to
the high computational cost with O(mn2) time complex-
ity where m is the number of semantic tags. However, in
our work, the boundary detection model can help us gener-
ate high-quality candidates, which can significantly reduce
the number of candidates and lead to much lower time com-
plexity. The time complexity of our approach consists of two
parts. The boundary detection model is a token-wise classi-
fication model with O(n) time complexity. The span clas-
sification model needs to classify the span to corresponding
semantic tags. Its time complexity is determined by the num-
ber of candidates. In our experiment, we prune spans whose

Dataset # Entities # Candidates # Words
ACE2004 3.28 4.80 20.96
ACE2005 2.86 4.19 17.19
GENIA 3.02 3.56 30.48

Table 4: The statistics of the average number of entities, can-
didates, and words in the sentence. We can observe that the
number of our candidates is far less than the length of sen-
tence.

boundary probability P i
s ∗P j

e are lower than the pre-selected
threshold after the boundary detection part since they can-
not be triggered whatever the result of the span classifica-
tion model is. Although in the worst case, every position
is marked with both the start and end label, which leads to
n(n+1)

2 possible candidates, we observe that the number of
candidate spans is much closer to the number of entities c
in practice. Ideally, for c entities, the model will detect c
start positions and c end positions, which may form c2 can-
didates. However, as shown in Figure 1, nested entities may
share the same start or end positions. The actual number
of candidates is therefore much less than c2 and closer to
c. As shown in Table 4, the average number of candidates
in our experiments is 4.80, 4.19 and 3.56 in the ACE2004,
ACE2005, and GENIA dataset, respectively, which is closed
to the number of entities and much less than the average
length of sequences. For example, on the ACE2005 dataset,
we reduce candidates from over 100 thousand subsequences
of the sentence to about 4.43 thousand spans that is only 1.5
times than the number of entities. Therefore, the total time
complexity of our approach is approximated to O(n + cm)
where c << n. This analysis demonstrates that adding the
boundary detection model can help us generate high-quality
candidates to reduce the time complexity to almost linear
time in practice.

Case Study

To demonstrate how each module of our model takes effect
when predicting the final answer, we conduct a case study
in Table 5 with two cases in the GENIA and ACE datasets,
respectively. In the first example, we can observe that the
correct entity span “nuclear proteins” and “TRE - DNA frag-
ment” obtain high probabilities in all three modules. If only
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Sentence 1: First , from different cell lines three or all four of the nuclear proteins were specifically
cross-linked by UV irradiation to the radioactively labeled TRE-DNA fragment ..
Candidate Spans: Predsp Gold Pi

s Pj
e Psp Output

nuclear proteins G#protein G#protein 1.0 1.0 1.0 G#protein
TRE - DNA fragment G#DNA G#DNA 1.0 1.0 1.0 G#DNA
radioactively labeled TRE - DNA fragment G#DNA None 0.11 1.0 0.77 None
Sentence 2: reporter : now willie williams the girl ’s father is qharthd attempted murder
Candidate Spans: Predsp Gold Pi

s Pj
e Psp Output

willie williams PER PER 1.0 0.99 0.99 PER
the girl PER PER 1.0 1.0 1.0 PER
the girl ’s father PER PER 1.0 1.0 1.0 PER
willie williams the PER None 1.0 0.0 0.58 None
willie williams the girl PER None 1.0 1.0 0.76 PER
williams the PER None 0.0 0.0 0.54 None
williams the girl PER None 0.0 1.0 0.72 None
willie williams the girl ’s father PER None 1.0 1.0 1.0 PER

Table 5: Case study on GENIA and ACE datasets. In practice, if P i
s ∗ P j

e is lower than the pre-selected threshold, we will not
feed the span into the span classification model for its semantic tag. However, to analyze the effect of each module, we show its
semantic tag Predsp with corresponding probability Psp in this case study.

considering the span classification model, the span “radioac-
tively labeled TRE - DNA fragment” may be misidentified
as “G#DNA”, however, since the boundary detection model
gives a lower P i

s score, we can prune this span because its
first word does not look like the start of an entity. In the sec-
ond example, correct spans are also correctly recognized,
and parts of wrong spans such as “willie williams the” and
“williams the girl” can be correctly pruned. However, the
span “willie williams the girl” and “willie williams the girl
’s father” are false-positive errors. Actually, “willie” is the
first word of “willie williams” and “girl” as well as “father”
are last words of “the girl” as well “the girl ’s father” respec-
tively. Since our boundary detection model independently
predicts the probability at the word level, it cannot distin-
guish whether the first word and the last word come from
the same entity, and therefore make a mistake to recognize
this two spans as entities. An alternative solution is to take
the span into consideration when determining the start and
end probabilities, but it will lead to higher time complexity.

Conclusion

In this paper, we tackle the problem of nested NER in which
entities may be nested with others. We consider that the
span-based approach has its advantages as nested entities
correspond to different subsequences. However, the span-
based method has two main drawbacks as the high time com-
plexity and the weak supervision of the boundary. To over-
come the two above issues, we propose a boundary enhanced
neural span classification model (BENSC), which incorpo-
rates the boundary detection task into the span classification
task under a multitask learning framework. We first apply an
encoder for the token-level representation. On top of it, we
implement a boundary detection model with two token-level
classifiers to predict whether a word is the first or last word
of an entity, and a span classification model to aggregate the
span information for the semantic type. During inference,

a span treated as an entity should have high probabilities
at both the span level and the boundary level. Experiments
show that our BENSC model achieves the state-of-the-art re-
sults on three standard benchmark datasets and outperforms
the span classification baselines. Ablation tests demonstrate
that the boundary detection benefits our BENSC model with
better representation of the span. In addition, the boundary
detection model can generate high-quality candidates, which
greatly reduces the time complexity to almost linear time
during inference.
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